East Adjacent Properties – Property 2 24701, 24707, and 24747 Crenshaw Boulevard Torrance, California 90505 Investigative Order No.: R4-2020-0035

Prepared for: Magellan Aerospace, Middletown, Inc. Robinson Helicopter Company

Prepared by: Stantec Consulting Services Inc. 290 Conejo Ridge Avenue Thousand Oaks, California 91361

Submitted to:

Mr. Kevin Lin, PE Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, California 90013

October 11, 2021

Executive Summary

This report was prepared on behalf of Magellan Aerospace, Middletown, Inc. (Middletown) and Robinson Helicopter Company (Robinson) by Stantec Consulting Services Inc. (Stantec) to estimate potential vapor intrusion (VI) risks based on a recent VI study (Stantec 2020) at a property addressed as 24701, 24707, and 24747 Crenshaw Boulevard addresses (the Subject Property; Figure 1), collectively referred to as "Property 2" in the Los Angeles Regional Water Quality Control Board's (LARWQCB's) Investigative Order No. R4-2020-0035, dated May 12, 2020.

The LARWQCB has been overseeing environmental investigations at the Hi-Shear Corporation's (Hi-Shear's) facility located at 2600 Skypark Drive in Torrance, California (Site Cleanup Program [SCP] No. 0218) and at properties adjacent to the Hi-Shear facility which are identified as the East Adjacent Properties of Hi-Shear Corporation (EA Properties [SCP No. 1481]). Property 2, or the Subject Property, is one of the EA Properties.

Stantec evaluated potential vapor intrusion risks at this Property using 10 sub-slab soil vapor samples plus one duplicate sample and 10 collocated indoor air samples were collected at 10 locations across the entire building footprint in February 2021 (**Figure 2**). Analytical results were used to evaluate a reasonable maximum exposure (RME) scenario under the current commercial/industrial use following recent guidance from the California Environmental Protection Agency (Cal-EPA) [2020]:

- 1. indoor air sample results were used to estimate vapor intrusion risk to the *current* on-site worker, and
- 2. sub-slab soil vapor results were used to estimate potential vapor intrusion risk to the *hypothetical future* worker should building conditions change (e.g., the building slab integrity is compromised).

Current Inhalation Risks

The following table presents a summary of estimated *current* cancer risks and non-cancer hazards for commercial/industrial receptors based on indoor air sampling and analysis.

Receptor	Cance	er Risk	Non-Car	ncer Hazard
Receptor	Low	High	Low	High
Current Commercial/Industrial Receptor	3E-06	5E-06	2.2E-01	3.3E-01

The largest contributor to current cancer risk is chloroform detected above screening levels in 4 of 10 samples. However, a comparison of the ratio of indoor air to sub-slab concentrations suggests that indoor sources and other sources unrelated to vapor intrusion are likely responsible for the majority of chloroform detections and other constituents in indoor air, other than tetrachloroethene (PCE) and trichloroethene (TCE). Potable water, heat exchangers, cooling towers, etc., that treat water with chlorine are common sources of chloroform. Using the ratio of indoor air to sub-slab PCE and TCE concentrations, and assuming no indoor source contributions, indicates that the site-specific attenuation factor (AF) is an the order of 0.004 to 0.0001. The higher AFs may be indicative of indoor sources and/or preferential pathways from the subsurface to the indoor air environment. Conservatively discounting indoor air contributions and assuming all indoor air concentrations are the result of vapor intrusion, the calculated risks are within the lower end of the Cal-EPA risk management range (2020).

Future Vapor Intrusion Risks

The following table presents a summary of the range of estimated cancer risks and non-cancer hazards for commercial/industrial receptors based on use of 0.03 attenuation factor (see Section 3.17 Uncertainty Assessment):

Depth and Receptor	Cance	r Risk	Non-Cancer Hazard			
Беритани Кесерия	Low	High	Low	High		
Sub-Slab Soil Vapor Commercial/Industrial Receptor	2E-06	9E-04	7.6E-02	7.7E+01		

The theoretical health risks for the hypothetical future worker were calculated assuming all detected indoor air contributions were from vapor intrusion. The largest contributors to cancer risk are PCE and TCE detected above screening levels, using the conservative attenuation factor of 0.03 (Cal-EPA 2020), in all samples for PCE and 7 of 11 samples for TCE.

DISCUSSION

Use of a composite sample containing the maximum concentrations of chemicals detected in indoor air yielded an estimated potential cancer risk for the hypothetical current worker of 5E-06 which is above the point of departure of 1E-06 but well below an acceptable risk of 1E-05 used on a site-specific basis for industrial use properties and at the lower end of the Cal-EPA risk management range (10⁻⁶ to 10⁻⁴).

A range of potential *future* vapor intrusion risks was estimated by comparing all results against human health risk-based soil vapor screening levels derived by dividing indoor air screening levels representing no unacceptable cancer risk or non-cancer hazards of less than 1 established either by California Department of Toxic Substances Control (DTSC) or the United States Environmental Protection Agency (USEPA) for commercial use properties, by an attenuation factor of 0.03.

Use of the 0.03 attenuation factor to simulate hypothetical *future* cancer risks indicates that commercial/industrial use cancer risks for PCE and TCE are above 1 x 10⁻⁴ and above the target non-cancer hazard target of 1 in two locations, VP-3, and VP-4. Estimated *future* potential site-wide risks to a commercial/industrial receptor ranged from 2E-06 to 9E-04. In no case did the concentrations of PCE and TCE in sub-slab soil vapor result in levels in indoor air predicted by what, in our opinion, is an overly conservative 0.03 attenuation factor. The use of an attenuation factor of 0.03 has been demonstrated to be a very conservative estimate of indoor air concentrations in typical slab-on-grade commercial and industrial buildings in California.

Please see Section 3.12 for a discussion of the uncertainties associated with these findings.

This SCREENING LEVEL VAPOR INTRUSION HUMAN HEALTH RISK ASSESSMENT REPORT was prepared by Stantec Consulting Services Inc. (Stantec) for Magellan Aerospace, Middletown, Inc. and Robinson Helicopter Co.. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

	tatuck any him	
Prepared by		
· ,	(signature)	

Patrick Vaughan, MS, Principal-Risk Assessor

Reviewed by __

(signature)

Kevin Miskin, PE, Senior Principal Engineer

Approved by

(signature)

Lewis Simmons, PG, Principal Geologist

Table of Contents

EXEC	CUTIVE SUMMARY	2
	JSSION	
1.0	INTRODUCTION	1.3
1.1	OVERVIEW OF APPROACH	
1.2	ORGANIZATION OF REPORT	
	DA OKODOUND	0.0
2.0	BACKGROUND	
2.1	SITE DESCRIPTION AND LAND USE	
2.2 2.3	PHYSICAL SETTINGPAST ASSESSMENTS	
2.5	FAST ASSESSIVIENTS	
3.0	CONCEPTUAL SITE MODEL	3.8
3.1	SURROUNDING PROPERTY USE	3.8
3.2	POTENTIAL SOURCES	3.8
3.3	POTENTIALLY EXPOSED POPULATIONS	3.8
3.4	POTENTIAL EXPOSURE PATHWAYS	3.9
3.5	POTENTIALLY EXPOSED POPULATIONS	3.9
3.6	EXPOSURE ASSESSMENT	3.9
	3.6.1 RISK ASSESSMENT DATASETS	
	3.6.2 SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCS)	
	3.6.3 EXPOSURE POINT CONCENTRATIONS	
	3.6.4 DATA USABILITY ASSSEMENT	
3.7	SELECTION OF TOXICITY VALUES	
3.8	HUMAN HEATH RISK-BASED SCREENING LEVELS	
	3.8.1 Vapor Intrusion Screening Levels	
3.9	RISK CHARACTERIZATION	
3.10	RISK CHARACTERIZATION SUMMARY	
3.11	DISCUSSION	
3.12	UNCERTANTY ASSESSMENT	3.14
4.0	REFERENCES	4.1

LIST OF TABLES

- Table 1 Summary of Sub-Slab Soil Vapor Dataset
- Table 2 Summary of Indoor/Outdolor Air Dataset
- Table 3 Summary Statistics and Selection of COPCs
- Table 4 Estimated Potential Future Risk -Sub-Slab Soil Vapor
- Table 5 Estimated Potential Current Risks Indoor Air
- Table 6 Empirically Derived Attenuation Factors-Sub-Slab Soil Vapor to Indoor Air

LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Plan with Sample Locations

LIST OF APPENDICES

Appendix A - Certified Laboratory Analytical Reports

October 11, 2021

Abbreviations

%R Percent recovery
AA Ambient air

bgs Below ground surface

Cal-EPA California Environmental Protection Agency

COC Chain-of-custody

COPCs Chemicals of potential concern

CR Cancer risk

Dasco Engineering Corporation

DCE Dichloroethene

DTSC California Department of Toxic Substances Control EA Properties East-Adjacent Properties of Hi-Shear Corporation

EPC Exposure point concentration
ESA Environmental Site Assessment

ft Feet

FREY Frey Environmental Inc.

GER Genesis Engineering & Redevelopment

HASP Health and safety plan
H&P Mobile Geochemistry

HERO DTSC Human and Ecological Risk Office

HHRA Human health risk assessment

Hi-Shear Corporation

HVAC Heating, ventilation and air conditioning

IA Indoor air Inch

IRIS Integrated Risk Information System

IUR Inhalation unit risk

LARWQCB Los Angeles Regional Water Quality Control Board

LCS Laboratory control sample

LCSD Laboratory control sample duplicate

LRL Laboratory Reporting Limit

Middletown Magellan Aerospace, Middletown, Inc.

mL Milliliter

msl Mean seal level

μg/m³ Micrograms per cubic meter

PCE Tetrachloroethene

RfC Reference concentration

RfD Reference dose

RME Reasonable maximum exposure

RSLs USEPA Region 9 Regional Screening Levels

Robinson Helicopter Company

SCP Site Cleanup Program

SF Slope factor

October 11, 2021

Stantec Stantec Consulting Services, Inc.

SLs Cal-EPA, DTSC, HERO, HHRA Note Number 3, Screening Levels

(June 2020)

TCA Trichloroethane
TCE Trichloroethylene

TCDB Toxicity Criteria Database

USEPA United States Environmental Protection Agency

VOCs Volatile organic compounds

VI Vapor intrusion

VP Sub-slab vapor probe μg/L Micrograms per liter

μg/m³ Micrograms per cubic meter

October 11, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc (Stantec) has prepared this Human Health Risk Assessment (HHRA) for Property 2 located at 24701, 24707, and 24747 Crenshaw Boulevard Torrance, California 90505, in response to the Los Angeles Water Board issued Cleanup and Abatement Order No. R4-2021-0079 (Order).

1.1 OVERVIEW OF APPROACH

The risk assessment (RA) approach used to conduct this HHRA is consistent with current guidance within the state of California (DTSC 2014) with consideration of recent draft guidance (DTSC 2020) and is conservative in order to minimize the possibility of underestimating potential human health risks. To ensure a health protective (i.e., conservative) approach, a reasonable maximum exposure (RME) scenario was evaluated for the identified receptors. Risks and hazards were estimated using a deterministic approach developed based on site information that identifies potential receptors and potentially complete exposure pathways for risk characterization.

1.2 ORGANIZATION OF REPORT

T I				D		
The	remainder	of the	HHKA	Report is	organized	as follows

- Section 2.0 Background
- ☐ Section 3.0 Human Health Risk Assessment
- Section 4.0 References

2.0 BACKGROUND

2.1 SITE DESCRIPTION AND LAND USE

The Subject Property (herein referred to as Property 2) consists of interconnected buildings located at 24701, 24707, and 24747 Crenshaw Boulevard in Torrance, California. Property 2 is part of a larger 27-acre parcel (Assessor Identification Number 7377-006-906) owned by the City of Torrance, which includes the Hi-Shear facility, the EA Properties, and the Torrance Airport. The Subject Property is in a predominantly commercial and light industrial area.

Property 2 is improved with a large slab-on-grade building occupying a footprint of approximately 50,000 square feet. The building was reportedly constructed in the 1950s and is currently configured primarily for manufacturing. Adjoining the manufacturing space is a two-story building space comprised of office suites. There is an additional external office suite along the north side of the Subject Property adjacent to Skypark Drive that was observed by Stantec to be undergoing remodeling (new paint, flooring, etc.). The building is constructed over a slab-on-grade foundation and is bordered by asphalt or concrete pavement on all sides

Frey Environmental Inc. (Frey) reportedly prepared a Phase I Environmental Site Assessment (ESA) report, dated September 14, 2015, for the 24701 and 24747 Crenshaw Boulevard (both part of Property

October 11, 2021

2) and 2530 and 2540 Skypark Drive (Property 3) addresses. While the complete Phase I ESA was not available to Stantec for review, a summary of findings was presented in Frey's Evaluation of Subsurface VOCs, dated February 23, 2018 (Frey, 2018). The Phase I ESA noted that aerospace and manufacturing industries had occupied the building addresses since the 1960s, and that VOCs were potentially utilized during the various manufacturing processes and generated heavy metal products, byproducts, and wastes. The Phase I ESA also documented the use of petroleum-based products by current building occupants and visible staining of concrete in the 24747 Crenshaw Boulevard (Property 2) building and exterior yard space. A Property location map is illustrated on Figure 1. A Property map illustrating the main features of the Property is provided as Figure 2.

2.2 PHYSICAL SETTING

2.2.1 Topography

The Subject Property is situated at an elevation of approximately 81 to 83 feet (ft) above mean sea level (msl). The topography slopes gently towards the north. The Subject Property is bounded by Crenshaw Boulevard to the east and Skypark Drive to the north. The Subject Property is bounded to the south by a car dealership facility (Property 1 of the EA Properties), and to the west by a commercial/industrial manufacturing facility (Property 3 of the EA Properties).

2.2.2 Site Geology

A more detailed discussion of regional and local geology is presented in Sections 2.2 and 2.3 of Genesis Engineering & Redevelopment's (GER's) *Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report*, dated July 3, 2020 (GER, 2020). GER described soils beneath the project area in four units as follows:

- Unit 1: Silt and clay are predominant in the upper 15 to 25 feet of sediment with interbedded lenses of fat clay. This unit is generally uniform in thickness throughout the area; however, it thickens to 35 feet in the southwest part of the investigation area.
- Unit 2: This unit consists of primarily silty sand which grades to sand to the north along Crenshaw Boulevard. This unit extends to a depth of 40 to 50 feet below the ground surface ("bgs") and has a corresponding thickness between 20 feet and 30 feet.
- Unit 3: This unit consists generally of silt, clay, and fat clay that varies in thickness between 5 feet and 15 feet. Unit 3 is interbedded with clayey sand, silty sand, and/or sand layers that range in thickness between 1 foot and 3 feet. In the borings adjacent to Crenshaw Boulevard perched groundwater has occasionally been observed on top of Unit 3 or within the unit's interbeds. This unit is not as laterally continuous as are Units 1, 2, and 4 and tends to pinch out in areas resulting in windows that interconnect Unit 2 with Unit 4.
- Unit 4: Unit 4 is dominated by poorly graded to well graded sands and silty sand with interbedded 1 to 2-foot-thick layers of clayey sand. This unit is first encountered at a depth of 55 feet to 65 feet bgs and extends below the water table to at least 265 feet bgs. Occasional 1- to 3-foot-thick

October 11, 2021

discontinuous layers of silty sand and clayey sand occur throughout the unit. Heaving sands are encountered below the water table throughout the unit starting at approximately 110 feet bgs.

2.2.3 Site Hydrogeology

As presented in Sections 2.2 and 2.3 of GER's report (GER, 2020), the Gage Aquifer is present at a depth of approximately 90 feet bgs with a thickness of approximately 100 feet in the vicinity of Property 2 and is comprised primarily of sand. A perched water layer was reported by GER at a depth of approximately 60 feet bgs in the vicinity of the EA Properties, with the static water table being encountered at a depth of approximately 90 feet bgs. Groundwater generally flows to the southeast beneath Property 2. As presented in GER's Second Semi-Annual 2020 Groundwater Monitoring Report, dated February 18, 2021 (GER, 2021), groundwater elevations observed in the Hi-Shear groundwater monitoring well network have been steadily increasing since at least 2007, with average groundwater elevations increasing by approximately one foot per year since 2014.

2.3 PAST ASSESSMENTS

Stantec understands that multiple rounds of soil, groundwater, and soil vapor assessment have been performed on the Hi-Shear and EA Properties (including Property 2) by Hi-Shear's consultants. Reports documenting these assessment activities are available on the State Water Resources Control Board's online GeoTracker database page for SCP No. 0218 (https://geotracker.waterboards.ca.gov/profile_report.asp?global id=SL204231523).

The most recent report documenting environmental assessment activities at Property 2 and the surrounding parcels is GER's Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report (GER, 2020). A copy of a figure depicting the sample locations, as well as tables summarizing the collected analytical data are attached in Appendix B. The following summarizes key findings of GER as they relate to Property 2 (determined to be vapor probe locations VP-31, VP-105, and VP-133):

To date, no investigations have identified VOCs in soil samples beneath Property 2 that indicate an on-site VOC source. As identified in GER's Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III - Interim Report (GER, 2020) - the highest concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) in on-site soil are 0.010 milligrams per kilogram (mg/kg) and 0.013 mg/kg, respectively (both of which are below applicable commercial/industrial screening criteria). In contrast, PCE and TCE concentrations in soil beneath the adjacent upgradient Hi-Shear property have been detected at concentrations as high as 1,600 mg/kg and 5,500 mg/kg, respectively (in HS3 at 50 feet bgs), as documented in Camp Dresser & McKee Inc.'s Report of Subsurface Soil Investigation at Hi-Shear Torrance Facility, dated May 15, 1991. Overall, the observed increasing concentration trend in soil vapor with depth, a general absence of VOCs in shallow soil beneath Property 2 and known sources/releases of PCE (and other VOCs) at the adjacent/upgradient Hi-Shear property suggest that VOC impacts beneath Property 2 (and the EA Properties, more generally) are the result of releases that have occurred at off-site locations. Potential off-site sources include not just the adjacent Hi-Shear property, but also the Torrance Airport. No significant detections of PCE, TCE, or other chlorinated solvents were identified in collected soil samples that would suggest a release on Property 2.

October 11, 2021

- Based on data presented in GER's Second Semi-Annual 2020 Groundwater Monitoring Report (GER, 2021), one groundwater monitoring well (MW-12) is located on the western corner of Property 2. During a December 26, 2019 groundwater sampling event, the sample collected from MW-12 contained PCE and TCE at concentrations of 100 micrograms per liter (μg/L) and 10,000 μg/L, respectively. It should be noted that well MW-12 is screened from approximately 88 to 113 feet bgs. During the December 26, 2019 groundwater sampling event, GER observed the groundwater gradient to be towards the southeast (away from the Hi-Shear property and towards Properties 1, 2 and 3, which would be directly downgradient of GER's reported groundwater gradient and flow direction).
- When reviewing data collected from Property 2, the highest detected concentrations of PCE and TCE in soil vapor were observed by GER in VP-133 at concentrations of 250,000 micrograms per cubic meter (μg/m3 [at a depth of 65 feet bgs]) and 280,000 μg/m3 (at a depth of 85 feet bgs), respectively. A review of data presented in GER's report indicates that most of the collected soil vapor data on the EA Properties (including Property 2) exhibits increasing concentrations with depth suggests that the observed impacts are volatilizing from groundwater and/or the deep smear-zone resulting from fluctuations in groundwater levels over time.

In summary, based on the available data, the elevated vapor-phase concentrations of VOCs historically detected beneath Property 2 appear to represent volatilization of contaminants in groundwater, or in smear-zone soils resulting from impacted groundwater (adsorption to soils), rather than from a release at Property 2.

In 2020, Stantec conducted a VI study pursuant to the investigative order to evaluate whether the presence of subsurface VOCs potentially posed a vapor intrusion risk to Site workers. The VI Study scope of work included:

- Conducting a non-intrusive visual building survey
- Collecting three outdoor ambient air samples
- Collecting ten indoor air samples
- Installing and sampling ten sub-slab vapor probes
- Collecting pressure/vacuum measurements from the installed sub-slab vapor probes
- Analyzing ambient air, indoor air, and sub-slab vapor samples for VOCs; and
- Preparing a report summarizing the VI Study procedures and findings.

Stantec compared the ambient air, indoor air, and sub-slab vapor analytical data to the following screening criteria:

October 11, 2021

- United States Environmental Protection Agency, Region 9, Regional Screening Levels (RSLs) for Indoor Air for Target Cancer Risk (TR) = 1E-06, Target Hazard Quotient (THQ) = 1.0, and industrial land use (November 2020); and
- California Environmental Protection Agency, Department of Toxic Substances Control Human and Ecological Risk Office (HERO), Human Health Risk Assessment Note Number 3, Modified Screening Levels (SLs) for Indoor Air (June 2020) for commercial/industrial land use.

Twelve (12) VOCs were reported above laboratory reporting limits in sub-slab samples. Of these, only three VOCs (chloroform, tetrachloroethene [PCE], and trichloroethene [TCE] were reported above sub-slab screening levels using a conservative attenuation factor of 0.03. Eighteen (18) VOCs were reported in at least one indoor air sample. Of these, only benzene, chloroform, and ethylbenzene were reported above the commercial industrial screening level. Based on the data collected by Stantec, the following conclusions were made with respect to the five analytes detected in indoor air and/or sub-slab vapor samples at concentrations above their respective RSLs and/or SLs:

- Benzene is present in indoor and outdoor ambient air at similar concentrations. A comparison of
 indoor air data to ambient air data suggests the benzene concentrations observed in indoor air
 are not originating subsurface vapors, or from the indoor building space, but rather are reflective
 of background ambient air conditions in the vicinity of the Subject Property.
- Ethylbenzene is present in one indoor air sample (IA-7) at a concentration exceeding the RSL; however, ethylbenzene was not detected in any of the sub-slab samples above the laboratory reporting limit (<4.4 μg/m³). The ethylbenzene concentrations in indoor air do not appear to be originating from sub-slab vapor.
- Chloroform is present in four indoor air samples (IA-6, IA-7, IA-8, and IA-10) above the RSLs.
 However, the collocated sub-slab samples did not report chloroform above the laboratory
 reporting limit (<4.9 μg/m³). Chloroform was reported above the RSL (using an attenuation factor
 of 0.03) at two of the sub-slab vapor samples (VP-3 and VP-4); however, chloroform was not
 reported above the laboratory reporting limit in either of the corresponding indoor air samples.
 Chloroform in indoor air does not appear to be originating from vapor intrusion but likely from
 other sources.
- PCE was reported above the SL at all 10 sub-slab vapor sample locations; however, PCE was not detected in any of the indoor samples at concentrations exceeding the SL. Further, PCE was not detected above the laboratory reporting limit at 7 of the 10 indoor air sample locations. Of the sample locations in which PCE was detected in the collected indoor samples, the ratio of indoor air to sub-slab PCE concentrations ranged from 0.0008 to 0.0203, with a mean ratio of 0.0077. However, using the reporting limit where indoor air samples were non-detect and comparing to sub-slab concentrations yields an indoor air to sub-slab concentration ratio as low as 0.00002.
- TCE was reported above the RSL in 7 of the 10 sub-slab sample locations; however, TCE was
 not detected in any of the indoor samples at concentrations exceeding the RSL. Further, TCE
 was not detected above the laboratory reporting limit at 8 of the 10 indoor air sample locations.
 Of the sample locations in which TCE was detected in the collected indoor samples (IA-7 and IA-

October 11, 2021

10), the ratio of indoor air to sub-slab TCE concentrations were 0.0042 and 0.0022, respectively. However, using the reporting limit where indoor air samples were non-detect and comparing to sub-slab concentrations yields an indoor air to sub-slab concentration ratio as low as 0.00003.

The primary chemicals of potential concern (COPCs) for vapor intrusion are PCE and TCE; however, neither of these was reported above the chronic SL or RSL or above the short-term accelerated response action level (ARAL) in the case of TCE. Stantec opined that vapor intrusion is not a pathway of exposure of concern for other COPCs detected in indoor air, and that most of these COPCs are likely the result of sources other than intrusion from the subsurface

3.0 CONCEPTUAL SITE MODEL

A key step in the HHRA process is the development of a CSM that identifies the likely contaminant source areas, exposure pathways, and potential receptors. The CSM for human health presents potentially complete and incomplete current and future exposure pathways for the Site. The CSM is a dynamic model that is used to include or exclude sources of COPCs, receptors, or exposure pathways based on site history and current information.

3.1 SURROUNDING PROPERTY USE

The Property is in an area of mixed commercial and industrial use with Skypark Drive to the north and Crenshaw Boulevard to the east. Property 2 is bounded by Property 1 to the south and Property 3 to the west.

3.2 POTENTIAL SOURCES

Potential sources of subsurface impacts have been identified at the Hi-Shear Corporation facility located at 2600 Skypark Drive in Torrance, California and the LARWQCB has required evaluation of possible additional sources at East Adjacent Properties (EA Properties) which includes Property 2. As presented in Table 2 of GER's 2020 report, vapor phase COPC concentrations increase with depth to groundwater, with the highest observed concentrations being detected in soil vapor samples collected directly above groundwater; suggesting COPCs are partitioning from groundwater and/or smear-zone soils (interval of groundwater fluctuations within the lower vadose zone). Similarly, soil analytical data presented in Table 3 of GER's 2020 report (presented in Appendix B) suggests that the bulk of COPCs adsorbed to soil beneath Property 2 are constrained to smear-zone soils. Accordingly, the secondary source mass of the COPCs detected in groundwater and/or smear-zone soils are likely to be the primary source of COPCs in vapor phase below the Subject Property building.

3.3 POTENTIALLY EXPOSED POPULATIONS

The Subject Property is in use as a manufacturing facility and there are no known plans for a change in use given the industrialized uses in the vicinity. As such, commercial workers are the potentially exposed population considered under the current and reasonably likely future uses.

October 11, 2021

3.4 POTENTIAL EXPOSURE PATHWAYS

An exposure pathway is the route that a chemical takes from the source to an exposed individual. An exposure pathway generally consists of the following four elements (USEPA, 1989):

- A source and mechanism of chemical release to the environment
- An environmental transport medium (e.g., soil, water, or soil vapor)
- An exposure point, or point of potential human contact, with the contaminated medium
- An exposure route (e.g., ingestion) at the point of human contact

If any of the above elements are missing, the pathway is considered incomplete, and exposure does not occur.

Exposures via the inhalation pathway consist of COPCs transported by air eventually reaching a receptor who inhales airborne vapor and gases. The following inhalation pathways relevant to soil gas sources were reviewed for inclusion in the risk assessment and consist of:

Inhalation of soil gas impacted by COPCs that migrates to indoor air.

The inhalation of chemicals migrating to outdoor air from the subsurface, though a potentially complete pathway, was deemed to be insignificant as a potential exposure pathway.

3.5 POTENTIALLY EXPOSED POPULATIONS

Based on the current and reasonably likely future use of the building, this risk assessment has evaluated the potential health effects to only one RME receptor: the on-site commercial worker. The commercial worker is assumed to be at the Site for 8 hours a day, 5 days a week, 250 days/year, for 25 years.

3.6 EXPOSURE ASSESSMENT

Exposure is defined in the USEPA risk assessment guidelines as the contact of a receptor with a chemical or physical agent (USEPA, 1989 and 1992). The goal of the exposure assessment is to identify and quantify known and hypothetical exposure pathways relevant to an assessment of human health risk at a Site, and to determine the quantities or exposure doses or exposure concentrations of COPCs received by the potentially exposed populations.

3.6.1 RISK ASSESSMENT DATASETS

Ten indoor air samples and 10 collocated sub-slab soil vapor samples plus one duplicate sample were collected across the building footprint in February 2021. Sub-slab soil vapor and indoor/outdoor air datasets are provided in **Tables 1 and 2** respectively.

October 11, 2021

3.6.2 SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCS)

Twelve VOCs (2-butanone, chloroform, 1,1-dichloroethene, PCE, TCE, benzene, toluene, m,p- xylenes, 1,1,1-trichloroethane [1,1,1-TCA]) trichlorofluoromethane, and 1,1,2-trichlorotrifluoroethane were detected at least once in sub-slab soil vapor and have been selected as chemicals of potential concern (COPCs) for potential vapor intrusion and carried forward for quantitative evaluation (see **Table 2**).

3.6.3 EXPOSURE POINT CONCENTRATIONS

The Exposure Point Concentration (EPC) is the concentration of a COPC that could be contacted by a receptor during the assumed duration of exposure. EPCs for soil vapor represent either the chemical concentration or for chemicals reported as not-detect, the laboratory reporting limit, on a sample point-by-point.

3.6.4 DATA USABILITY ASSSEMENT

All laboratory data underwent a Stage 2 data verification and validation process. The major findings are as follows:

- H&P Mobile Geochemistry Report-ST021221-3. Ten sub-slab soil vapor samples plus one
 duplicate sample were analyzed as part of the data package. No analytes were detected in the
 laboratory method blanks; all surrogate recoveries were within method acceptance limits. A QL1H qualifier was assigned to the laboratory control sample (LCS) and LCS duplicate (LCSD)
 recoveries for ethylbenzene indicating that the LCS/LCSD recoveries were below control limits
 and any detections of this compound should be considered biased high.
- H&P Mobile Geochemistry Report-ST020821. Ten indoor and outdoor air samples were analyzed as part of the data package. The only data qualifier assigned was for analysis of 2-butanone: an "E" qualifier was assigned because the concentrations of this analyte exceeded the instrument calibration range. No exceptions to the method were noted; no analytes were detected in the laboratory method blanks; all surrogate recoveries were within method acceptance limits; and percent recoveries (%R) was within acceptance limits in the LCS sample.

Based on this information all laboratory data are considered usable for their intended use.

3.7 SELECTION OF TOXICITY VALUES

Potential toxic effects of chemicals are generally classified as carcinogenic (i.e., cancer causing), or non-carcinogenic (i.e., non-cancer health effects). These endpoints are separately quantified in HHRAs as cancer risks and non-cancer health effects, respectively. Toxicity values numerically express the magnitude of potential toxic effects of chemicals. Reference doses (RfDs) and reference concentrations (RfCs) are used to quantify non-cancer health effects, and cancer slope factors (SFs) and inhalation unit risks (IURs) are used to quantify cancer risks. Both cancer and non-cancer endpoints may be evaluated for carcinogenic chemicals depending on the chemicals' toxic effects and availability of RfDs/RfCs.

October 11, 2021

In accordance with the September 4, 2018, *Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals* rule, (California Code of Regulations, title 22, Chapter 50 Section 68400.5 and Chapter 51 Sections 69020, 69021, and 69022 [the Rule]), individual chemical screening levels in this screening level HHRA were based on:

- Table 1 Toxicity Criteria required by the Rule.
- USEPA Integrated Risk Information System (IRIS).
- Table 2 DTSC-recommended toxicity criteria for analytes with more than one non-IRIS toxicity value.
- For COPCs, listed in more than one source, the more protective toxicity values from the most current version of the USEPA RSL tables (USEPA May 2021) or the Toxicity Criteria Database (TCDB; Cal-EPA, last searched in September 2021) were used.

3.8 HUMAN HEATH RISK-BASED SCREENING LEVELS

3.8.1 Vapor Intrusion Screening Levels

This HHRA used screening levels calculated using standardized equations that combine conservative exposure assumptions with USEPA or Cal/EPA toxicity data. U.S. EPA Regional Screening Levels (RSLs) are concentrations that the USEPA considers to be protective of human health (including sensitive groups) over a lifetime. These values are intended to be protective; however, they are calculated without site-specific information and are not always applicable for every site.

The USEPA maintains a list of RSLs which are updated semi-annually (i.e., spring and fall). RSLs are risk-based concentrations derived from standardized equations developed for USEPA's Superfund program.

Cal-EPA Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) maintains a list of screening levels established for ambient (indoor) air that are presented in Human Health Risk Assessment Notes (HERO Note 3). The most recent version, released in June 2020, makes recommendations on the use of USEPA RSLs for tap water, soil and air (both for residential and industrial/commercial use) and provides alternate values to be used in lieu of RSLs for some compounds (Cal-EPA 2019). HERO Note 3 includes tables for compounds with air screening levels specific to California. For chemicals not listed, the USEPA RSLs were used.

Screening levels for soil vapor are not provided by DTSC in HERO Note 3 but were calculated by dividing the indoor air screening level by the DTSC default sub-slab and "near source" soil vapor to indoor air attenuation factor of 0.03

Soil vapor screening levels are provided by the California Regional Water Quality Control Board-San Francisco Bay Region (RWQCB-SFBR) however, except for use of TPH soil vapor Environmental Screening Levels (ESLs) DTSC recommends against use of the ESLs.

October 11, 2021

3.9 RISK CHARACTERIZATION

For this HHRA, since current information indicates worker occupancy and exposure conditions are aligned with exposure assumptions used to develop DTSC (DTSC 2019) and USEPA screening levels for current and reasonably likely future commercial/industrial receptors, potential vapor intrusion risks were estimated using a comparison of the concentration of each chemical to the most protective carcinogenic or non-carcinogenic screening levels (SLs) as discussed in Section 3.7 and 3.8. All screening levels are based on a target Cancer Risk (CR) of 1E-06 and a hazard index (HI) = 1.

Theoretical cancer risks and non-cancer hazard quotients (HQs) for each chemical were estimated as follows:

For carcinogenic chemicals:

$$Cancer \, Risk = \frac{EPC}{SL} \times 0.000001$$

For non-carcinogenic chemicals or carcinogens with non-cancer screening levels:

$$Hazard\ Quotient = \frac{EPC}{SL}$$

Ratios of the concentration of a particular chemical in soil vapor to its human health risk-based concentration were calculated and then summed regardless of toxic endpoint across all chemicals to estimate a total CR and non-cancer HI.

Stantec collected paired indoor air/sub-slab samples across the building footprint in addition to three ambient (outdoor air samples). Consistent with the *Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion* (DTSC 2020), the results of the indoor air sampling were used to estimate *current* potential inhalation risks but only for those chemicals detected in both sub-slab soil vapor and indoor air. The results of the sub-slab soil vapor sampling and analysis were used to estimate potential *future* vapor intrusion risks based on use of a generic soil vapor to indoor air attenuation factor of 0.03 that we consider to not be representative of future conditions. The uncertainties associated with that approach are discussed in Section 3.12.

3.10 RISK CHARACTERIZATION SUMMARY

This section presents the results of the risk characterization which integrates the results of the toxicity and exposure assessments to estimate potential cancer risk (CR) and non-cancer hazard index (HI) associated with exposure to COPCs at the Site.

Various demarcations of acceptable risk have been established by regulatory agencies. USEPA considers that under most situations, cancer risks in the range of one-in-one million (1 x10⁻⁶ or 1E-06) to one-in-ten thousand (1 x 10⁻⁴ or 1E-04) may be considered acceptable with cancer risks less than 1E-06 considered *de minimis*. For vapor intrusion, Cal-EPA guidance (Cal-EPA, 2011 and 2020) indicates that cumulative risk between 1E-06 and 1E-04 fall within a risk management range where no action, further evaluation, mitigation or remediation may be considered. A CR greater than 1E-04 indicates that

October 11, 2021

mitigation and/or remediation is needed. Agencies within California may also consider, on a site-specific basis, a CR of 1E-05 (one-in-one hundred thousand) as representing an acceptable risk threshold for commercial/industrial receptors.

Current Inhalation Risks

The following table presents a summary of estimated *current* cancer risks and non-cancer hazards for commercial/industrial receptors based on indoor air sampling and analysis with no discounting of COPC concentrations that the data indicate are from sources other than vapor intrusion.

Recentor	Cance	er Risk	Non-Car	ncer Hazard
Receptor	Low	High	Low	High
Current Commercial/Industrial Receptor	3E-06	5E-06	2.7E-01	3.3E-01

The largest contributor to current cancer risk is chloroform detected above screening levels in 4 of 10 samples.

Future Vapor Intrusion Risks

The following table presents a summary of the range of estimated cancer risks and non-cancer hazards for commercial/industrial receptors based on use of 0.03 attenuation factor (see Section 3.17 Uncertainty Assessment):

Receptor	Cance	er Risk	Non-Car	ncer Hazard
Receptor	Low	High	Low	High
Sub-Slab Soil Vapor Commercial/Industrial Receptor	2E-06	9E-04	7.6E-02	7.7E+01

The largest contributors to cancer risk are PCE and TCE detected above screening levels, based on an attenuation factor of 0.03, in all samples for PCE and 7 of 11 samples for TCE.

3.11 DISCUSSION

Ten sub-slab soil vapor samples plus one duplicate sample and 10 collocated indoor air samples were collected at 10 locations across the entire building footprint in February 2021. Analytical results were used to evaluate a reasonable maximum exposure (RME) scenario under the current commercial/industrial use following recent guidance from the Cal-EPA [2011 and 2020]:

- 3. indoor air sample results were used to estimate vapor intrusion risk to the *current* on-site worker, and
- 4. sub-slab soil vapor results were used to estimate potential vapor intrusion risk to the *hypothetical future* worker should building conditions change (e.g., the building slab integrity is compromised).

Use of a composite sample containing the maximum concentrations of chemicals detected in indoor air yielded an estimated potential cancer risk for the current worker of 5E-06 which is above the point of departure of 1E-06 but well below an acceptable risk of 1E-05 used on a site-specific basis for industrial use properties and at the lower end of the DTSC risk management range (10⁻⁶ to 10⁻⁴).

A range of potential *future* vapor intrusion risks was estimated by comparing all results against human health risk-based soil vapor screening levels derived by dividing indoor air screening levels representing

October 11, 2021

no unacceptable cancer risk or non-cancer hazards of less than 1 established either by DTSC or the USEPA for commercial use properties, by what in our opinion is an overly conservative attenuation factor of 0.03.

Use of the 0.03 attenuation factor to simulate hypothetical *future* cancer risks indicates that commercial/industrial use cancer risks for PCE and TCE are above 1 x 10⁻⁴ and above the target non-cancer hazard target of 1 in two locations, VP-3, and VP-4. Estimated *future* potential site-wide risks to a hypothetical commercial/industrial receptor ranged from 2E-06 to 9E-04. In no case did the concentrations of PCE and TCE in sub-slab soil vapor result in levels in indoor air predicted by the 0.03 attenuation factor. The use of an attenuation factor of 0.03 has been demonstrated to be a very conservative estimate of indoor air concentrations in typical slab-on-grade commercial and industrial buildings in California.

3.12 UNCERTANTY ASSESSMENT

In general, uncertainties in the HHRA process are essentially the accumulated uncertainties associated with the methodologies used in estimating the health risk results (EPA 1989). They are the product of many factors affecting each component of the HHRA process. These factors generally include, at a minimum, measurement errors, conservative exposure and modeling assumptions, and uncertainty and variability of the values used in the assessment.

The term "uncertainty" is often used in risk assessment to describe what are two conceptually different terms: uncertainty and variability. Uncertainty can be described as the lack of a precise knowledge resulting in a fundamental data gap. Variability describes the natural heterogeneity of a population. Uncertainty can sometimes be reduced or eliminated through further measurements or study. By contrast, variability is inherent in environmental studies. Although variability can be better understood, it cannot be reduced through further measurement or study, although it may be more precisely defined. However, the additional cost of further data collection may become disproportional to the reduction in uncertainty.

The risks and hazards presented are consistent with USEPA's stated goal of RME representing the high end of the possible risk distribution, which is generally considered to be greater than the 90th percentile and less than the 98th percentile. However, these estimates are based on numerous and often conservative assumptions, and, in the absence of definitive information, are used to ensure that actual sites risks are not underestimated. The cumulative effect of these assumptions can result in an analysis with an overall conservativeness greater than the individual components. Accordingly, it is important to note that the estimated risks presented here are based on numerous conservative assumptions in order to be protective of human health and to ensure that the risks presented here are more likely to be overestimated rather than underestimated.

Specific uncertainties associated with this HHRA include:

□ According to the Cal-EPA 2020 draft vapor intrusion guidance, the attenuation factor of 0.03 should be applied for initial vapor intrusion screening regardless of depth of sample and assumes that attenuation is constant throughout the soil. Moreover, this attenuation factor has not yet been confirmed to be appropriate for the generally Mediterranean climate in southern California.

October 11, 2021

The empirically derived attenuation factors which are the ratios of the indoor air concentrations arising from vapor intrusion (i.e., a chemical detected in both subsurface soil vapor and indoor air) to the subsurface concentrations at a point of depth of interest (USEPA 2012) range from 0.0.0008 to 0.00007 to 0.0019 for PCE and 0.0008 to 0.002 for TCE in the two samples where PCE and TCE were detected in both sub-slab soil vapor and indoor (**Table 4**). This indicates that for this building, applying an attenuation factor of 0.03 is overly conservative and not predictive of potential current or future vapor intrusion risk.

According to USEPA the use of screening levels based on an attenuation factor of 0.03 used in assessments reflects the goal to use a health-protective value that ensures a low probability of a false-negative (USEPA 2021b). However, as evidenced by this VI HHRA of the Subject Property, application of sub-slab soil vapor screening levels based on an attenuation factor of 0.03 did in fact result in an overestimate of potential vapor intrusion risk based on indoor air sampling and analysis.

- Indoor air results indicate that COPCs (notably PCE and TCE) are not encountered at all locations sampled within the building. The use of the maximum concentrations when evaluating current VI risk leads to an overestimate of potential risk as the maximum concentration is not uniformly detected across the entire property. ☐ There is uncertainty regarding the estimates of *current* risk using indoor air data for chemicals detected both in indoor air and in sub-slab soil vapor since such estimates do not consider or allow adjustments made for the contribution of chemicals in outdoor air to those identified in indoor air. Moreover, certain chemicals (i.e., 2-Butanone, 4-methyl-2-pentanone, toluene, etc.) though present in sub-slab soil vapor, are clearly amplified by chemical use within the building (the building is an operating manufacturing facility and removal of all chemicals used or stored was not feasible). No reduction in concentration was considered in the risk assessment even though the data indicate that the concentrations were clearly influenced by sources other than VI. ☐ The assumption that individuals within a receptor population (or subpopulation) will receive the same intake doses. Variability in parameters such as absorption rate, inhalation rate, frequency and duration of exposure, body weight, and activity pattern will exist even in a narrowly defined age group or identified sensitive subpopulation (EPA, 1992).
- ☐ It is assumed that contaminant concentrations will not decline over time due to source depletion.

October 11, 2021

4.0 REFERENCES

- DTSC 2019. Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk Health (HERO). Human Health Risk Assessment Note Number 1. April 9.
- Cal-EPA 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). California Environmental Protection Agency, Department of Toxic Substances Control. October 2011.
- Cal-EPA 2020. "Supplemental Guidance: Screening and Evaluating Vapor Intrusion, Draft for Public Comments," February.
- California Geological Survey (CGS), 2002, California Geomorphic Provinces, Note 36.
- CGS, 2010a, Fault Activity Map of California, adjustable scale, http://www.quake.ca.gov/gmaps/FAM/faultactivitymap.html.
- CGS, 2010b, Alquist-Priolo Earthquake Fault Zones of California, http://www.quake.ca.gov/gmaps/ap/ap maps.htm.
- DTSC 2014. Human Health Risk Assessment Note 4-Screening Level Human Health Risk Assessments. Cal-EPA Department of Toxic Substances Control, Human and Ecological Risk Office. August 23, 2014.
- DTSC 2019. Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk Health (HERO). Human Health Risk Assessment Note Number 1. April 9.
- Frey Environmental, Inc., 2018, *Evaluation of Subsurface VOCs*, 24701-24747 Crenshaw Boulevard & 2530-2540 Skypark Drive, Torrance, California. February 23.
- Genesis Engineering & Redevelopment (GER), 2020. Soil, Soil Vapor, and Groundwater Evaluation

 Delineation Module III Interim Report, Skypark-Crenshaw Environmental Task Force. July 3.
- GER, 2021. Second Semi-Annual 2020 Groundwater Monitoring Report, Hi-Shear Corporation, 2600 Skypark Drive, Torrance, California. February 18.
- Stantec 2020. Vapor Intrusion Study Report-Property 2, 24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505, Torrance, California. Stantec Consulting Services, Inc. April.
- USEPA 1989. Risk Assessment Guidance for Superfund (RAGS): Volume I Human Health Evaluation Manual (Part A)." EPA/540/1 89/002. U.S. Environmental Protection Agency. December.

October 11, 2021

- USEPA. 1992. "Guidelines for Exposure Assessment." Notice. Federal Register 57 (104): 22888 22938. 29 May.
- USEPA 2012. EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings. U.S. EPA, Office of Solid Waste and Emergency Response. March 16.
- USEPA 2014. Vapor Intrusion Screening Level (VISL) Calculator User's Guide. U.S. EPA, Office of Solid Waste and Emergency Response. May 2014.
- USEPA 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Intrusion Sources to Indoor Air. U.S. EPA Office of Emergency and Remedial Response. June 2015.
- USEPA 2021a. United Stated Environmental Protection Agency, 2019, Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1). May.
- USEPA 2021b. United Stated Environmental Protection Agency, 2021, Record of Decision, Facet Enterprises, Inc. Superfund Site, Operable Unit 3, Chemung County, New York. September.
- United States Geological Survey (USGS), 1981, Torrance, 7.5 Minute Topographic Map, Scale 1 inch = 2,400 feet.

TABLES

TABLE 1
Summary of Sub-Slab Vapor Sample Analytical Results
Property 2
24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

Sample Location	Date Sampled	2-Butanone	Benzene	Carbon tetrachloride	Chloroform	Chloromethane	1,4-Dichlorobenzene	1,1-Dichloroethene	Ethylbenzene	4-Methyl-2-pentanone	Methylene chloride	Styrene	PCE	TCE	Toluene	1,1,1-Trichloroethane	Trichlorofluoromethane	1,1,2- Trichlorotrifluoroethane	1,2,4-Trimethylbenzene	m,p-Xylene	o-Xylene	All Other VOCs	Helium (LCC)
504.0	0.001 (1.1.1.1.1)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(%)
_	9 RSL (Industrial) [!] nercial/Industrial) ²	733,000	53 14	67 67	18	13,000	37	29,333 10,333	163 	433,000	40,000 400	146,666 130,000	1,570 67	100	733,000 43,333	733,000 146,666	 176.667	733,000	8,670	14,700	14,700	various various	
VP-1	02/11/21	82	<3.2	<6.4	<4.9	<2.1	<12	230	<4.4	<8.3	<3.5	<4.3	2,700	900	10	33	18	450	<5.0	<8.8	<4.4	ND	<0.10
VP-2 VP-2-DUP	02/11/21 02/11/21	<30 <30	<3.2 <3.2	<6.4 <6.4	8.6 8.7	<2.1 <2.1	<12 <12	140 130	<4.4 <4.4	<8.3 <8.3	<3.5 <3.5	<4.3 <4.3	1,800 1,900	910 960	6 6.3	6.6 6.6	<5.6 <5.6	190 170	<5.0 <5.0	<8.8 <8.8	<4.4 <4.4	ND ND	0.13 <0.10
VP-3	02/11/21	<30	13	<6.4	18	<2.1	<12	360	<4.4	<8.3	<3.5	<4.3	44,000	20,000	6.8	35	11	290	<5.0	<8.8>	<4.4	ND	0.13
VP-4	02/11/21	75	6.8	<6.4	200	<2.1	<12	230	<4.4	<8.3	<3.5	<4.3	7,300	4,600	29	7.8	8.3	560	<5.0	15	<4.4	ND	0.16
VP-5	02/11/21	45	3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	<8.3	<3.5	<4.3	2,400	35	20	43	12	1,000	<5.0	12	<4.4	ND	<0.10
VP-6	02/11/21	42	<3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	<8.3	<3.5	<4.3	900	64	9.5	<5.5	<5.6	250	<5.0	<8.8	<4.4	ND	<0.10
VP-7	02/11/21	47	<3.2	<6.4	<4.9	<2.1	<12	100	<4.4	<8.3	<3.5	<4.3	2,200	310	10	<5.5	13	920	<5.0	9.5	<4.4	ND	<0.10
VP-8	02/11/21	50	<3.2	<6.4	<4.9	<2.1	<12	<4.1	<4.4	<8.3	<3.5	<4.3	69	16	6.6	<5.5	<5.6	25	<5.0	<8.8	<4.4	ND	<0.10
VP-9	02/11/21	150	<3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	9	<3.5	<4.3	1,200	61	16	<5.5	10	1,500	<5.0	12	<4.4	ND	<0.10
VP-10	02/11/21	87	<3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	<8.3	<3.5	<4.3	1,000	320	10	<5.5	<5.6	500	<5.0	9.1	<4.4	ND	<0.10
	Maximum	150.0	13.0	0.0	200.0	0.0	0.0	360.0	0.0	9.0	0.0	0.0	44000.0	20000.0	29.0	43.0	18.0	1500.0	0.0	15.0	0.0		

Notes:

Analysis for full-scan VOCs by USEPA Test Method TO-15, and for helium by ASTM Method D1945M.

PCE = Tetrachloroethene

TCE = Trichloroethene

VOC = Volatile organic compound

LCC = Leak-check compound

ug/m³ = Micrograms per cubic meter

ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample

< = Analyte not reported at or above the laboratory's reporting limit

-- = Not analyzed or not applicable

Bold concentrations represent detections exceeding established screening level.

- 1 = US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), November 2020 with an attenuation factor of 0.03 was utilized to calculate the listed values. The lower of the carcinogenic and non-carcinogenic values was utilized for each analyte.
- 2 = Department of Toxic Substances Control HERO Note 3, Table 1 DTSC Recommended Screening Levels for Indoor Air, June 2020 with an attenuation factor of 0.03 was utilized to calculate the listed values. The lower of the carcinogenic and non-carcinogenic values was utilized for each analyte.

TABLE 2 Summary of Indoor Air & Ambient Air Sample Analytical Results Property 2 24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

Sample Location	Date Sampled	D 2-Butanone	Benzene	Carbon tetrachloride	Chloroform	Chloromethane (**	m (4-Dichlorobenzene	m, 1.1-Dichloroethene	Ethylbenzene	Short A-Methyl-2-pentanone	Methylene chloride	Styrene	Ш О С	ш О (ug/m³)	Oug/m³)	find 1,1,1-Trichloroethane	Trichlorofluoromethane	1,1,2- Trichlorotrifluoroethane	1,2,4-Trimethylbenzene	m,p-Xylene	(na/w ₃)	(mg/m) All Other VOCs
EPA Reg.	9 RSL (Industrial) ¹	22,000	1.6	2.0	0.53	390	1.1	880	4.9	13,000	1,200	4,400	47	3.0	22,000	22,000		22,000	260	440	440	various
DTSC SL (Comm	nercial/Industrial) ²	-	0.42	2.0		-	-	310			12	3,900	2.0	-	1,300	4,400	5,300	-		-	-	various
										door Air Sa	•											
IA-1	02/05/21	74	0.71	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.8	<0.55	0.96	<0.77	0.85	1.5	0.62	ND
IA-2	02/05/21	86	0.74	0.51	0.3	1.1	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.3	<0.55	0.96	<0.77	0.55	1.2	0.48	ND
IA-2-DUP	02/05/21	85	0.61	0.51	0.3	1	<0.61	<0.40	<0.44	<0.83	0.49	<0.43	<0.69	<0.55	1.3	<0.55	1.1	<0.77	0.65	1.2	0.53	ND
IA-3	02/05/21	32	0.65	0.51	<0.25	1.3	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.4	<0.55	1.2	<0.77	0.7	1.2	0.53	ND
IA-4	02/05/21	52	0.68	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.4	<0.55	0.9	<0.77	0.65	1.4	0.53	ND
IA-5	02/05/21	45	0.61	0.45	<0.25	0.95	<0.61	<0.40	<0.44	<0.83	0.53	<0.43	<0.69	<0.55	1.2	<0.55	0.85	<0.77	0.55	1.1	0.44	ND
IA-6	02/05/21	120	0.68	0.51	1.7	1.1	<0.61	<0.40	0.57	<0.83	0.56	<0.43	<0.69	<0.55	1.9	<0.55	0.85	<0.77	0.6	2.2	0.79	ND
IA-7	02/05/21	300	0.81	0.57	0.59	1.2	<0.61	<0.40	8.3	4.1	0.6	<0.43	1.7	1.3	5.1	<0.55	1.2	0.77	0.65	30	8.2	ND
IA-8	02/05/21	220	0.91	0.64	0.69	1.5	<1.2	<0.80	<0.88	<1.7	0.99	<0.86	1.4	<1.1	3.5	<1.1	1.4	<1.5	<1.0	3.3	1.3	ND
IA-9	02/05/21	390	0.81	0.57	0.44	1.2	<0.61	<0.40	1.5	1.2	0.74	<0.43	<0.69	<0.55	3.5	<0.55	1.2	0.93	1.2	5.7	1.9	ND
IA-10	02/05/21	230	0.94	0.64	0.89	1.5	0.79	<0.40	0.97 Am	0.83 Ibient Air S	0.95 amples	0.91	1.9	0.71	4.2	<0.55	1.4	1.6	0.95	3.6	1.3	ND
AA-1	02/05/21	1.2	0.81	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.71	<0.43	<0.69	<0.55	1.6	<0.55	1.2	<0.77	0.5	1.1	0.44	ND
AA-2	02/05/21	3.9	0.65	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.53	<0.43	<0.69	<0.55	1.5	<0.55	0.96	<0.77	0.6	1.1	0.48	ND
AA-3	02/05/21	5.9	0.91	0.51	<0.25	1.2	<0.61	<0.40	0.48	<0.83	0.63	<0.43	<0.69	<0.55	2.1	<0.55	1.2	<0.77	0.7	1.7	0.7	ND
Notes:	Maximum FOD	390.0 3.0	0.9 3.0	0.6 3.0	1.7 0.0	1.5 3.0	0.8 0.0	0.0 0.0	8.3 0.0	4.1 0.0	1.0 3.0	0.9 0.0	1.9 0.0	1.3 0.0	5.1 3.0	0.0 0.0	1.4 3.0	1.6 0.0	1.2 3.0	30.0 3.0	8.2 3.0	

Analysis for full-scan VOCs by USEPA Test Method TO-15.

PCE = Tetrachloroethene

TCE = Trichloroethene

VOC = Volatile organic compound

ug/m³ = Micrograms per cubic meter

ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample

< = Analyte not reported at or above the laboratory's reporting limit

-- = Not analyzed or not applicable

Bold concentrations represent detections exceeding established screening level.

- 1 = US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), May 2021; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.

 2 = Department of Toxic Substances Control HERO Note 3, Table 1 DTSC Recommended Screening Levels for Indoor Air, June 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.

TABLE 3
Summary of Indoor Air & Ambient Air Sample Analytical Results and Selection of COPCs
Property 2

24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

Chemical	Freq	uency of I	Detection	I	MAX (µg/n	n ³)	Detected in Sub- Slab?	Scree	ning Level (լ	ug/m³)	MAX AF	COPC?
	Indoor	Outdoor	Soil Vapor	Indoor	Outdoor	Soil Vapor	Yes/No	Indoor	Outdoor	Soil Vapor		
2-Butanone	11/11	3/3	7/7	390	5.9	32	Υ	nc	22,000	733,000	6.38	Υ
Benzene	11/11	3/3	3/3	0.94	0.91	0.61	Υ	0.42	13	0.42	0.05	Υ
Carbon tetrachloride	11/11	3/3	0/11	0.64	0.51	0.45	N	2	180	2		N
Chloroform	7/11	0/3	4/4	1.7	0	0.3	Υ	0.53	430	18		Υ
Chloromethane	11/11	3/3	0/11	1.5	1.2	0.95	N	nc	390	13,000		N
1,4-Dichlorobenzene	0/11	0/3	0/11	0.79	0	0.79	N	1.1	3,500	37		Ν
1,1-Dichloroethene	0/11	0/11	6/11	0	0	360	Υ	10,000	10,000	310		N
Ethylbenzene	3/11	0/3	0/11	8.3	0.48	0.57	N	4.9	440	163		N
4-Methyl-2-pentanone	3/11	0/3	1/11	4.1	0.48	0.57	Υ	nc	13,000	433,000		N
Methylene Chloride	11/11	3/3	0/11	1.0	3	0/11	N	12	12	400		N
Styrene	0/11	0/3	0/11	0.91	0.71	0.49	N	nc	3,900	130,000		N
PCE	3/11	0/3	11/11	1.9	0	0.91	Υ	2	180	67	2.6866	Υ
TCE	2/11	0/3	11/11	1.3	0	1.4	Υ	3	8.8	100	0.0880	Υ
Toluene	11/11	3/3	11/11	5.1	0	0.71	Υ	nc	1,300	43,333	7	N
1,1,1-Trichloroethane	0/11	0/3	6/6	1.2	2.1	1.2	Υ	nc	4,400	146,666		N
Trichlorofluoromethane	11/11	3/3	6/6	1.4	1.2	0.85	Υ	nc	5,300	176,667	0.12	N
1,1,2-Trichlorotrifluoroethane	3/11	0/3	11/11	1.6	0	0.77	Υ	nc	22,000	733,000		Υ
1,2,4-Trimethylbenzene	11/11	3/3	0/11	1.2	0.7	0.55	N	nc	260	8,670		N
m,p-Xylene	11/11	3/3	5/5	30	1.7	1.1	Υ	nc	440	14,700		Υ
o-Xylene	11/11	3/3	0/11	8.2	0.7	0.44	N	nc	440	14,700		N

Notes:

COPC-N = chemical not detected in sub-slab soil vapor but detected at least once in indoor air

AF = attenuation factor based on maximum detected values-indoor air/sub/slab.

¹. COPC Reason Codes: COPC-Y = chemical detected in sub-slab soil vapor AND/OR indoor air and AF not indicative of other sources.

^{-- =} AF not calcualted. Either indoor air or sub-slab soil vapor values missing.

². = Benzene sub-slab soil vapor reporting limit elevated above its SL in 1/09 samples. All other LRLs below its SL.

TABLE 4
Estimated Point-by-Point *Future* Potential Risks-COPCs in Sub-Slab Soil Vapor Property 2

24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

				VP-1			VP-2			VP-2-DUP		VP-3		
Chemical	Screening L	.evel (μg/m3)	Concentration	Potenti	al Risk	Concentration	Potenti	al Risk	Concentration	Potenti	al Risk	Concentration	Potentia	ıl Risk
	Cancer	Non-Cancer	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ
2-Butanone	nc	730,000	82		1.12E-04	<30		4.11E-05	<30		4.11E-05	<30		4.11E-05
Benzene	14	440	<3.2	2.3E-07	7.27E-03	<3.2	2.3E-07	7.27E-03	<3.2	2.3E-07	7.27E-03	13	9.3E-07	2.95E-02
Chloroform	18	14,000	<4.9	2.7E-07	3.50E-04	9	5.0E-07	6.14E-04	9	4.8E-07	6.21E-04	18	1.0E-06	1.29E-03
1,1-Dichloroethene	nc	10,000	230		2.30E-02	140		1.40E-02	130		1.30E-02	360		3.60E-02
PCE	67	5,800	2,700	4.0E-05	4.66E-01	1,800	2.7E-05	3.10E-01	1,900	2.8E-05	3.28E-01	44,000	6.6E-04	7.59E+00
TCE	100	290	900	9.0E-06	3.10E+00	910	9.1E-06	3.14E+00	960	9.6E-06	3.31E+00	20,000	2.0E-04	6.90E+01
Toluene	nc	43,333	10		2.31E-04	6		1.38E-04	6.3		1.45E-04	6.8		1.57E-04
1,1,1-Trichloroethane	nc	150,000	33		2.20E-04	7		4.40E-05	7		4.40E-05	35		2.33E-04
Trichlorofluoromethane	nc	43,333	18		4.15E-04	<5.6		1.29E-04	<5.6		1.29E-04	11		2.54E-04
1,1,2-Trichlorotrifluoroethane	nc	733,330	450		6.14E-04	190		2.59E-04	170		2.32E-04	290		3.95E-04
m,p-Xylene	nc	15,000	<8.8		5.87E-04	<8.8		5.87E-04	<8.8		5.87E-04	<8.8		5.87E-04
•				5.E-05	3.6E+00		4.E-05	3.5E+00		4.E-05	3.7E+00		9.E-04	7.7E+01

				VP-4	VP-4 VP-5					VP-6		VP-7			
Chemical	Screening L	evel (μg/m3)	Concentration Po		al Risk	Concentration	ation Potential Risk		Concentration	ncentration Potential Risl		Concentration Po		al Risk	
Chemical	Cancer	Non-Cancer	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	
2-Butanone	nc	730,000	75		1.03E-04	45		6.16E-05	42		5.75342E-05	47		6.44E-05	
Benzene	14	440	6.8	4.9E-07	1.55E-02	3.2	2.3E-07	7.27E-03	<3.2	2.3E-07	0.007272727	<3.2	2.3E-07	7.27E-03	
Chloroform	18	14,000	200	1.1E-05	1.43E-02	<4.9	2.7E-07	3.50E-04	<4.9	2.7E-07	0.00035	<4.9	2.7E-07	3.50E-04	
1,1-Dichloroethene	nc	10,000	230	-	2.30E-02	<4.0		4.00E-04	<4.0		0.0004	100		1.00E-02	
PCE	67	5,800	7,300	1.1E-04	1.26E+00	2,400	3.6E-05	4.14E-01	900	1.3E-05	0.155172414	2,200	3.3E-05	3.79E-01	
TCE	100	290	4600	4.6E-05	1.59E+01	35	3.5E-07	1.21E-01	64	6.4E-07	0.220689655	310	3.1E-06	1.07E+00	
Toluene	nc	43,333	29		6.69E-04	20		4.62E-04	9.5		0.000219232	10		2.31E-04	
1,1,1-Trichloroethane	nc	150,000	8		5.20E-05	43		2.87E-04	<5.5		3.66667E-05	<5.5		3.67E-05	
Trichlorofluoromethane	nc	43,333	8		1.92E-04	12		2.77E-04	<5.6		0.000129231	13		3.00E-04	
1,1,2-Trichlorotrifluoroethane	nc	733,330	560	-	7.64E-04	1,000		1.36E-03	250		0.000340911	920		1.25E-03	
m,p-Xylene	nc	15,000	15		1.00E-03			8.00E-04	<8.8		0.000586667	10		6.33E-04	
				1.7E-04	1.7E+01		3.7E-05	5.5E-01		1.5E-05	3.9E-01		3.6E-05	1.5E+00	

				VP-8			VP-9			VP-10	
Chemical	Screening L	evel (µg/m3)	Concentration	Potenti	al Risk	Concentration	Potenti	al Risk	Concentration Potentia		al Risk
Chemical	Cancer	Non-Cancer	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ
2-Butanone	nc	730,000	50	-	6.85E-05	150		2.05E-04	87		1.19E-04
Benzene	14	440	<3.2	2.3E-07	7.27E-03	<3.2	2.28571E-07	7.27E-03	<3.2	2.3E-07	7.27E-03
Chloroform	18	14,000	<4.9	2.7E-07	3.50E-04	<4.9	2.72222E-07	3.50E-04	<4.9	2.7E-07	3.50E-04
1,1-Dichloroethene	nc	10,000	<4.1		4.10E-04	<4.0		4.00E-04	<4.0		4.00E-04
PCE	67	5,800	69	1.0E-06	1.19E-02	1,200	1.79104E-05	2.07E-01	1,000	1.5E-05	1.72E-01
TCE	100	290	16	1.6E-07	5.52E-02	61	0.00000061	2.10E-01	320	3.2E-06	1.10E+00
Toluene	nc	43,333	6.6		1.52E-04	16		3.69E-04	10		2.31E-04
1,1,1-Trichloroethane	nc	150,000	<5.5		3.67E-05	<5.5		3.67E-05	<5.5		3.67E-05
Trichlorofluoromethane	nc	43,333	<5.6		1.29E-04	10		2.31E-04	<5.6		1.29E-04
1,1,2-Trichlorotrifluoroethane	nc	733,330	25		3.41E-05	1,500		2.05E-03	500		6.82E-04
m,p-Xylene	nc	15,000	<8.8		5.87E-04	12		8.00E-04	9		6.07E-04
		3		1.7E-06	7.6E-02		1.9E-05	4.3E-01		1.9E-05	1.3E+00

TABLE 5
Estimated *Current* Potential Risks-COPCs in Indoor Air
Property 2

24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

Chemical	Max Indoor	Max Outdoor	Min Indoor	Min Outdoor	Max AF _{Building} 1	Screer	ning Level	Max Indoor Air Potential Risk		Min Indoor Air Potential Risk	
	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	Ballaling	Cancer	Non-Cancer	Cancer	Non-Cancer	Cancer	Non-Cancer
2-Butanone	390	5.9	32	1.2	0.38	nc	22,000	nc	1.77E-02	nc	1.45E-03
Benzene	0.94	0.91	0.61	0.65	0.07	0.42	13	nc	7.23E-02	1.5E-06	4.69E-02
Chloroform	1.7	0	0.3	0	0.01	0.53	430	3.2E-06	3.95E-03	5.7E-07	6.98E-04
PCE	1.9	0	0.91	0	0.00004	2	180	9.5E-07	1.06E-02	4.6E-07	5.06E-03
TCE	1.3	0	1.4	0	0.00007	3	8.8	4.3E-07	1.48E-01	4.7E-07	1.59E-01
Toluene	5.1	0	0.71	0	0.18	nc	1,300	nc	3.92E-03	nc	5.46E-04
1,1,1-Trichloroethane	1.2	2.1	1.2	1.5	0.03	nc	4,400	nc	2.73E-04	nc	2.73E-04
Trichlorofluoromethane	1.4	1.2	0.85	0.96	0.08	nc	5,300	nc	2.64E-04	nc	1.60E-04
1,1,2-Trichlorotrifluoroethane	1.6	0	0.77	0	0.00107	nc	22,000	nc	7.27E-05	nc	3.50E-05
m,p-Xylene	30	1.7	1.1	1.1	2.00	nc	440	nc	6.82E-02	nc	2.50E-03

TOTAL 5.E-06 3.2E-01 3.E-06 2.2E-01

TABLE 6 Empirically-Derived Building Attenuation Factors Property 2

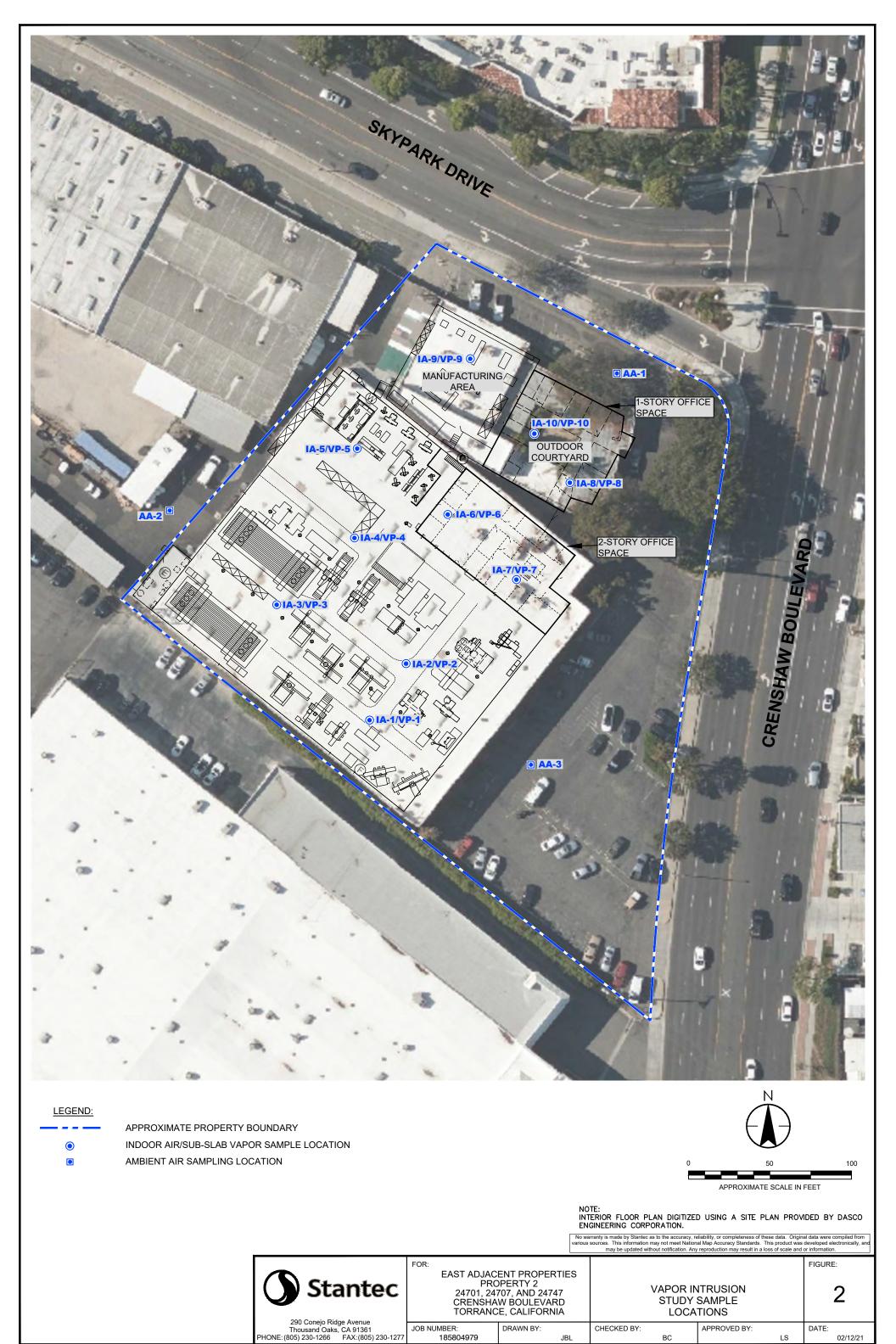
24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

				VP-1		IA-2	VP-2		IA-3	VP-3	
Chemical	Screening L	evel (μg/m3)	Concentration		AF	Concentration	Concentration	MAX AF	Concentration	Concentration	AF
	Cancer	Non-Cancer	(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)	
2-Butanone	nc	730,000	74	82	0.90244	86	<30		32	<30	1
Benzene	14	440	0.71	<3.2	-	0.74	<3.2	-	0.65	13	0.
Chloroform	18	14,000	< 0.25	<4.9	-	0.3	9	0.0349	< 0.25	18	1
1,1-Dichloroethene	nc	10,000	< 0.40	230	-	< 0.40	140	-	< 0.40	360	-
4-Methyl-2-pentanone	nc	440,000	< 0.83	<8.3	-	<0.83	<8.3		< 0.83	<8.3	-
PCE	67	5,800	< 0.69	2,700	_	< 0.69	1,800	-	< 0.69	44,000	-
TCE	100	290	< 0.55	900	-	< 0.55	910	-	< 0.55	20000	1
Toluene	nc	43,333	2	10	0.18000	1.3	6	0.2167	1.4	6.8	0.20
1,1,1-Trichloroethane	nc	150,000	< 0.55	33	_	< 0.55	7		< 0.55	35	-
Trichlorofluoromethane	nc	43,333	1	18	0.05333	0.96	<5.6	-	1.2	11	0.10
1,1,2-Trichlorotrifluoroethane	nc	733,330	< 0.77	450	-	<0.77	190		< 0.77	290	1
m,p-Xylene	nc	15,000	2	<8.8	-	1.2	<8.8		1	<8.8	_

Chemical	Screening L	evel (µg/m3)	IA-4	VP-4	AF	IA-5	VP-5	AF	IA-6	VP-6	AF
	_		Concentration	Concentration		Concentration	Concentration	Ī	Concentration	Concentration	
			(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)	
2-Butanone	Cancer	Non-Cancer	52	75	0.6933	45	45	1	120	42	2.86
Benzene	14	440	0.68	6.8	0.1000	0.61	3.2	0.1906	0.68	<3.2	1
Chloroform	18	14,000	< 0.25	200	-	< 0.25	<4.9	-	1.70	<4.9	-
1,1-Dichloroethene	nc	10,000	< 0.40	230	-	<0.40	<4.0	-	< 0.40	<4.0	-
4-Methyl-2-pentanone	nc	440,000	< 0.83	<8.3	-	< 0.83	<8.3	-	< 0.83	<8.3	1
PCE	67	5,800	< 0.69	7,300	-	< 0.69	2,400	-	< 0.69	900	1
TCE	100	290	< 0.55	4600	-	< 0.55	35		< 0.55	64	-
Toluene	nc	43,333	1.40	29	0.0483	1.2	20	0.0600	1.9	9.5	0.200
1,1,1-Trichloroethane	nc	150,000	< 0.55	8	-	< 0.55	43		< 0.55	<5.5	-
Trichlorofluoromethane	nc	43,333	0.90	8	0.1084	0.85	12	0.0708	1	<5.6	-
1,1,2-Trichlorotrifluoroethane	nc	733,330	< 0.77	560	-	<0.77	1,000	-	< 0.77	250	-
m,p-Xylene	nc	15,000	1.40	15	0.0933	1.1	12	0.0917	2	<8.8	-

Chemical	Screening L	evel (µg/m3)	IA-7 Concentration	VP-7 Concentration	AF	IA-8	VP-8 Concentration	AF	IA-9 Concentration	VP-9 Concentration	AF
	Cancer	Non-Cancer	(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)	
2-Butanone	nc	730,000	300	47	6.38	220	50	4.40	390	150	2.60
Benzene	14	440	0.81	<3.2		0.91	<3.2	-	0.81	<3.2	-
Chloroform	18	14,000	0.59	<4.9	-	0.69	<4.9	-	0	<4.9	_
1,1-Dichloroethene	nc	10,000	< 0.40	100	-	<0.80	<4.1	1	< 0.40	<4.0	-
4-Methyl-2-pentanone	nc	440,000	4	<8.3		<1.7	<8.3	-	1.2	9	0.13
PCE	67	5,800	1.7	2,200	0.0008	1.4	69	0.02	< 0.69	1,200	-
TCE	100	290	1.3	310	0.0042	<1.1	16	1	< 0.55	61	-
Toluene	nc	43,333	5	10	0.51	3.5	6.6	0.53	3.5	16	0.22
1,1,1-Trichloroethane	nc	150,000	< 0.55	<5.5	-	<1.1	<5.5	1	< 0.55	<5.5	-
Trichlorofluoromethane	nc	43,333	1.20	13	0.0923	1.4	<5.6	1	1	10	0.12
1,1,2-Trichlorotrifluoroethane	nc	733,330	0.77	920	0.0008	<1.5	25	1	1	1,500	0.00
m,p-Xylene	nc	15,000	30	10	3	3	<8.8	-	6	12	0.48

			IA-10	VP-10	
Chemical	Screening L	evel (μg/m3)	Concentration	Concentration	AF
Crientical	Cancer	Non-Cancer	(ug/m3)	(ug/m3)	
2-Butanone	nc	730,000	230	87	2.64
Benzene	14	440	0.94	<3.2	_
Chloroform	18	14,000	0.89	<4.9	-
1,1-Dichloroethene	nc	10,000	< 0.40	<4.0	-
4-Methyl-2-pentanone	nc	440,000	0.83	<8.3	_
PCE	67	5,800	1.9	1,000	0.0019
TCE	100	290	0.71	320	0.0022
Toluene	nc	43,333	4.2	10	0.42
1,1,1-Trichloroethane	nc	150,000	< 0.55	<5.5	-
Trichlorofluoromethane	nc	43,333	1.40	<5.6	-
1,1,2-Trichlorotrifluoroethane	nc	733,330	1.6	500	0.00
m,p-Xylene	nc	15,000	3.6	9.1	0.40


Notes:

AF = attenuation factor = ratio of chemical concentration in indoor air to concentration in sub-slab soil vapor.

-- = AF cannot be calculated- either indoor air or sub-slab value missing.

FIGURES

ATTACHMENT A CERTIFIED LABORATORY ANALYTICAL REPORTS

Lewis Simons Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

H&P Project: ST020821-13

Client Project: 185804980 / Crenshaw Blvd

Dear Lewis Simons:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 05-Feb-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
IA-8	E102029-01	Vapor	05-Feb-21	05-Feb-21
IA-10	E102029-02	Vapor	05-Feb-21	05-Feb-21
IA-9	E102029-03	Vapor	05-Feb-21	05-Feb-21
IA-7	E102029-04	Vapor	05-Feb-21	05-Feb-21
IA-6	E102029-05	Vapor	05-Feb-21	05-Feb-21
IA-5	E102029-06	Vapor	05-Feb-21	05-Feb-21
IA-4	E102029-07	Vapor	05-Feb-21	05-Feb-21
IA-3	E102029-08	Vapor	05-Feb-21	05-Feb-21
AA-2	E102029-09	Vapor	05-Feb-21	05-Feb-21
IA-2	E102029-10	Vapor	05-Feb-21	05-Feb-21
IA-2 DUP	E102029-11	Vapor	05-Feb-21	05-Feb-21
IA-1	E102029-12	Vapor	05-Feb-21	05-Feb-21
AA-3	E102029-13	Vapor	05-Feb-21	05-Feb-21
AA-1	E102029-14	Vapor	05-Feb-21	05-Feb-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

DETECTIONS SUMMARY

Sample ID: IA-8	Laboratory ID:	E102029-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.5	0.41	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.4	1.1	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.99	0.71	ug/m3	EPA TO-15	
2-Butanone (MEK)	220	1.2	ug/m3	EPA TO-15	E
Chloroform	0.69	0.49	ug/m3	EPA TO-15	
Benzene	0.91	0.32	ug/m3	EPA TO-15	
Carbon tetrachloride	0.64	0.64	ug/m3	EPA TO-15	
Toluene	3.5	1.5	ug/m3	EPA TO-15	
Tetrachloroethene	1.4	1.4	ug/m3	EPA TO-15	
m,p-Xylene	3.3	0.88	ug/m3	EPA TO-15	
o-Xylene	1.3	0.88	ug/m3	EPA TO-15	
Sample ID: IA-10	Laboratory ID:	E102029-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.5	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.4	0.56	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	1.6	0.77	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.95	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	230	0.60	ug/m3	EPA TO-15	E
Chloroform	0.89	0.25	ug/m3	EPA TO-15	
Benzene	0.94	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.64	0.32	ug/m3	EPA TO-15	
Trichloroethene	0.71	0.55	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	0.83	0.83	ug/m3	EPA TO-15	
Toluene	4.2	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	1.9	0.69	ug/m3	EPA TO-15	
Ethylbenzene	0.97	0.44	ug/m3	EPA TO-15	
m,p-Xylene	3.6	0.44	ug/m3	EPA TO-15	
Styrene	0.91	0.43	ug/m3	EPA TO-15	
o-Xylene	1.3	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.95	0.50	ug/m3	EPA TO-15	
1,4-Dichlorobenzene	0.79	0.61	ug/m3	EPA TO-15	
Sample ID: IA-9	Laboratory ID:	E102029-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes

Sample ID: IA-6

Analyte

Chloromethane

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13 290 Conejo Ridge Avenue, Suite 200 Project Number: 185804980 / Crenshaw Blvd Reported: Thousand Oaks, CA 91361 Project Manager: Lewis Simons 12-Feb-21 10:45 Sample ID: IA-9 Laboratory ID: E102029-03 Reporting Analyte Notes Result Limit Units Method 0.21 EPA TO-15 Chloromethane 1.2 ug/m3 1.2 0.56 EPA TO-15 Trichlorofluoromethane (F11) ug/m3 EPA TO-15 1,1,2-Trichlorotrifluoroethane (F113) 0.93 0.77 ug/m3EPA TO-15 Methylene chloride (Dichloromethane) 0.74 0.35 ug/m3 EPA TO-15 2-Butanone (MEK) 390 0.60 ug/m3 Е Chloroform 0.44 0.25 ug/m3 EPA TO-15 Benzene 0.81 0.16 ug/m3 EPA TO-15 0.57 0.32 EPA TO-15 Carbon tetrachloride ug/m3 4-Methyl-2-pentanone (MIBK) 1.2 0.83 ug/m3 EPA TO-15 Toluene 3.5 0.76 EPA TO-15 ug/m3 Ethylbenzene 1.5 0.44 ug/m3 EPA TO-15 0.44 EPA TO-15 m,p-Xylene 5.7 ug/m3 EPA TO-15 o-Xylene 1.9 0.44 ug/m3 1,2,4-Trimethylbenzene 1.2 0.50 ug/m3 EPA TO-15 Sample ID: IA-7 Laboratory ID: E102029-04 Reporting Analyte Result Units Method Notes Limit 1.2 0.21 EPA TO-15 Chloromethane ug/m3 Trichlorofluoromethane (F11) 1.2 0.56 ug/m3 EPA TO-15 1,1,2-Trichlorotrifluoroethane (F113) 0.77 0.77 EPA TO-15 ug/m3 Methylene chloride (Dichloromethane) 0.60 0.35 ug/m3 EPA TO-15 0.60 EPA TO-15 Е 2-Butanone (MEK) 300 ug/m3 Chloroform EPA TO-15 0.59 0.25 ug/m3 0.16 EPA TO-15 Benzene 0.81 ug/m3EPA TO-15 Carbon tetrachloride 0.57 0.32 ug/m3 EPA TO-15 Trichloroethene 1.3 0.55 ug/m3 4-Methyl-2-pentanone (MIBK) 4.1 0.83 ug/m3 EPA TO-15 Toluene 5.1 0.76 ug/m3 EPA TO-15 Tetrachloroethene 1.7 0.69 ug/m3 EPA TO-15 Ethylbenzene 8.3 0.44 ug/m3 EPA TO-15 m,p-Xylene 30 0.44 ug/m3 EPA TO-15 8.2 0.44 ug/m3 EPA TO-15 o-Xylene 0.50 EPA TO-15 1,2,4-Trimethylbenzene 0.65 ug/m3

Laboratory ID:

Result

1.1

E102029-05

Reporting

Limit

0.21

Units

ug/m3

Method

EPA TO-15

Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks
Project: ST020821-13
290 Conejo Ridge Avenue, Suite 200
Project Number: 185804980 / Crenshaw Blvd
Reported:
Thousand Oaks, CA 91361
Project Manager: Lewis Simons
12-Feb-21 10:45

Sample ID: IA-6	Laboratory ID:	E102029-05			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	0.85	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	120	0.60	ug/m3	EPA TO-15	E
Chloroform	1.7	0.25	ug/m3	EPA TO-15	
Benzene	0.68	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.9	0.76	ug/m3	EPA TO-15	
Ethylbenzene	0.57	0.44	ug/m3	EPA TO-15	
m,p-Xylene	2.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.79	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.60	0.50	ug/m3	EPA TO-15	
Sample ID: IA-5	Laboratory ID:	E102029-06			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	0.95	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.85	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.53	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	45	0.60	ug/m3	EPA TO-15	
Benzene	0.61	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.45	0.32	ug/m3	EPA TO-15	
Toluene	1.2	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15	
o-Xylene	0.44	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.55	0.50	ug/m3	EPA TO-15	
Sample ID: IA-4	Laboratory ID:	E102029-07			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.90	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	52	0.60	ug/m3	EPA TO-15	
Benzene	0.68	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.4	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.4	0.44	ug/m3	EPA TO-15	
o-Xylene	0.53	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.65	0.50	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantee - Thousand Oaks
Project: ST020821-13
290 Conejo Ridge Avenue, Suite 200
Project Number: 185804980 / Crenshaw Blvd
Reported:
Thousand Oaks, CA 91361
Project Manager: Lewis Simons
12-Feb-21 10:45

Sample ID: IA-3	Laboratory ID:	E102029-08			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.3	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	32	0.60	ug/m3	EPA TO-15	
Benzene	0.65	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.4	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.53	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.70	0.50	ug/m3	EPA TO-15	
sample ID: AA-2	Laboratory ID:	E102029-09			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.96	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.53	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.9	0.60	ug/m3	EPA TO-15	
Benzene	0.65	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.5	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15	
o-Xylene	0.48	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.60	0.50	ug/m3	EPA TO-15	
sample ID: IA-2	Laboratory ID:	E102029-10			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.1	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.96	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	86	0.60	ug/m3	EPA TO-15	E
Chloroform	0.30	0.25	ug/m3	EPA TO-15	
Benzene	0.74	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.3	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.48	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.55	0.50	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks
Project: ST020821-13
290 Conejo Ridge Avenue, Suite 200
Project Number: 185804980 / Crenshaw Blvd
Reported:
Thousand Oaks, CA 91361
Project Manager: Lewis Simons
12-Feb-21 10:45

Sample ID: IA-2 DUP	Laboratory ID:	E102029-11			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.0	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.1	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.49	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	85	0.60	ug/m3	EPA TO-15	E
Chloroform	0.30	0.25	ug/m3	EPA TO-15	
Benzene	0.61	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.3	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.53	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.65	0.50	ug/m3	EPA TO-15	
Sample ID: IA-1	Laboratory ID:	E102029-12			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.96	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	74	0.60	ug/m3	EPA TO-15	
Benzene	0.71	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.8	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.5	0.44	ug/m3	EPA TO-15	
o-Xylene	0.62	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.85	0.50	ug/m3	EPA TO-15	
Sample ID: AA-3	Laboratory ID:	E102029-13			
		Reporting			
Analyte	Result		Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.63	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	5.9	0.60	ug/m3	EPA TO-15	
Benzene	0.91	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	2.1	0.76	ug/m3	EPA TO-15	
Ethylbenzene	0.48	0.44	ug/m3	EPA TO-15	
m,p-Xylene	1.7	0.44	ug/m3	EPA TO-15	
o-Xylene	0.70	0.44	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361	Project: ST0208 Project Number: 1858049 Project Manager: Lewis S	80 / Crenshaw		Reported: 12-Feb-21 10:45	
Sample ID: AA-3	Laboratory ID: E10	2029-13			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1.2.4-Trimethylbenzene	0.70	0.50	ug/m3	EPA TO-15	

Analyte	Result	LIIIII	Units	Method	Notes
1,2,4-Trimethylbenzene	0.70	0.50	ug/m3	EPA TO-15	
Sample ID: AA-1	Laboratory ID: E10	02029-14			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.71	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	1.2	0.60	ug/m3	EPA TO-15	
Benzene	0.81	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.6	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15	
o-Xylene	0.44	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.50	0.50	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-8 (E102029-01) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							R-02
Dichlorodifluoromethane (F12)	ND	2.0	ug/m3	2	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.5	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	1.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.99	0.71	"	"	"	"	"	"	
Carbon disulfide	ND	0.63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	220	1.2	"	"	"	"	"	"	F
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	0.69	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	0.91	0.32	"	"	"	"	"	"	
Carbon tetrachloride	0.64	0.64	"	"	"	"	"	"	
Trichloroethene	ND	1.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	3.5	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	3.5	"	"	"	"	"	"	
Tetrachloroethene	1.4	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	ND	0.88	"	"	"	"	"	"	
m,p-Xylene	3.3	0.88	"	"	"	"	"	"	
Styrene	ND	0.86	"	"	"	"	"	"	
o-Xylene	1.3	0.88	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-8 (E102029-01) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							R-02
Bromoform	ND	2.1	ug/m3	2	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	3.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.4	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		105 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	77-	127	"	"	"	"	
IA-10 (E102029-02) Vapor Sampled: 05-Feb-2	1 Received: 05-	-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.5	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	1.6	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.95	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	230	0.60	"	"	"	"	"	"	E
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.89	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.94	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.64	0.32	"	"	"	"	"	"	
Trichloroethene	0.71	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-10 (E102029-02) Vapor Sampled: 05-Feb-21	Received: 05	-Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	0.83	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	4.2	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.9	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.97	0.44	"	"	"	"	"	"	
m,p-Xylene	3.6	0.44	"	"	"	"	"	"	
Styrene	0.91	0.43	"	"	"	"	"	"	
o-Xylene	1.3	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.95	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	0.79	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		103 %	76-1.		"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1.		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.3 %	77-1.	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-9 (E102029-03) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	0.93	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.74	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	390	0.60	"	"	"	"	"	"	I
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.44	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.81	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	1.2	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	3.5	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	ıı .	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	1.5	0.44	"	"	"	"	"	"	
m,p-Xylene	5.7	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.9	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-9 (E102029-03) Vapor Sampled: 05-Feb-2	1 Received: 05-F					•			
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.2	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	II .	
Compositor 1.2 Dichlaracthona dd		07.6.0/	76	124	,,	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.6 % 102 %	76-1 78-1		"	"	"	"	
Surrogate: Toluene-d8		102 % 102 %	/8 77		,,	"	"	"	
Surrogate: 4-Bromofluorobenzene			//-	12/				-	
IA-7 (E102029-04) Vapor Sampled: 05-Feb-2	1 Received: 05-F	eb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	0.77	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.60	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
Curbon disamae		0.0_						,,	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"		
trans-1,2-Dichloroethene	ND ND		"	"	"	"	"	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane		0.40						"	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND	0.40 0.41	"	"	"	"	"		
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND 300	0.40 0.41 0.60	"	"	"	"	"	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND 300 ND	0.40 0.41 0.60 0.40	"	" "	" "	" "	"	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND 300 ND 0.59	0.40 0.41 0.60 0.40 0.25	" "	" "	" " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" "	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND 300 ND 0.59 ND	0.40 0.41 0.60 0.40 0.25 0.55	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	ND 300 ND 0.59 ND ND	0.40 0.41 0.60 0.40 0.25 0.55 0.41	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
	ND 300 ND 0.59 ND ND 0.81	0.40 0.41 0.60 0.40 0.25 0.55 0.41	" " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	11 11 11 11 11 11 11 11 11 11 11 11 11	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804980 / Crenshaw Blvd

Thousand Oaks, CA 91361 Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-7 (E102029-04) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	4.1	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	5.1	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.7	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	8.3	0.44	"	"	"	"	"	"	
m,p-Xylene	30	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	8.2	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91.2 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		101 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project: ST020821-13

Project Number: 185804980 / Crenshaw Blvd Project Manager: Lewis Simons Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-6 (E102029-05) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.1	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.85	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	120	0.60	"	"	"	"	"	"	I
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	1.7	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.68	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.9	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.57	0.44	"	"	"	"	"	"	
m,p-Xylene	2.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.79	0.44	"	,,	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-6 (E102029-05) Vapor Sampled: 05-Feb-21	Received: 05-1			- 40101					
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"		"	
1,2,4-Trimethylbenzene	0.60	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"		"	
Hexachlorobutadiene	ND	2.7	"	"	"	"		"	
Texas moroutations	ND	2.1							
Surrogate: 1,2-Dichloroethane-d4		89.3 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	77-	127	"	"	"	"	
IA-5 (E102029-06) Vapor Sampled: 05-Feb-21	Received: 05-1	Fob_21							
Dichlorodifluoromethane (F12)	ND	1.0		1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	0.95	0.21	ug/m3	1	ED11000	10-гео-21	10-10-21	EPA 10-13	
Dichlorotetrafluoroethane (F114)	0.95 ND	0.21	,,	"	"	"	,,	"	
Vinyl chloride	ND ND	0.71	,,	"	"	"	,,	"	
Bromomethane	ND ND	0.13	,,	"	"	"	,,	"	
Chloroethane	ND ND	0.39	,,	,,	"	,,	,,	"	
Trichlorofluoromethane (F11)		0.27	,,	,,	"	,,	,,	"	
1,1-Dichloroethene	0.85		,,	,,	"	,,	,,	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND ND	0.40 0.77	,,	,,	"	,,	,,	"	
Methylene chloride (Dichloromethane)		0.77	,,	,,	"	,,	,,	"	
Carbon disulfide	0.53 ND	0.33	,,	,,	"	,,	,,	"	
trans-1,2-Dichloroethene	ND ND	0.32	,,	,,	"	,,	,,	"	
1,1-Dichloroethane			,,	,,	"	,,	,,	"	
<i>'</i>	ND	0.41	,,	,,	"	,,	,,	"	
2-Butanone (MEK)	45	0.60	,,	"	"	,,	"	"	
cis-1,2-Dichloroethene Chloroform	ND	0.40	,,	"	"	,,	"	"	
	ND	0.25	,,	,,	"	,,	,,		
1,1,1-Trichloroethane	ND	0.55	,,	,,	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	,,	"	"	,,	"	"	
Benzene	0.61	0.16	,,	,,	"	,,	,,		
Carbon tetrachloride	0.45	0.32	,,	,,	"	,,	,,	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-5 (E102029-06) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.2	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.44	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.55	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		89.6 %	76-13	34	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analysis	Result	Reporting	I Iida	Dilution	D-4-h	D d	A	Madead	Notes
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
IA-4 (E102029-07) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.90	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	52	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.68	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.4	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.4	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.53	0.44	"	"	"	"	"	n .	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-4 (E102029-07) Vapor Sampled: 05-Feb-2	1 Received: 05-			- 1 40101					
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
G (12 D) II I I II		00.20/	7.	124	,,	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		88.2 %	76-1		,,	,,	"	"	
Surrogate: Toluene-d8		102 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	77-	12/	"	,,	,,	"	
IA-3 (E102029-08) Vapor Sampled: 05-Feb-2	1 Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	32	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.65	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
-,	ND	0.77							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-3 (E102029-08) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.4	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.53	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.70	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		88.1 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		103 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-2 (E102029-09) Vapor Sampled: 05-Feb-21	Received: 05	-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.96	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.53	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.9	0.60	"	"	"	"	"	ıı .	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	ıı .	
Chloroform	ND	0.25	"	"	"	"	"	ıı .	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.65	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	0.43	"	"	"	"		"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"		"	
Toluene	1.5	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.75	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.09	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND ND	0.70	"	"	,,	"	"	"	
Ethylbenzene	ND ND	0.47		"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.44	,,	,,	,,	"	,,	"	
			,,	"	,,	"	"	"	
o-Xylene	0.48	0.44							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-2 (E102029-09) Vapor Sampled: 05-Feb-2	21 Received: 05-	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.60	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91.4 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.7 %	77-1		"	"	"	"	
IA-2 (E102029-10) Vapor Sampled: 05-Feb-2	1 Received: 05-l	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.1	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane				"	,,	"	"	,,	
Cinoroculane	ND	0.27	"						
Trichlorofluoromethane (F11)	ND 0.96	0.27 0.56	"	"	"	"	"	"	
			"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.96	0.56	"						
Trichlorofluoromethane (F11) 1,1-Dichloroethene	0.96 ND	0.56 0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	0.96 ND ND	0.56 0.40 0.77	" "	"	"	"	"	"	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	0.96 ND ND 0.56	0.56 0.40 0.77 0.35	" "	"	"	"	"	"	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	0.96 ND ND 0.56 ND	0.56 0.40 0.77 0.35 0.32	" " " " " " " " " " " " " " " " " " " "	" "	" " "	" " "	" " "	11 11 11	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	0.96 ND ND 0.56 ND ND	0.56 0.40 0.77 0.35 0.32 0.40	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	0.96 ND ND 0.56 ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n n	11 11 11 11	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	0.96 ND ND 0.56 ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41	n n n	" " " " " " " " " " " " " " " " " " " "	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	0.96 ND ND 0.56 ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40	n n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n	11 11 11 11	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	0.96 ND ND 0.56 ND ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n n n n n n n n n n n n n n n n n		
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	0.96 ND ND 0.56 ND ND ND 86 ND 0.30	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n n n n n n n n n n n n n n n n n		
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	0.96 ND ND 0.56 ND ND ND 86 ND 0.30 ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41		" " " " " " " " " " " " " " " " " " " "					
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	0.96 ND ND 0.56 ND ND ND 0.30 ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41 0.16		" " " " " " " " " " " " " " " " " " " "					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 (E102029-10) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.3	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.48	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.55	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	n .	
					"				
Surrogate: 1,2-Dichloroethane-d4		93.1 %	76			"	"	"	
Surrogate: Toluene-d8		103 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 DUP (E102029-11) Vapor Sampled: 05-Fe	eb-21 Received	d: 05-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.0	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.1	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.49	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	85	0.60	"	"	"	"	"	"	F
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.30	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.61	0.16	"	"	"	"	,,	"	
Carbon tetrachloride	0.51	0.10	"	"	"	"	,,	"	
Trichloroethene	ND	0.55	"	"	"	"	,,	"	
1,2-Dichloropropane	ND	0.33	"	"	"	"	"	"	
Bromodichloromethane	ND	0.47	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.40	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND ND	0.65	"	,,	"	"	"	"	
Toluene	1.3	0.46	,,	,,	"	"	"	"	
1,1,2-Trichloroethane	ND	0.76	"	"	"	"	,,	"	
2-Hexanone (MBK)	ND ND	0.83	"	"	"	"	,,	"	
Dibromochloromethane	ND ND	1.7	"	"	"	"	,,	"	
Tetrachloroethene			"	"	"	"	,,	"	
1,2-Dibromoethane (EDB)	ND ND	0.69 0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.78	"	"	"	"	"	"	
Chlorobenzene			"	,,	"	"	,,	"	
	ND	0.47	"	"	"	"	"	"	
Ethylbenzene m.p. Vylone	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	,,	"	,,	,,	"	
Styrene	ND	0.43	.,		"	,,	,	"	
o-Xylene	0.53	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

	110	X1 1/10/01	Geoch	ciiiisti y	, 11100				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 DUP (E102029-11) Vapor Sampled: 05-Fe	b-21 Received	: 05-Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		88.9 %	76-1	!34	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-1		"	"	"	"	
IA-1 (E102029-12) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.96	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
		0.60	"	"	"	"	"	"	
2-Butanone (MEK)	74	0.00							
2-Butanone (MEK) cis-1,2-Dichloroethene	7 4 ND	0.00	"	"	"	"	"	"	
,			"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40							
cis-1,2-Dichloroethene Chloroform	ND ND	0.40 0.25	"	"	"	"	"	"	
cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND	0.40 0.25 0.55	"	"	"	"	"	"	
cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND ND ND ND	0.40 0.25 0.55 0.41	"	"	" "	"	"	" "	
cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	ND ND ND ND 0.71	0.40 0.25 0.55 0.41 0.16	" "	"	" " "	" " "	"	" "	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-1 (E102029-12) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.8	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.5	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.62	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.85	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		90.7 %	76-13	34	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-3 (E102029-13) Vapor Sampled: 05-Feb-21	Received: 05-			- 1 40101					
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.10	"	"	"	"		"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"		"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"		"	
Methylene chloride (Dichloromethane)	0.63	0.35	"	"	"	"		"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2-Butanone (MEK)	5.9	0.60	"	"	"	"		"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"		"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.91	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	2.1	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.48	0.44	"	"	"	"	"	"	
m,p-Xylene	1.7	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.70	0.44	"	"	"	"	"	n .	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-3 (E102029-13) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.70	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		90.1 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.3 %	77-1		"	"	"	"	
AA-1 (E102029-14) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.71	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	1.2	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
	ND	0.41	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)				,,	"	"	,,	"	
1,2-Dichloroethane (EDC) Benzene	0.81	0.16	"						
· /		0.16 0.32	"	"	"	"	"	"	
Benzene	0.81	0.16 0.32 0.55	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-1 (E102029-14) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.6	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.44	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.50	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		90.8 %	76-1.		"	"	"	"	
Surrogate: Toluene-d8		110 %	78-1.		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.8 %	77-1.	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EB11006-BLK1)				Prepared & Analyzed: 10-Feb-21
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
richlorotetrafluoroethane (F114)	ND	0.71	"	
'inyl chloride	ND	0.13	"	
romomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
richlorofluoromethane (F11)	ND	0.56	"	
,1-Dichloroethene	ND	0.40	"	
,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
rans-1,2-Dichloroethene	ND	0.40	"	
,1-Dichloroethane	ND	0.41	"	
-Butanone (MEK)	ND	0.60	"	
is-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
,1,1-Trichloroethane	ND	0.55	"	
2-Dichloroethane (EDC)	ND	0.41	"	
enzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
richloroethene	ND	0.55	"	
2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
is-1,3-Dichloropropene	ND	0.46	"	
Methyl-2-pentanone (MIBK)	ND	0.83	"	
rans-1,3-Dichloropropene	ND	0.46	"	
oluene	ND	0.76	"	
,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	1.7	"	
Tetrachloroethene	ND	0.69	"	
,2-Dibromoethane (EDB)	ND	0.78	"	
,1,1,2-Tetrachloroethane	ND	0.70	"	
Chlorobenzene	ND	0.47	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB11006 - TO-15										
Blank (EB11006-BLK1)				Prepared &	Analyzed:	10-Feb-21				
Ethylbenzene	ND	0.44	ug/m3							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	1.9	"							
Hexachlorobutadiene	ND	2.7	"							
Surrogate: 1,2-Dichloroethane-d4	44.3		"	42.7		104	76-134			
Surrogate: Toluene-d8	43.9		"	41.6		106	78-125			
Surrogate: 4-Bromofluorobenzene	65.2		"	72.6		89.8	77-127			
V 60 (TD4404 P04)				Drangrad &	z Analyzed:	10 Feb 21				
LCS (EB11006-BS1)	47.0	4.0	/2	•	c Anaryzcu.		50 120			
Dichlorodifluoromethane (F12)	17.3	1.0	ug/m3	20.2		85.9	59-128			
Vinyl chloride	8.9	0.13	"	10.4		85.5	64-127			
Chloroethane	9.0	0.27	"	10.7		83.6	63-127			
Trichlorofluoromethane (F11)	18.5	0.56	"	22.6		81.7 84.1	62-126 61-133			
1,1-Dichloroethene	13.6 25.7	0.40 0.77	"	16.2						
1,1,2-Trichlorotrifluoroethane (F113)			,,	31.0		82.8	66-126			
Methylene chloride (Dichloromethane) trans-1,2-Dichloroethene	10.5	0.35	"	14.2		74.4	62-115 67-124			
1,1-Dichloroethane	13.0	0.40	"	16.2 16.5		80.2 78.2	67-124			
<i>'</i>	12.9	0.41	,,							
cis-1,2-Dichloroethene	13.3	0.40	"	16.0		83.2	70-121			
Chloroform	16.3	0.25	"	19.8		82.3	68-123			
1,1,1-Trichloroethane	18.9	0.55	"	22.2		84.8	68-125			
1,2-Dichloroethane (EDC)	13.8	0.41	"	16.5		83.5	65-128			
Benzene	10.5	0.16		13.0		81.4	69-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB11006 - TO-15										
LCS (EB11006-BS1)				Prepared &	Analyzed:	10-Feb-21				
Carbon tetrachloride	21.5	0.32	ug/m3	25.6		83.8	68-132			
Trichloroethene	18.8	0.55	"	21.9		85.8	71-123			
Toluene	12.8	0.76	"	15.4		83.5	66-119			
1,1,2-Trichloroethane	18.3	0.55	"	22.2		82.1	73-119			
Tetrachloroethene	22.0	0.69	"	27.6		79.6	66-124			
1,1,1,2-Tetrachloroethane	23.3	0.70	"	28.0		83.4	67-129			
Ethylbenzene	14.3	0.44	"	17.7		80.8	70-124			
m,p-Xylene	15.0	0.44	"	17.7		85.0	61-134			
o-Xylene	14.0	0.44	"	17.7		79.3	67-125			
1,1,2,2-Tetrachloroethane	19.0	0.70	"	28.0		67.9	65-127			
Surrogate: 1,2-Dichloroethane-d4	42.8		"	42.7		100	76-134			
Surrogate: Toluene-d8	42.1		"	41.6		101	78-125			
Surrogate: 4-Bromofluorobenzene	68.9		"	72.6		94.9	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Notes and Definitions

R-02 This sample was diluted due to limited sample volume, resulting in elevated reporting limits.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is

considered an estimate (CLP E-flag).

LCC Leak Check Compound

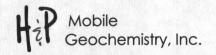
ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.

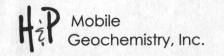

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.



2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02/05/2

	Lak	Client an	d Projec	t Information						ana			5	Sampl	e Rec	eipt (L	ab Us	e Only	y)	
Lab Client/Consultant:	rtec			Project Name / #:	185864	1980						Date	Rec'd:	2/81	21	Contro	ol#: 6	DIS	085	5.04
Lab Client Project Manager:	is Simo	ha C		Project Location:	24747 Cx			y to	-	10		H&P F	Project	#S1	020	0821	-18	213	>	
Lab Client Address: 200 (mesa	04.1	an abar	e, det.									Lab W	/ork Ord	der# t	316	201	29			
Lab Client City, State, Zip:	Kiage Av	(A 91	361	NO PERSONAL	lewis sin	ronse	ousta	intec	Сви			Samp	le Intac	t: X	es [No [] See t	Notes Bo	elow	
Phone Number: 562 - 799	- 9866	((// //	761		lewis.sin	en@s	tant	ec				Rece	ipt Gau	ge ID: (002	04		Temp	RT	
Reporting Requireme		Т	urnaroun	d Time	San	npler Info	rmatio	n				Outsid	de Lab:							
Standard Report Level III	Level IV	Stand	ard (7 days	s for preliminary	Sampler(s): 5.4	rellano	B	1/1/	1	91,		Recei	pt Note	s/Tracki	ng #:					
Excel EDD Other EDD:		report	t, 10 days fo	or final report)	Signature:	20/		V111-												
CA Geotracker Global ID:		Rush	(specify):_		Date:	2/05	/21										Lab	PM Init	tials:	MB
Additional Instructions to Labora	atory:																			
* Preferred VOC units (please ch	oose one):		n sap reason y		onseil Tenendili Tenendili			Full List 7TO-15	st/ Project List	710-15	□10-15	□ TO-15m	atic Fractions TO-15m	mpound A He	A 8015m	/ ASTM D1945 02 □ N2				
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List? Project List	Oxygenates 8260SV	Naphthalene	TPHv as Gas	Aromatic/Aliphatic Fractions 3260SVm T0-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945 ☐ CO2 ☐ O2 ☐ N2				
1A-8		02/04/21	1728	IA	61	483	-13.43	X						Buyer 1	8					
it -10		I'i	1729	IA	6L	320	-5.33	X												
1A-9			1729	IA	64	336	-5.64	X	t (tall									11		
A-7			1726	IA	61	279	-1:39	X												
A-6			1848	IA	62	278	78	X												
A-5			1847	IA	QL.	479	-1-35	X												
IA			1546	IA	61	454	-1.62	X												
1A-3			1412	IA	64	478	-2.16	X			No.								140	
AA-2			1914	AA	6L	477	-4.80	X												
14-1		4	1844	IA	66	448	-3.17	X									9			
Approved/Relinquished by: Approved/Relinquished by:	Mohn	Scompany Company	ec	2/5/21	1925 Time:	Received by:	By	1-				Company	11	#1	Date	040	5/21	Time:	1913	
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company			Date	:		Time:		

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02/05/21

	Lab	Client and	d Project	Information										ATTENDED TO STATE OF THE PARTY		eipt (La	ab Us	e Only	()	
Lab Client/Consultant: Stan-	tec			Project Name / #:	55804 as	50						Date	Rec'd:	28	21	Contro	1#: 0	10	280	40.
Lab Client Project Manager:	11	ms		Project Name / #: Project Location: 21	747 (nem	haw B/v	of the	way	up				Project	07	020	821	18	IN PRINCIPAL	3	
Lab Client Address: 290 (mg	rejo, Rida		tan est	Report E-Mail(s):	ben chevle	n as	tani	1917 Aug 230 Chill	are time of no		12.00	Lab W	ork Ord	der# E	3107	202	9	1000		
Lab Client City, State, Zip:	and Date		1361	La contracte de la	ben-chevle	on@s	tante	CU	om			Sampl	le Intac			No [lotes Be	elow	
Phone Number: 562 - 799	- 4866	Lanesta de		serio ne recon	San yan, ne						053746	Recei	ipt Gau	ge ID:	402	04		Temp:	RI	-
Reporting Requireme	NAME OF TAXABLE PARTY OF TAXABLE PARTY.		urnaroun	d Time	San	pler Info	rmation	1				Outsid	le Lab:							
Standard Report Level III	Level IV	Stand	ard (7 days	for preliminary	Sampler(s): J.A	rellans	B.1	lila				Recei	ot Note	s/Tracki	ng #:					
Excel EDD Other EDD:		report	, 10 days fo	or final report)	Signature:	3/2-													1,	
CA Geotracker Global ID:		Rush	(specify):_	100000	Date:	105/2	4										Lab	PM Init	tials: V	15
* Preferred VOC units (please ch	oose one):	vistorija (il) konstantija (il) konstantija (il)		garnergi i ras Grassi — egilisi	Terface To Discours			10.72 C Rd	Project List]TO-15	0-15] TO-15	.0-15m	Fractions O-15m	ound He	15m	TM D1945 □ N2				
□ µg/L Дµg/m³ □ ppbv	ppmv				CONTAINED			rd Full Lis	st/P	☐ TO-15	D T		hatic T(ompo	oA 80	y AS		ersonia. Negra		
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List / Project	Oxygenates 8260SV	Naphthalene	TPHv as Gas ☐ 8260SVm ☐ TO-15m	Aromatic/Aliphatic Fractions 3260SVm T0-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945				
14-2 DUP		02/05/21	1844	IA	GL	452	-2.03	X												y Pha
14-1			1843	IA	64	480	-3.43	/ X												
AA-3			1901	A	6L	481	-3.24	X												
AA-I		•	1859	AA	GL.	296	-2.86	X												
V 776																				
						DESCRIPTION OF														
											1 k 10 k					Y Sa				
	0.00																			
Approved/Relinquishen by Approved/Relinquished by:	moder	Company:	Hec	75 21 Date:	Time: 1925	Received by:	R	h				Company	11:	P.	Date Date	orfo	5/21	Time:	1925	
Approved/Relinquished by:	7/	Company:		Date:	Time:	Received by:						Company			Date			Time:		

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #: Site Address:	2474	7020521 17 Crensh	- TEC	1	Consultant:	Stantec E. Medler J.Arellann, B	Review	wed: _ ned: _	EC 1 Tom	5
		SAMPLE ID	:]	A-8						
Summa ID #:	43	Start Date:	27827	Check Date:	2-5-21	Check Date: 2-5	5-21 End [_	2-5-2	
Flow Cont ID #:	F/95	Start Time:	1027	Check Time:	1306	Check Time: 16	47 End T	ime:	1728	0.4
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-24	Check Vac ("Hg):		Vac 'Hg):	-14	*
Summa Canister H	Height above	e Ground (ft):	5			(and/or send photo				
Description of Sur	nma Caniste	er Placement:				otos sent				
					2	tete: **Access to Off before	building 8HRS. - E-C ZI	cut 9/21	<i>\</i>	
Outdoor Temp Hi (F):	64	Barometric Pressure:	30in He	Weather Cond	ditions:	est				
Outdoor Temp Low (F):		Wind Speed:	4mph	2(.//	· Sum					
Indoor Temp Avg (F):		Wind Direction:		. Y.M.	· Dum	7				
PRODUCT INVEN	NTORY (nea	arby products th	at may con	tain chemicals	of concern;	continue on back if	needed):			
The second second	ne of Produ					ist of Chemicals				
100										-
					-				1000	1
										1
					3					1
			*							
		Contact the second second	1200 147 TO 150 140 140 140 140 140 140 140 140 140 14							1

OUTDOOR SOURCES (possible sources of chemicals of concern from outdoor activities; continue on back if needed):

Source	Location	

FMS008 Revision: 1

Revised: 10/23/14 Effective: 12/9/14

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	STO	020521-	TECH		Consultant:	Stante	ec			
Site Address:		7 Crensha		Cons	ultant Rep:	E. Meg	ller	Reviewed:	EC	
	-	rce. CA			H&P Rep:	J. Arellano	B. Villa	Scanned:	flore	ک
		SAMPLE ID	:	1A - 1	0					
Summa ID #:	320	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-2	
Flow Cont ID #:	F133	Start Time:	1029	Check Time:	1307	Check Time:	1647	End Time:	1729	
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-25	Check Vac ("Hg):	-12	End Vac ("Hg):	-10	* See note
Summa Canister F	leight above	e Ground (ft):	5'		DIAGRAM	(and/or send p	hoto to H&F	PM):		1 /
Description of Sum	nma Caniste	er Placement:			Phot	os sent	to PN	1		
					*	Access to	building	a cut		
						Off beta	cre 8H	Ls. - E.C. 2/9	/21	
								L.C. 274	121	
		gleth weigh								
Outdoor Temp Hi	(1)	Barometric	0 -44	Weather Cond	litions:	,				1
(F): Outdoor Temp	64	Pressure:	30" Hg	AM-	Overas Sunn	t				
Low (F):	48	Wind Speed:	4mph	P. M	Sunn	1				
Indoor Temp Avg (F):	70	Wind Direction:	NW							
PRODUCT INVEN	ITORY (nea	rby products th	at may cont	ain chemicals	of concern;	continue on ba	ck if needed	d):		
	e of Produc					st of Chemicals				
										12.3
	196									
					*					
OUTDOOR SOUR	CES (possi	ble sources of	chemicals c	of concern from	outdoor act	ivities; continu	e on back if	needed):		
	Source					Location				

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	ST020521- TECH	Consultant:	Stantec		
	24747 Crenshaw Blyd.		· iculies		
	T. A	H&P Rep: 5	Arellano B. Villa	Scanned:	To

Sile Address.		ce, LA	DIVO!		H&P Rep:	5. Arellans, E	s.Villa	Scanned:	Hours
		SAMPLE ID	:	A-9					
Summa ID #:	336	Start Date:	2-5-4	Check Date:	2-5-21	Check Date: 2	-5-21	End Date:	2-5-21
Flow Cont ID #:	F204	Start Time:	1031	Check Time:	1308	Check Time:	648	End Time:	1731002
Flow Rate (hrs or cc/min):	Thrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-22	Check Vac ("Hg):	-8	End Vac ("Hg):	-7 ×
Summa Canister H	Height above	e Ground (ft):	5'	4	DIAGRAM	(and/or send pho	to to H&P	PM):	
Description of Sun	nma Caniste	er Placement:				ecess to he			
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	64 48 70	Barometric Pressure: Wind Speed: Wind Direction:	30"Hg 4mph NW	Weather Cond AM - PM -	ditions: Overca Sunny	est			
PRODUCT INVEN	NTORY (nea	arby products the	at may con	tain chemicals	of concern;	continue on back	c if needed	d):	
Nan	ne of Produc	ot			Li	st of Chemicals			

Name of Product	List of Chemicals		

OUTDOOR SOURCES (possible sources of chemicals of concern from outdoor activities; continue on back if needed):

Source	Location		

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

		Log She	et: Ind	door/Ami	bient A	ir Sampli	ng		Page 1 of
H&P Project #:		020521-7			Consultant:				
Site Address:		7 Crenal	Blvc	Cons	sultant Rep:			Reviewed:	
	Iprras	rce. CA		-	H&P Rep:	J. Arellan	20, B. V.	Scanned:	Thom
		SAMPLE ID	:	IA-7					
Summa ID #:	279	Start Date:	2-5-4	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F189	Start Time:	1035	Check Time:	1300	Check Time:	1632	End Time:	1726
Flow Rate (hrs or cc/min):	8	Start Vacuum ("Hg):	-30	Check Vac ("Hg):		Check Vac ("Hg):	- 4	End Vac ("Hg):	-3
Summa Canister I	Height above	e Ground (ft):	5		DIAGRAM	(and/or send p	hoto to H&F	PPM):	
Description of Sur	er Placement:			notos se					
					*	Access of Ollower of	before 8	ting not HR shut fust. Ok	ctt. -Ec. 2/9/21
Outdoor Temp Hi (F):	64	Barometric Pressure:	30"Ha	Weather Cond	ditions:				
Outdoor Temp		Wind Speed:		AM -	Overca	-st			
Low (F): Indoor Temp Avg (F):	48 70	Wind Direction:	4mph NW	PM-	Overca Sunny				
PRODUCT INVEN			at may cont	tain chemicals	of concern;	continue on ba	ck if needed	d):	
	ne of Produc					st of Chemicals			

OUTDOOR SOURCES (possible sources of chemicals of concern from outdoor activities; continue on back if needed):

Source	Location						

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

		Log She	et: Ind	door/Aml	oient Ai	ir Sampli	ng		Page 1 of 1
H&P Project #: Site Address:	V - 174 - 17	020521 - TECH Consultant: Stantec 17 Crenshar Blvd Consultant Rep: F. Medler		11	Reviewed:	EC			
Site Address.	Torran		BIVA	- Cons		J. Arellan	no B.Vi		
		SAMPLE ID	:	1A-6					
Summa ID #:	270	Start Date:	25-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F134	Start Time:	1038	Check Time:	1257	Check Time:	1634	End Time:	1848
Flow Rate (hrs or cc/min):	8hv	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):		Check Vac ("Hg):	-7	End Vac ("Hg):	-3
Summa Canister H	e Ground (ft):	DIAGRAM (and/or send photo to H&P PM):							
Description of Sun	er Placement:	Photos sent to PM							

Outdoor Temp Hi (F):	64	Barometric Pressure:	30" Hg	Weather Conditions: AM - Overcas +
Outdoor Temp Low (F):	48	Wind Speed:	4mph	PM - Sunny
Indoor Temp Avg (F):	70	Wind Direction:	NW	

PRODUCT INVENTORY (nearby products that may contain chemicals of concern; continue on back if needed):

Name of Product	List of Chemicals

OUTDOOR SOURCES (possible sources of chemicals of concern from outdoor activities; continue on back if needed):

Source	Location

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #: Site Address:	24747	Crenshav nce. LA			sultant Rep:	Stan F. Medl J. Arellano	er	Reviewed: Scanned:	EL		
		SAMPLE ID	:	1 A	-5						
Summa ID #:	479	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-21		
Flow Cont ID #:	F185	Start Time:	1040	Check Time:	1255	Check Time:	1635	End Time:	1847		
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-21	Check Vac ("Hg):	-8	End Vac ("Hg):	- 2		
Summa Canister F	leight above	e Ground (ft):	5		DIAGRAM ((and/or send pl	noto to H&P	PM):			
Description of Sum	nma Caniste	er Placement:			Phot	os sent	to *	PM			
Outdoor Temp Hi	11	Barometric	20411	Weather Cond	litions:	,					
(F): Outdoor Temp	119	Pressure:	30"Hg	AM	Over ca	51					
Low (F):	48	Wind Speed:	Imph	PM	Sunv	1					
Indoor Temp Avg (F):	70	Wind Direction:	NW		1						
PRODUCT INVEN	TORY (nea	rhy products the	at may cont	ain chemicals	of concern: o	continue on had	ck if needed	n·			
	e of Produc		at may com	tain chemicals of concern; continue on back if needed): List of Chemicals							
OUTDOOR SOUR	CES (possil	ole sources of o	hemicals o	f concern from	outdoor acti	vities; continue	on back if	needed):			
	Source					Location					

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

Page 1 of 1

Site Address:		1 1 2		•	Consultant.	Stant	11	Davisonato		
Site Address.	Torran	Crenchay 3	vd	·	ultant Rep:	J.Arellano			EC	
	Jorran	ce, CT			riai itep.	U.Hrellano	D.VIIIa	. Scannea.	1 can	
		SAMPLE ID	:	A-4						
Summa ID #:	454	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-24	
Flow Cont ID #:	F179	Start Time:	1042	Check Time:	1254	Check Time:	1636	End Time:	1846	
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):		Check Vac ("Hg):	-11	End Vac ("Hg):	-4	
Summa Canister H	Height above	e Ground (ft):	5'		DIAGRAM	(and/or send ph	noto to H&P	PM):		
Description of Sun	nma Caniste	er Placement:			Thor	tos sent	to PM			
Outdoor Temp Hi (F):	64	Barometric Pressure:	30" Ha	Weather Cond		1				
Outdoor Temp	48	Wind Speed:	1 1	+	fm- Ova 7M - Su	wcast				
Low (F): Indoor Temp Avg	10	Wind	(mph	7	711 - Su	nny				
(F):	70	Direction:	NW							
PRODUCT INVEN	TORY (nea	rby products the	at may cont	ain chemicals o	of concern;	continue on bac	k if needed	l):		
Nam	e of Produc	t		List of Chemicals						
OUTDOOR SOUR	CES (possil	ble sources of c	chemicals o	f concern from	outdoor acti	vities; continue	on back if	needed):		
	Source					Location				

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #: _ Site Address: _	STO 2474 Torrance	1	Con	Consultant: sultant Rep: H&P Rep:	- siante	er	Reviewed: Scanned:	EC - Home		
		SAMPLE ID:	1A-3							
Summa ID #:	478	Start Date: 2 - 5 -		2-5-21	Check Date:	2-5-2	End Date:	2-5-21		
Flow Cont ID #:	F205	Start Time: 1044	Check Time	1248	Check Time:	1637	End Time:	1842		
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	Check Vac ("Hg)		Check Vac ("Hg):	-12	End Vac ("Hg):	-5		
Summa Canister H	leight above	e Ground (ft): 5		DIAGRAM	(and/or send p	hoto to H&F	PM):			
Description of Sum	nma Caniste	er Placement:		Phon	tos sent	to PM	1			
	- 1									
Outdoor Temp Hi (F):	69	Barometric Pressure: 31" H	Weather Cond		Į.					
Outdoor Temp Low (F):	48	Wind Speed: 4mp	700/2	Overcas						
Indoor Temp Avg	70	Wind Ma/	- P/M-	Sunny						
(F):	70	Direction: ////	-							
PRODUCT INVEN	TORY (nea	rby products that may c	ontain chemicals	of concern;	continue on ba	ck if needed	i):			
Name	e of Produc	t		List of Chemicals						
(st	ting o	; 1								
5	olvent	5								
						2.24				
					2 2					
OUTDOOR SOUR	CES (possil	ole sources of chemical	s of concern from	outdoor act	ivities; continue	on back if	needed):			
	Source				Location					

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

		Log She	et: Ind	door/Aml	oient Ai	ir Sampli	ng		Page 1 of
H&P Project #:	St 02	20521-TECH	•		Consultant:	Stante	c		
Site Address:	24747	Crenshaw ?	Blvd	Cons	sultant Rep:			Reviewed:	EC
<u> -</u>	Torrance	e. CA 9	W	•	H&P Rep:	J. Arellano.	BVilla	Scanned:	Tlove.
		SAMPLE ID):	AA-	2				
Summa ID #:	477	Start Date:	2-5-21	Check Date:	2-52	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	= 164	Start Time:	1046	Check Time:	1	Check Time:	1640	End Time:	1914
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):		Check Vac ("Hg):	-12	End Vac ("Hg):	-7
Summa Canister He	e Ground (ft):	5		DIAGRAM	(and/or send pl	noto to H&P	PM):		
Description of Sumn	na Caniste	er Placement:			Phoi	tos sen	t to	FM	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	64 48 70	Barometric Pressure: Wind Speed: Wind Direction:	30"Ha Imph NW	Weather Cond AM- PM-	litions: Overcas Sunny	st			
PRODUCT INVENT	ORY (near	rby products the	at may cont	ain chemicals	of concern;	continue on bad	ck if needed):	
Name	of Product	t			Lis	st of Chemicals			
	iesel	Exhaust							
OUTDOOR SOURC	ES (possik	ole sources of o	chemicals o	f concern from	outdoor act	ivities; continue	on back if	needed):	
S	ource	T Hartin				Location			

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

Page 1 of 1

H&P Project #:	57	1020521-7	Ect		Consultant:	Stant	to c		
Site Address:		Crenshew &			sultant Rep:			Reviewed:	EC
	Torrance	1 1			H&P Rep:	J. Arellano			7%-
		SAMPLE ID	:	14-	2				
Summa ID #:	448	Start Date:	2.5.21	Check Date:	0 = 11	Check Date:	2 - 21	End Date:	
Flow Cont ID #:	F191	Start Time:	1049	Check Time:	2 3 21	Check Date: Check Time:	1639	End Time:	2-5-2
Flow Rate		Start Vacuum		Check Vac	1057		163		1844
(hrs or cc/min):	Thrs	("Hg):	-30	("Hg):	-23	Check Vac ("Hg):	-10	End Vac ("Hg):	-4
Summa Canister F		e Ground (ft):	5		DIAGRAM	(and/or send pl	noto to H&P	PM):	
Description of Sun						otos sent		and the same of th	
Description of our	a riacement.		1 ha	otos sent	to 1				
					, " · · · ·				
Outdoor Temp Hi (F):	64	Barometric Pressure:	30" Ha	Weather Cond		L			4 = 3 = 3
Outdoor Temp	48	Wind Speed:	47	A	M - Over M - Sun	cast			
Low (F): Indoor Temp Avg		Wind	Mgm	P	M - Sun	ny			
(F):	70	Direction:	NW		•				
PRODUCT INVEN	TORY (near	rby products tha	at may cont	ain chemicals	of concern: o	continue on bad	k if needed).	
	e of Produc					t of Chemicals		/-	
	Cuttina	/							
	5/2	t6							
	2010001								
					d'a li				
							1 1		
						The state of			
									G4
OUTDOOR SOUR	CES (possib	ole sources of o	hemicals of	f concern from	outdoor acti	vities; continue	on back if r	needed):	
	Source					Location			

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14 Page 1 of 1

H&P Project #:	510	20521- TECH	t		Consultant:	Stante	c		
Site Address:	24747	Crenshaw 3	vd	Cons	sultant Rep:	E. Medler		Reviewed:	EC
	Torrane				H&P Rep:	J. Arellans,	BVilla	Scanned:	Mor.
		SAMPLE ID):	1A -	2 D	VP			
Summa ID #:	452	Start Date:	2-5-21	Check Date:		Check Date:	7-5-21	End Date:	2-5-21
Flow Cont ID #:	F209	Start Time:	1049	Check Time:	1252	Check Time:		End Time:	1844
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):		Check Vac ("Hg):		Check Vac ("Hg):		End Vac ("Hg):	-2
Summa Canister H	Height above	e Ground (ft):	51		DIAGRAM	(and/or send p	hoto to H&F	PPM):	
Description of Summa Canister Placement:					Phot	tos sent	to PI	1	
Outdoor Temp Hi	14	Barometric	204.1	Weather Cond	litions:	,			
(F):	64	Pressure:	30" Hg	A	M- Overa 1- Sunv	ast			
Outdoor Temp Low (F):	18	Wind Speed:	Tmph	DA	1- 6	•••			
Indoor Temp Avg (F):	70	Wind Direction:		17	Juni	7			
PRODUCT INVEN			at may cont	tain chemicals	of concern;	continue on ba	ck if neede	d):	
	ne of Produc					st of Chemicals			
	Cuttina								
	Solve	nts							
8									
The Day of the Sa									
	.=								
OUTDOOR SOUR	RCES (possi	ble sources of	chemicals c	of concern from	outdoor act	ivities; continue	e on back if	needed):	
	Source					Location			
		E 11	-15						1

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling Consultant: Stantec

H&P Project #:	STO	20521-TE	CH.		Consultant:	Stant	ec		
Site Address:		Crenshaw		Cons	ultant Rep:			Reviewed:	EC
	Torran				H&P Rep:	J. Avellano 3	BVilla	Scanned:	Tloms
		SAMPLE ID):	14-1					
Summa ID #:	480	Start Date:	2-5-21	Check Date:	2-5-2	Check Date:	2-5-21	End Date:	2-5-2
Flow Cont ID #:	F150	Start Time:	1051	Check Time:	1250	Check Time:	1638	End Time:	1843
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	25	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister H	leight above	e Ground (ft):	5		-	(and/or send p			
Description of Sun	nma Caniste	er Placement:		5,	Tho	tos sent	to PA	1	
Outdoor Temp Hi	14	Barometric	2041	Weather Cond		,			
(F): Outdoor Temp	64	Pressure:	30" Hg	+	4M- OV PM- S	reviast			
Low (F):	48	Wind Speed:	1mph		2M- 5	in nul			
Indoor Temp Avg (F):	70	Wind Direction:	NN/	,	711 50				
PRODUCT INVEN			at may cont	tain chemicals	of concern:	continue on ba	ck if needed	4).	
	e of Produc					st of Chemicals		-7-	
Cut	fing o	ils							
OUTDOOR SOUR	CES (possi	ble sources of	chemicals c	of concern from	outdoor act	ivities; continue	e on back if	needed):	
	Source					Location			
		X							

H&P Project #:

57020521-TECH

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling Consultant: Stantec

Site Address:		Crencha F	Lub	Cons	ultant Rep:	J. Avelano	P.1/1/2	Reviewed: Scanned:	- Flow
	(orrai	nce, CH			riai riop.	U.Tre luns	DVIIIA	·	
		SAMPLE ID	+	A-3					
Summa ID #:	481	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	25-21	End Date:	2-5-21
Flow Cont ID #:	F210	Start Time:	1100	Check Time:	1302	Check Time:	1642	End Time:	1901
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-24	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister H	Height above	e Ground (ft):	5'		DIAGRAM	(and/or send ph	noto to H&F	PM):	
Description of Sun	nma Caniste	er Placement:			Phu	otos sen	t to	FM	
Outdoor Temp Hi (F): Outdoor Temp Low (F):	64 48	Barometric Pressure: Wind Speed:	30 Hg	Weather Cond	litions:				
Indoor Temp Avg (F):	70	Wind Direction:	/W						
PRODUCT INVEN	ITORY (nea	rby products that	at may cont	ain chemicals	of concern;	continue on bad	ck if needed	d):	
Nam	e of Produc	:t			Lis	st of Chemicals			
OUTDOOR SOUR	CES (possi	ble sources of o	chemicals o	f concern from	outdoor act	tivities; continue	e on back if	needed):	
	Source					Location	4.3		
Car	exhau	54							

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14 Page 1 of 1

H&P Project #:	STO	20521- TEC	4		Consultant:	Stan	tec		
Site Address:	2474	7 Crenshaw	Bhd	Cons	ultant Rep:	E. Medler	4	Reviewed:	a
	Torrano				H&P Rep:	J. Arellano,	B.Villa	Scanned:	Tloves
		SAMPLE ID:	- 1	AA-Y					77
Summa ID #:	296	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-2	End Date:	2-5-21
Flow Cont ID #:	F132		1101	Check Time:	1305	Check Time:	1650	End Time:	1859
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	- 25	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister H	Height above	e Ground (ft):	51			(and/or send p			
Description of Sun	nma Caniste	er Placement:			F	rotos sent	to PA	٨	
Outdoor Temp Hi	7.1	Barometric		Weather Cond	litions:				
(F):	64	Pressure:	39" Ha			Durcast			
Outdoor Temp Low (F):	48	Wind Speed:	4. 1		TOM S	Overcast Sunny			
Indoor Temp Avg	70	Wind	Imph		+///-	Suny			
(F):	10	Direction:	NW						
PRODUCT INVEN	NTORY (nea	rby products that	at may cont	tain chemicals	of concern;	continue on ba	ck if needed	d):	
	ne of Produc					st of Chemicals			
		ia entre entre							
	tel Fan								
OUTDOOR SOUR	RCES (possi	ble sources of o	hemicals o	of concern from	outdoor ac	tivities; continu	e on back if	needed):	
	Source					Location			
	Car E	thavel							
					2				

Lewis Simons Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

H&P Project: ST021221-13

Client Project: 185804980 / Crenshaw Blvd

Dear Lewis Simons:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 11-Feb-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer
Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Reported:
Project Manager: Lewis Simons 24-Feb-21 15:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VP-9	E102048-01	Vapor	11-Feb-21	11-Feb-21
VP-10	E102048-02	Vapor	11-Feb-21	11-Feb-21
VP-8	E102048-03	Vapor	11-Feb-21	11-Feb-21
VP-7	E102048-04	Vapor	11-Feb-21	11-Feb-21
VP-6	E102048-05	Vapor	11-Feb-21	11-Feb-21
VP-5	E102048-06	Vapor	11-Feb-21	11-Feb-21
VP-4	E102048-07	Vapor	11-Feb-21	11-Feb-21
VP-3	E102048-08	Vapor	11-Feb-21	11-Feb-21
VP-2	E102048-09	Vapor	11-Feb-21	11-Feb-21
VP-2 Dup	E102048-10	Vapor	11-Feb-21	11-Feb-21
VP-1	E102048-11	Vapor	11-Feb-21	11-Feb-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks
Project: ST021221-13
290 Conejo Ridge Avenue, Suite 200
Project Number: 185804980 / Crenshaw Blvd
Reported:
Thousand Oaks, CA 91361
Project Manager: Lewis Simons
24-Feb-21 15:43

DETECTIONS SUMMARY

Sample ID: VP-9	Laboratory ID:	E102048-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	10	5.6	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	1500	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	150	30	ug/m3	EPA TO-15	
Trichloroethene	61	5.5	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	9.0	8.3	ug/m3	EPA TO-15	
Toluene	16	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	1200	6.9	ug/m3	EPA TO-15	
m,p-Xylene	12	8.8	ug/m3	EPA TO-15	
ample ID: VP-10	Laboratory ID:	E102048-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	500	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	87	30	ug/m3	EPA TO-15	
Trichloroethene	320	5.5	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	1000	6.9	ug/m3	EPA TO-15	
m,p-Xylene	9.1	8.8	ug/m3	EPA TO-15	
ample ID: VP-8	Laboratory ID:	E102048-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	25	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	50	30	ug/m3	EPA TO-15	
Trichloroethene	16	5.5	ug/m3	EPA TO-15	
Toluene	6.6	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	69	6.9	ug/m3	EPA TO-15	
sample ID: VP-7	Laboratory ID:	E102048-04			
		Reporting			
Analyte	Result		Units	Method	Notes
Trichlorofluoromethane (F11)	13	5.6	ug/m3	EPA TO-15	
1,1-Dichloroethene	100	4.0	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	920	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	47	30	ug/m3	EPA TO-15	
Trichloroethene	310	5.5	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Conejo Ridge Avenue, Suite 200 Project Nu	Project: ST02 umber: 18580 nnager: Lewis	04980 / Crenshaw	Blvd	Reported: 24-Feb-21 15:43		
ple ID: VP-7 Labor	atory ID: E	102048-04				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Tetrachloroethene	2200	6.9	ug/m3	EPA TO-15		
m,p-Xylene	9.5	8.8	ug/m3	EPA TO-15		
ple ID: VP-6 Labor	atory ID: E	102048-05				
		Reporting			N T 4	
Analyte	Result	Limit	Units	Method	Notes	
1,1,2-Trichlorotrifluoroethane (F113)	250	7.7	ug/m3	EPA TO-15		
2-Butanone (MEK)	42	30	ug/m3	EPA TO-15		
Trichloroethene	64	5.5	ug/m3	EPA TO-15		
Toluene Translation of the second of the sec	9.5	3.8	ug/m3	EPA TO 15		
Tetrachloroethene	900	6.9	ug/m3	EPA TO-15		
ple ID: VP-5 Labor	atory ID: E	102048-06				
		Reporting			37	
Analyte	Result	Limit	Units	Method	Notes	
Trichlorofluoromethane (F11)	12	5.6	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	1000	7.7	ug/m3	EPA TO-15		
2-Butanone (MEK)	45	30	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	43	5.5	ug/m3	EPA TO-15		
Benzene	3.2	3.2	ug/m3	EPA TO-15		
Trichloroethene	35	5.5	ug/m3	EPA TO-15		
Toluene	20	3.8	ug/m3	EPA TO-15		
Tetrachloroethene	2400	6.9	ug/m3	EPA TO-15		
m,p-Xylene	12	8.8	ug/m3	EPA TO-15		
ple ID: VP-4 Labor	atory ID: E	102048-07				
		Reporting			** ·	
Analyte	Result	Limit	Units	Method	Notes	
Helium (LCC)	0.16	0.10	%	ASTM D1945M		
Trichlorofluoromethane (F11)	8.3	5.6	ug/m3	EPA TO-15		
1,1-Dichloroethene	230	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	560	7.7	ug/m3	EPA TO-15		
2-Butanone (MEK)	75	30	ug/m3	EPA TO-15		
Chloroform	200	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	7.8	5.5	ug/m3	EPA TO-15		
Benzene	6.8	3.2	ug/m3	EPA TO-15		
Trichloroethene	4600	27	ug/m3	EPA TO 15		
			=			
Toluene Tetrachloroethene	29 7300	3.8 34	ug/m3 ug/m3	EPA TO-15 EPA TO-15		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks	Project: ST02					
290 Conejo Ridge Avenue, Suite 200	Project Number: 1858		Blvd	Reporte		
Thousand Oaks, CA 91361	Project Manager: Lewi	24-Feb-21 15:43				
ample ID: VP-4	Laboratory ID: E	E102048-07				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
m,p-Xylene	15	8.8	ug/m3	EPA TO-15		
sample ID: VP-3	Laboratory ID: E	102048-08				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Helium (LCC)	0.13	0.10	%	ASTM D1945M		
Trichlorofluoromethane (F11)	11	5.6	ug/m3	EPA TO-15		
1,1-Dichloroethene	360	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	290	7.7	ug/m3	EPA TO-15		
Chloroform	18	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	35	5.5	ug/m3	EPA TO-15		
Benzene	13	3.2	ug/m3	EPA TO-15		
Trichloroethene	20000	140	ug/m3	EPA TO-15		
Toluene	6.8	3.8	ug/m3	EPA TO-15		
Tetrachloroethene	44000	170	ug/m3	EPA TO-15		
Sample ID: VP-2	Laboratory ID: F	102049 00				
sample 1D. VI-2	Laboratory ID. P	Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Helium (LCC)	0.13	0.10	%	ASTM D1945M		
1,1-Dichloroethene	140	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	ug/m3	EPA TO-15		
Chloroform	8.6	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	6.6	5.5	ug/m3	EPA TO-15		
			-			
Trichloroethene	910	5.5	ug/m3	EPA TO 15		
Toluene	6.0	3.8	ug/m3	EPA TO 15		
Tetrachloroethene	1800	6.9	ug/m3	EPA TO-15		
Sample ID: VP-2 Dup	Laboratory ID: E	102048-10				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
1,1-Dichloroethene	130	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	ug/m3	EPA TO-15		
Chloroform	8.7	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	6.6	5.5	ug/m3	EPA TO-15		
Trichloroethene	960	5.5	ug/m3	EPA TO-15		
Toluene	6.3	3.8	ug/m3	EPA TO-15		
	1900	6.9	ug/m3	EPA TO-15		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

ample ID: VP-1	Laboratory ID: E102	2048-11			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	18	5.6	ug/m3	EPA TO-15	
1,1-Dichloroethene	230	4.0	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	450	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	82	30	ug/m3	EPA TO-15	
1,1,1-Trichloroethane	33	5.5	ug/m3	EPA TO-15	
Trichloroethene	900	5.5	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	2700	6.9	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Soil Vapor/Air Analysis by ASTM D1945M

				, , , , , , , , , , , , , , , , , , ,					
	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
pled: 11-Feb-21	Received: 11-	Feb-21							
	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
mpled: 11-Feb-21	Received: 11	-Feb-21							
	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	0.16	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	0.13	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
pled: 11-Feb-21	Received: 11-	Feb-21							
	0.13	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
	pled: 11-Feb-21 pled: 11-Feb-21 pled: 11-Feb-21 pled: 11-Feb-21 pled: 11-Feb-21	Result pled: 11-Feb-21 Received: 11-ND npled: 11-Feb-21 Received: 11-ND pled: 11-Feb-21 Received: 11-0.16 pled: 11-Feb-21 Received: 11-0.13 pled: 11-Feb-21 Received: 11-0.13	Result Reporting Limit	Result Reporting Limit Units	Result Reporting Limit Units Factor	Result Limit Units Factor Batch	Result Reporting Limit Units Dilution Factor Batch Prepared	Result Reporting Limit Units Dilution Factor Batch Prepared Analyzed	Result Reporting Limit Units Dilution Factor Batch Prepared Analyzed Method

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Reported:
Project Manager: Lewis Simons 24-Feb-21 15:43

Soil Vapor/Air Analysis by ASTM D1945M

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 Dup (E102048-10) Vapor Sampled: 11-Feb-21	Received	: 11-Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-1 (E102048-11) Vapor Sampled: 11-Feb-21 Re	ceived: 11-	Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-9 (E102048-01) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	10	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	1500	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	150	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	61	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	,,	"	
4-Methyl-2-pentanone (MIBK)	9.0	8.3	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	,,	"	
Toluene	16	3.8	"	"	"	"	,,	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	,,	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	,,	"	
Tetrachloroethene	1200	6.9	"	"	"	"	,,	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	,,	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	12	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
o rigiono	IND	7.7							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-9 (E102048-01) Vapor Sampled: 11-Feb-2	1 Received: 11-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	76-1	!34	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.9 %	77-1	127	"	"	"	"	
VP-10 (E102048-02) Vapor Sampled: 11-Feb-	21 Received: 11	-Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	500	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide					"	"	"	"	
Carbon disuffice	ND	6.3	"	"	"				
			"	"	,,	"	"	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND	6.3 8.0 4.1	"	"		"	"	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane		8.0 4.1		" " " "	"		"	" "	
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND	8.0	"	" " " "	"	"	11 11 11	" " " " " " " " " " " " " " " " " " " "	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND 87 ND	8.0 4.1 30 4.0	"	" " " " " " " " " " " " " " " " " " " "	" "	"	n n n	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND 87 ND ND	8.0 4.1 30 4.0 4.9	"	" " " " " " " " " " " " " " " " " " " "	" " "	"	11 11 11	"	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND 87 ND ND ND	8.0 4.1 30 4.0 4.9 5.5	" " "	" "	" " " " " " " " " " " " " " " " " " " "	" " "	"	" "	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND 87 ND ND	8.0 4.1 30 4.0 4.9 5.5 4.1	" " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " "	n n	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND ND 87 ND ND ND ND	8.0 4.1 30 4.0 4.9 5.5	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " "	n n	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	ND ND 87 ND ND ND ND	8.0 4.1 30 4.0 4.9 5.5 4.1 3.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n n n n n n n n n n n n n n n n n n	" " " " " " " " " " " " " " " " " " " "	n n n	" " " " " "	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-10 (E102048-02) Vapor Sampled: 11-Feb-21	Received: 11	-Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	1000	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.1	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
G		05.504	~ .	124	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.5 %	, •	-134	"	"	"	"	
Surrogate: Toluene-d8		94.6 %		-125	"	"	"		
Surrogate: 4-Bromofluorobenzene		91.0 %	77-	-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-8 (E102048-03) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	25	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	50	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	,,	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	16	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	,,	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	,,	"	
Toluene	6.6	3.8	"	"	"	"	,,	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	,,	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	,,	"	
Dibromochloromethane	ND	8.6	"	"	"	"	,,	"	
Tetrachloroethene	69	6.9	"	"	"	"	,,	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	,,	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
o Ayrene	טויו	4.4							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-8 (E102048-03) Vapor Sampled: 11-Feb-2	Received: 11-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	n .	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.3 %	76-1	!34	"	"	"	"	
Surrogate: Toluene-d8		94.4 %	78-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6 %	77-1		"	"	"	"	
VP-7 (E102048-04) Vapor Sampled: 11-Feb-2	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
T.:-L1									
Trichioroffuoromethane (F 11)	13	5.6	"	"	"	"	"	"	
Trichlorofluoromethane (F11) 1,1-Dichloroethene	13 100	5.6 4.0	"	"	"	"	"	"	
1,1-Dichloroethene	100	4.0	"	"		"	"	" " "	
	100 920	4.0 7.7		" "	"			11 11 11	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	100	4.0 7.7 3.5	"	"	"	"	"	"	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	100 920 ND ND	4.0 7.7 3.5 6.3	"	"	" "	"	"	"	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	100 920 ND ND ND	4.0 7.7 3.5 6.3 8.0	" "	" "	" " "	"	"	"	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	100 920 ND ND	4.0 7.7 3.5 6.3 8.0 4.1	" "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " "	n n	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	100 920 ND ND ND ND	4.0 7.7 3.5 6.3 8.0	" " " " " " " " " " " " " " " " " " " "	n n n	" " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	n n	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	100 920 ND ND ND ND ND	4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	" " " " " " " " " " " " " " " " " " " "	n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11	" " " " " " " " " " " " " " " " " " " "	n n	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	100 920 ND ND ND ND ND 47 ND ND	4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	n n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11		" " " " " " " " " " " " " " " " " " " "	n n	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	100 920 ND ND ND ND ND 47 ND ND ND	4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	n n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	100 920 ND ND ND ND ND 47 ND ND	4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11 11 11 11 11 11 11 11 11	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	100 920 ND ND ND ND ND ND ND ND ND	4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11 11 11 11 11 11 11 11 11	
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	100 920 ND ND ND ND 47 ND ND ND ND	4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5 4.1 3.2		" " " " " " " " " " " " " " " " " " " "					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804980 / Crenshaw Blvd

Thousand Oaks, CA 91361

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-7 (E102048-04) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2200	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.5	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		97.9 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	77-1		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-6 (E102048-05) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	250	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	ıı .	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	42	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	ıı .	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	ıı .	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	64	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	ıı .	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	ıı .	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	9.5	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	900	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	ıı .	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-6 (E102048-05) Vapor Sampled: 11-Feb-2	1 Received: 11-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	78-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	77-1	127	"	"	"	"	
VP-5 (E102048-06) Vapor Sampled: 11-Feb-2	1 Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	12	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND								
	IND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)		4.0 7.7	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	1000	7.7		"				" " "	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	1000 ND	7.7 3.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane) Carbon disulfide	1000 ND ND	7.7 3.5 6.3	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	1000 ND ND ND	7.7 3.5 6.3 8.0	" "	" "	"	"	"	"	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	1000 ND ND ND ND	7.7 3.5 6.3 8.0 4.1	" "	" " "	" "	" " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	1000 ND ND ND ND ND	7.7 3.5 6.3 8.0 4.1 30	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	1000 ND ND ND ND ND 45 ND	7.7 3.5 6.3 8.0 4.1 30 4.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	1000 ND ND ND ND 45 ND ND	7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	1000 ND ND ND ND 45 ND ND ND	7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	n n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	11 11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	1000 ND ND ND ND 45 ND ND 43 ND	7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	n n n n		n n n n n n n n n n n n n n n n n n n	" " " " " " " " "	n n n n n n n n n n n n n n n n n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane (EDC) Benzene	1000 ND ND ND ND 45 ND ND 43 ND	7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5 4.1 3.2	"" "" "" "" "" "" "" "" "" "" "" "" ""		n n n n n n n n n n n n n n n n n n n	" " " " " " " " "	n n n n n n n n n n n n n n n n n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	
Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	1000 ND ND ND ND 45 ND ND 43 ND	7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5		" " " " " " " " " " " " " " " " " " " "					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Project Manager: Lewis Simons Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-5 (E102048-06) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	20	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2400	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	12	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
					_			_	
Surrogate: 1,2-Dichloroethane-d4		99.1 %	76-1		"	"	"	"	
Surrogate: Toluene-d8		99.5 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.4 %	77-1	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-4 (E102048-07) Vapor Sampled: 11-Feb-2	1 Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	8.3	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	230	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	560	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	75	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	200	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	7.8	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	6.8	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	ıı .	
Trichloroethene	4600	27	"	5	"	"	22-Feb-21	"	
1,2-Dichloropropane	ND	9.4	"	1	"	"	21-Feb-21	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	ıı .	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	ıı .	
Toluene	29	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	7300	34	"	5	"	"	22-Feb-21	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	1	"	"	21-Feb-21	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	15	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-4 (E102048-07) Vapor Sampled: 11-Feb-2	Received: 11-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.0 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.6 %	77-1		"	"	"	"	
VP-3 (E102048-08) Vapor Sampled: 11-Feb-2	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	11	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	360	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	290	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
					,,	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"					
,	ND ND	4.1 30	"	,,	"	"	"	"	
2-Butanone (MEK)	ND ND ND	4.1 30 4.0				"	"	"	
2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND	30 4.0	"		"	" "	" "	" "	
2-Butanone (MEK) cis-1,2-Dichloroethene	ND	30 4.0 4.9	"	"	"	"	" " "	" " "	
2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND 18	30 4.0	"	"	"	"	" " " " " " " " " " " " " " " " " " " "	n n n	
2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND 18 35 ND	30 4.0 4.9 5.5 4.1	" " "	" " "	" "	"			
2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND ND 18 35 ND 13	30 4.0 4.9 5.5 4.1 3.2	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	"		
2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	ND ND 18 35 ND	30 4.0 4.9 5.5 4.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-3 (E102048-08) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	6.8	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	44000	170	"	25	"	"	22-Feb-21	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	1	"	"	21-Feb-21	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Summer of an 1.2 Disklamenth on a 14		98.2 %	7.0	134	,,	,,	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.2 % 103 %		-134 -125	,,	,,	,,	"	
Surrogate: A Promofluorobanzana		103 % 89.0 %		-125 -127	,,	,,	,,	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	//-	12/		**	**	-	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

VP-2 (E102048-09) Vapor Sampled: 11-Feb-21 Dichlorodifluoromethane (F12) Chloromethane	Received: 11-								
Chloromethane									
	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
51.11 · · · · · · · · · · · · · · · · · ·	שמו	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	140	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
eis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	8.6	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	6.6	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Frichloroethene	910	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
eis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Foluene	6.0	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	1800	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
n,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

			e Geoen	iciliisti y	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 (E102048-09) Vapor Sampled: 11-Feb-2	1 Received: 11-1	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	II .	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.4 %	77-1		"	"	"	"	
VP-2 Dup (E102048-10) Vapor Sampled: 11-F	eb-21 Received	: 11-Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	130	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	8.7	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	6.6	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	960	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Resu	Reporting alt Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 Dup (E102048-10) Vapor	Sampled: 11-Feb-21 Rec	eived: 11-Feb-21							
Bromodichloromethane	NI	0 6.8	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	NI	O 4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	NI	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	NI	O 4.6	"	"	"	"	"	"	
Toluene	6.	3 3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	NI	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	NI	8.3	"	"	"	"	"	"	
Dibromochloromethane	NI	8.6	"	"	"	"	"	"	
Tetrachloroethene	190	0 6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	NI	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	NI	7.0	"	"	"	"	"	"	
Chlorobenzene	NI	0 4.7	"	"	"	"	"	"	
Ethylbenzene	NI	0 4.4	"	"	"	"	"	"	
m,p-Xylene	NI	8.8	"	"	"	"	"	"	
Styrene	NI	0 4.3	"	"	"	"	"	"	
o-Xylene	NI	0 4.4	"	"	"	"	"	"	
Bromoform	NI) 10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	NI	7.0	"	"	"	"	"	"	
4-Ethyltoluene	NI	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	NI	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	NI	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	NI) 12	"	"	"	"	"	"	
1,4-Dichlorobenzene	NI) 12	"	"	"	"	"	"	
1,2-Dichlorobenzene	NI) 12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	NI	38	"	"	"	"	"	"	
Hexachlorobutadiene	NI	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d	4	92.8 %		5-134	"	"	"	"	
Surrogate: Toluene-d8		99.9 %		3-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e	90.8 %	77	7-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 (E102048-11) Vapor Sampled: 11-Feb-2	1 Received: 11-I	eb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	18	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	230	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	450	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	82	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	33	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	900	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2700	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804980 / Crenshaw Blvd

Thousand Oaks, CA 91361 Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 (E102048-11) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.5 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.3 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Soil Vapor/Air Analysis by ASTM D1945M - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB11714 - GC

 Blank (EB11714-BLK1)
 Prepared & Analyzed: 17-Feb-21

 Helium (LCC)
 ND
 0.10
 %

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB12209 - TO-15				
Blank (EB12209-BLK1)				Prepared & Analyzed: 20-Feb-21
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	
Chlorobenzene	ND	4.7	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Reported:
Project Manager: Lewis Simons 24-Feb-21 15:43

Source

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB12209 - TO-15										
Blank (EB12209-BLK1)				Prepared &	Analyzed:	20-Feb-21				
Ethylbenzene	ND	4.4	ug/m3							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	198		"	214		92.5	76-134			
Surrogate: Toluene-d8	202		"	208		97.1	78-125			
Surrogate: 4-Bromofluorobenzene	308		"	363		84.9	77-127			
L CC (ED12200 BC1)				Prepared: 2	20-Feb-21 A	nalyzed: 2	1_Feh_21			
LCS (EB12209-BS1) Dichlorodifluoromethane (F12)	400		/2	101	20 1 00 21 7	118	59-128			
· /	120	5.0	ug/m3							
Vinyl chloride	58	2.6	"	52.0		111	64-127			
Chloroethane	58	8.0	,,	53.6		108	63-127			
Trichlorofluoromethane (F11)	110	5.6	,,	113		100	62-126			
1,1-Dichloroethene	82	4.0	,,	80.8		101	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	,,	155		106	66-126			
Methylene chloride (Dichloromethane)	72 77	3.5	,,	70.8		102	62-115			
trans-1,2-Dichloroethene	77	8.0	,,	80.8		94.9	67-124			
1,1-Dichloroethane	82	4.1		82.4		100	68-126			
cis-1,2-Dichloroethene	78	4.0	"	80.0		97.9	70-121			
Chloroform	100	4.9	"	99.2		104	68-123			
1,1,1-Trichloroethane	110	5.5	"	111		102	68-125			
1,2-Dichloroethane (EDC)	84	4.1	"	82.4		102	65-128			
Benzene	66	3.2	"	64.8		101	69-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB12209 - TO-15										
LCS (EB12209-BS1)				Prepared: 2	20-Feb-21 A	Analyzed: 2	1-Feb-21			
Carbon tetrachloride	130	6.4	ug/m3	128		102	68-132			
Trichloroethene	120	5.5	"	110		112	71-123			
Toluene	84	3.8	"	76.8		109	66-119			
1,1,2-Trichloroethane	120	5.5	"	111		107	73-119			
Tetrachloroethene	160	6.9	"	138		118	66-124			
1,1,1,2-Tetrachloroethane	170	7.0	"	140		124	67-129			
Ethylbenzene	110	4.4	"	88.4		126	70-124			QL-1H
m,p-Xylene	110	8.8	"	88.4		125	61-134			
o-Xylene	110	4.4	"	88.4		124	67-125			
1,1,2,2-Tetrachloroethane	160	7.0	"	140		111	65-127			
Surrogate: 1,2-Dichloroethane-d4	203		"	214		95.2	76-134			
Surrogate: Toluene-d8	199		"	208		95.7	78-125			
Surrogate: 4-Bromofluorobenzene	363		"	363		100	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number: 185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager: Lewis Simons24-Feb-21 15:43

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

LCC Leak Check Compound

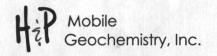
ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

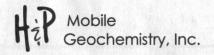
All soil results are reported in wet weight.


Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

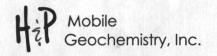
H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138


The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

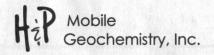
VAPOR / AIR Chain of Custody

DATE: 02-11-21
Page 1 of 2


	Lat	Client an	d Projec	t Information								5	Sample	Rece	eipt (La	b Use Or	nly)	
Lab Client/Consultant: Stan	te			Project Name / #:	18580498	0					Date	Rec'd:	2/1:	2	Control	#: 21	608:	5.08
Lab Client Project Manager: Lew,				Project Location:	24747		w BI	'el			H&P I	Project	# ST	021	131.	-N13		
	Conejo Rid	ge Ave	Neiler of	Report E-Mail(s):	A II C & TOTAL SAG	CI (ID HI	elhur, se	<u>U</u>	alco		Lab V	Vork Or	der# F	310)20	48		- HOLD
Lab Client City Ctate 7in.	doals, Ci			Lewis. sinon	@stantec.	com									-	See Notes	Below	
	766-1686	7 1170		Ben cheden (estante.com	,						eipt Gau	as ID:		-06	Ter	np: 2	T
Reporting Requireme		Т	urnaroun	nd Time	San	npler Info	rmation	1			Outsid	de Lab:		(00 P	-0 0			
	Level IV	SERVICE STREET, SERVICE STREET		s for preliminary		Arella					Recei	ipt Note	s/Trackir	ng #:				
Excel EDD Other EDD:				or final report)	Signature: A	- relia	av											
CA Geotracker Global ID:		Rush	(enacify).		Date: 02 -/	1-21										Lab PM I	Initials:	WB
		Rusii	(эрсспу)): Date: 02 -11 -2												Lub I III	Tildio.	74)
Additional Instructions to Labora	atory:			to l								s			22			
	oose one): Conf	lin with	Ben C	Charles be a con Barron CONTAINER Size & Type Indoor Air (IA), Ambient Air (AA), Subslab (SS), Ock Standard Full List Project List Seceipt Vac Standard Full List Receipt Vac Standard Full List Receipt Vac Standard Full List Receipt Project List Oxordenates Contraines Contra						10-15		atic Fraction	mpound	A 8015m	ASTM D194			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	□ 8260SV □ Oxygenates	Naphthalene	SE	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945	Maries 0.15		
VP-9		02-11-21	1029	SV	450 ml	634	0.26	/					/		100		100	
VP-10		1	1042	1	1	698	0.41	/	100				/					
VP-8			1056			636	0.46	/					/		F W			
VP-7			11/3			649	0.28	/			100		1					
VP-6			1126			637	0.17	/					/					
VP-5			1139			639	0.37	1					/					1
VP-4			1151			641	0.21	/					1					
V1-3			1202		TO L	727	0.38	/					/					
VP-2			1217			703	039					0	1					
VP-2 Pup		1	1217	1	1	701	0.35	1										
Approved/Relinquished by:	- Dun	Company:		2/11/21	Time: 1345 Received by: J. Arellano				0		Company	H	11	Date:	02-11-	2/ Time:	134	15
Approved/Relinquished by:		Company:	A Rosel Service	Date:	Time: Received by:						Company	y:		Date:		Time:		
Approved/Relinquished by:		Company:		Date:								y:		Date:		Time:		

VAPOR / AIR Chain of Custody

DATE: 02-11-21
Page 2 of 2


	Lat	Client an	d Projec	t Information								5	Sample	Rec	eipt (La	ab Use O	nly)	
Lab Client/Consultant:	tantec			Project Name / #:	18580498	0					Date	Rec'd:	2/1	7	Contro	1#: 21	0089	5.08
1 L OF LD 1 LIM	ewis Sinon				24747 (· BI	41			H&P F	Project	# ST	021	221-	413	CONTRACTOR DESCRIPTION OF THE PERSON OF THE	CONTRACTOR DESCRIPTION
Lab Client Address: 290	Harris Andrews Land British Market Landson	Bidge H	he	Report E-Mail(s):				decry and			Lab W	Vork Or			20		0 0	
	sand oak				ons astan. Len astante		W To		465.07		Samp	le Intac			CHECK PROCESS AND ADDRESS AND	See Notes	s Below	
	62) 766-16			pen. onevi	en Cu stante	ec.com					Rece	ipt Gau	ge ID:	6021	06	Te	emp: (2-7	-
Reporting Requirement		10000000000000000000000000000000000000	urnarour	nd Time	Sar	npler Info	rmatio	n			Outsid	de Lab:						
Standard Report Level III	Level IV	☐ Stand	ard (7 days	s for preliminary	Sampler(s):	Arella	10				Recei	pt Note	s/Trackir	ng #:				
Excel EDD Other EDD:																		
CA Geotracker Global ID:	eotracker Global ID: Date: 02 11-21															Lab PM	Initials:	MA
Additional Instructions to Labor																		
µg/L µg/m³ ppbv	Preferred VOC units (please choose one): Confirm with Ben μg/L μg/m³ ppbv ppmv FIELD POINT NAME DATE TIME					CONTAINER ID (###)	Lab use only: Receipt Vac	Lis	Oxygenates □ 8260SV □ 10-15 □ 8260SV □ 10-15	Naphthalene	10 =	Aromatic/Aliphatic Fractions 8260SVm TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Air (AA), Subslab (SS), Soil Vapor (SV)	Summa, Tedlar, Tube, etc.	100	Lab	9 0	o o o	Napl	₽ □	Aror	Leal	Meth	Fixe		A ATT	
VP-1		02-11-21	1276	N	450mL	638	0.43	/					/					
																		1975
Approved/Relinquished by	_	Company:	EL	Date: 2/11/21	Time: 1345	Received by:	J. A	rellano	1.00		Company	H	P	Date	02-11	Time	: 174	15
Approved/Relinquished by:		Company		Date:	Time:	Received by:					Company	r:		Date		Time	E.	
Approved/Relinquished by:		Company		Date:	Time:	Received by:					Company	r.		Date		Time	E	

VAPOR / AIR Chain of Custody

DATE: 02-11-21
Page 1 of 2

	Lat	Client an	d Projec	t Information								5	Sample	Rece	eipt (La	b Use Or	nly)	
Lab Client/Consultant: Stan	te			Project Name / #:	18580498	0					Date	Rec'd:	2/1:	2	Control	#: 21	608:	5.08
Lab Client Project Manager: Lew,				Project Location:	24747		w BI	'el			H&P I	Project	# ST	021	131.	-N13		
	Conejo Rid	ge Ave	Neiler of	Report E-Mail(s):	A II C & TOTAL SAG	CI (ID HI	elhor, se	<u>U</u>	alco		Lab V	Vork Or	der# F	310)20	48		- HOLD
Lab Client City Ctate 7in.	doals, Ci			Lewis. sinon	@stantec.	com									-	See Notes	Below	
	766-1686	7 1170		Ben cheden (estante.com	,						eipt Gau	as ID:		-06	Ter	np: 2	T
Reporting Requireme		Т	urnaroun	nd Time	San	npler Info	rmation	1			Outsid	de Lab:		(00 P	-0 0			
	Level IV	SERVICE STREET, SERVICE STREET		s for preliminary		Arella					Recei	ipt Note	s/Trackir	ng #:				
Excel EDD Other EDD:				or final report)	Signature: A	- relia	av											
CA Geotracker Global ID:		Rush	(enacify).		Date: 02 -/	1-21										Lab PM I	Initials:	WB
		Rusii	(эрсспу)): Date: 02 -11 -2												Lub I III	Tildio.	74)
Additional Instructions to Labora	atory:			to l								s			22			
	oose one): Conf	lin with	Ben C	Charles be a con Barron CONTAINER Size & Type Indoor Air (IA), Ambient Air (AA), Subslab (SS), Ock Standard Full List Project List Seceipt Vac Standard Full List Receipt Vac Standard Full List Receipt Vac Standard Full List Receipt Project List Oxordenates Contraines Contra						10-15		atic Fraction	mpound	A 8015m	ASTM D194			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	□ 8260SV □ Oxygenates	Naphthalene	SE	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945	Maries 0.15		
VP-9		02-11-21	1029	SV	450 ml	634	0.26	/					/		100		100	
VP-10		1	1042	1	1	698	0.41	/	100				/					
VP-8			1056			636	0.46	/					/		F W			
VP-7			11/3			649	0.28	/			100		1					
VP-6			1126			637	0.17	/					/					
VP-5			1139			639	0.37	1					/					1
VP-4			1151			641	0.21	/					1					
V1-3			1202		TO L	727	0.38	/					/					
VP-2			1217			703	039					0	1					
VP-2 Pup		1	1217	1	1	701	0.35	1										
Approved/Relinquished by:	- Dun	Company:		2/11/21	Time: 1345 Received by: J. Arellano				0		Company	H	11	Date:	02-11-	2/ Time:	134	15
Approved/Relinquished by:		Company:	A Rosel Service	Date:	Time: Received by:						Company	y:		Date:		Time:		
Approved/Relinquished by:		Company:		Date:								y:		Date:		Time:		

VAPOR / AIR Chain of Custody

DATE: 02-11-21
Page 2 of 2

	Lat	Client an	d Projec	t Information								5	Sample	Rec	eipt (La	ab Use O	nly)	
Lab Client/Consultant:	tantec			Project Name / #:	18580498	0					Date	Rec'd:	2/1	7	Contro	1#: 21	0089	5.08
1 L OF LD 1 LIM	ewis Sinon				24747 (· BI	41			H&P F	Project	# ST	021	221-	413	CONTRACTOR DESCRIPTION OF THE PERSON OF THE	CONTRACTOR DESCRIPTION
Lab Client Address: 290	Harris Andrews Land British Market Landson	Bidge H	he	Report E-Mail(s):				decry and			Lab W	Vork Or			20		0 0	
	sand oak				ons astan. Len astante		W To		465.07		Samp	le Intac			CHECK PROCESS AND ADDRESS AND	See Notes	s Below	
	62) 766-16			pen. onevi	en Cu stante	ec.com					Rece	ipt Gau	ge ID:	6021	06	Te	emp: (2-7	-
Reporting Requirement		10000000000000000000000000000000000000	urnarour	nd Time	Sar	npler Info	rmatio	n			Outsid	de Lab:						
Standard Report Level III	Level IV	☐ Stand	ard (7 days	s for preliminary	Sampler(s):	Arella	10				Recei	pt Note	s/Trackir	ng #:				
Excel EDD Other EDD:																		
CA Geotracker Global ID:	eotracker Global ID: Date: 02 11-21															Lab PM	Initials:	MA
Additional Instructions to Labor																		
µg/L µg/m³ ppbv	Preferred VOC units (please choose one): Confirm with Ben μg/L μg/m³ ppbv ppmv FIELD POINT NAME DATE TIME					CONTAINER ID (###)	Lab use only: Receipt Vac	Lis	Oxygenates □ 8260SV □ 10-15 □ 8260SV □ 10-15	Naphthalene	10 =	Aromatic/Aliphatic Fractions 8260SVm TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Air (AA), Subslab (SS), Soil Vapor (SV)	Summa, Tedlar, Tube, etc.	100	Lab	9 0	o o o	Napl	₽ □	Aror	Leal	Meth	Fixe		A ATT	
VP-1		02-11-21	1276	N	450mL	638	0.43	/					/					
																		1975
Approved/Relinquished by	_	Company:	EL	Date: 2/11/21	Time: 1345	Received by:	J. A	rellano	1.00		Company	H	P	Date	02-11	Time	: 174	15
Approved/Relinquished by:		Company		Date:	Time:	Received by:					Company	r:		Date		Time	E.	
Approved/Relinquished by:		Company		Date:	Time:	Received by:					Company	r.		Date		Time	E	

FMS006 Revision: 3

Revised: 1/15/2016 Effective: 1/25/2016 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Helium Shroud

H&P Project #:	5T021021-TECH/He	Date: 02-//-2/	
Site Address:	24747 Crenshaw Plud (Darco Bu.	olding) Page: / of 2	
Consultant:	Stantec	H&P Rep(s): J. Arellono	Reviewed:
Consultant Rep(s):	Bon Paren		Scanned: The S

Equipment Info
Inline Gauge ID#: Tos
Pump ID#:
He Meter ID#: 0/7
Shroud ID#: 047

	Purge Volume
PV	Amount: 300 ml
PV	Includes:
	☑ Tubing
	□ Sand 40%
	☐ Dry Bent 50%

MGD 2002 Helium	Detector (Calibration				
	Time	Helium (%)				
Calibration Standard	n/a	2.5				
Opening Calibration	1009	2.4				
Closing Calibration	1248	2.7				
Acceptable Range	n/a	2.1 - 2.9				

Shrou	d Procedure:	
HE	He Shroud SOI	0

	Sample	e and Sur	nma In	forma	ation					Prob	e Spe	ecs			Purge & Collection Information							Shroud Info		
	Point ID	Summa ID#	Sample Kit ID #	Start Time	Initial Vac ("Hg)	End / Sample Time	End Vac ("Hg)	Probe Depth (ft)	Tube Length (ft)	Tube OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)		Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min: sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☐ H ₂ O	He % Before	He % After	ppmv	Probe Pressore
1	VP-9	634	281	1025	-30	1029	0	VP	2	1/8	_		A TOTAL		V	300	4200	_	4200	0	94.9	861	0	0
2	VP-10	698	175	,		1042	100.000	VP	2	18	-			-	/	300	200	-	200	0	60.9	91.9	0	0
3	VP-8	636	207	1091	-27	1056	0	VP	2	8	-			-		700	-200	٠	400	0	56.7	508	425	0
4	VP-7	649	177	1109	-26	1113	0	VP	2	8	_			-	V	300	4200	1	200	0	609	55.1	0	0
5	VP-6	637	074	1/23	-28	1126	0	VP	2	18	-			-	/	300	4200	-	4200	0	58.7	81.2	0	0
6	VP-5	639	136	1134	27	1139	0	VP	2	18	-			-	1	300	200	-	-200	0	57.3	52.4	0	0
7	VP-4	641	073	1147	-28	1151	0	VP	2	18	-				V	300	220	-	1200	0	65.9	56.0	0	0
8	VP-3	727	320	1158	27	115ge	00	VP	2	18	-			-	1	300	400	_	4200		N .	56.5		0
9	VP-2	703	279	1212	-30+	1217	0	VP	2	18		_		-	1	700	4200	-	200	0	59.4	91.2	0	0
10	100 - 0	701	165	1212	26.9	1217	0	VP	2	8	-			-	V	300	4200	-	4200	0	59.4	5/.2	0	0

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

VP = Vapor pin

12	Mobile Geoche		Lo	a S	hee	et: S	Soil	Va	por	Sar	npli	ing	wi	th l	Heli	um \$	Shroi	ud				Revi sed: 1/1 ive: 1/2		
	H&P Project #: Site Address: Consultant: Consultant Rep(s):					He w Bi	lvd	CPa	co B	Pu:ld	(ing)	Н&	P P Re _l	ate: age: o(s):	02-1 2 5.	11-21 Are,	of a	2		R	eviewe Scanne	d: <u>E0</u>	To-	S
F	Equipment Info Inline Gauge ID#: Tos Pump ID#: He Meter ID#: 0/7 Shroud ID#: 047			Purge Volume					Calibra Openin Closing Accept	ition S ng Cal g Calib	tandai ibratio oration	rd n	Tiri	ne a 29	Heliun 2 2.4 2.7 2.1	n (%) .5		Shroud Procedure: HEP He Shroud SOP					(
Ē	Sample a	nd Sur	nma In	Information					Probe Specs								Purge & Collection Inform					roud I	nfo	_
	Point ID	Summa ID#	Sample Kit ID #	Start Time	Initial Vac ("Hg)	End / Sample Time	End Vac ("Hg)	Probe Depth (ft)	Tube Length (ft)	Tube OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min: sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☑ H ₂ O	He % Before	He % After	Probe ppmv	Pro Pres
1	VP-1	638	290	1227	-27.5	1236	0	VP	2	8					V	300	400	-	4200	0	58.9	52.2	0	C
3																				175				