East Adjacent Properties – Property 3 2530 and 2540 Skypark Drive Torrance, California 90505 Investigative Order No.: R4-2020-0035

Prepared for:
Robinson Helicopter Company

Prepared by: Stantec Consulting Services Inc. 290 Conejo Ridge Avenue Thousand Oaks, California 91361

Submitted to:

Mr. Kevin Lin, PE Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, California 90013

October 11, 2021

Executive Summary

This report was prepared on behalf of Robinson Helicopter Company (Robinson) by Stantec Consulting Services Inc. (Stantec) to estimate potential vapor intrusion (VI) risks based on a recent VI study (Stantec 2020) at a property addressed as 2530 and 2540 Skypark Drive (the Subject Property; Figure 1), collectively referred to as "Property 3" in the Los Angeles Regional Water Quality Control Board's (LARWQCB's) Investigative Order No. R4-2020-0035, dated May 12, 2020.

The LARWQCB has been overseeing environmental investigations at the Hi-Shear Corporation's (Hi-Shear's) facility located at 2600 Skypark Drive in Torrance, California (Site Cleanup Program [SCP] No. 0218) and at properties adjacent to the Hi-Shear facility which are identified as the East Adjacent Properties of Hi-Shear Corporation (EA Properties [SCP No. 1481]). Property 3, or the Subject Property, is one of the EA Properties.

Stantec evaluated potential vapor intrusion risks at this Property using nine indoor air samples including one duplicate sample and nine collocated sub-slab soil vapor samples including one duplicate sample collected across the entire building footprint in February 2021. (**Figure 2**). Analytical results were used to evaluate a reasonable maximum exposure (RME) scenario under the current and reasonably likely future commercial/industrial use scenarios following recent guidance from the California Environmental Protection Agency (Cal-EPA) [2020] using:

- 1. Indoor air sample results to estimate *current* vapor intrusion risk resulting from inhalation of COPCs in indoor air
- 2. sub-slab soil vapor results to estimate potential *future* vapor intrusion risk should building conditions change (e.g., the building slab integrity is compromised).

Current Inhalation Risks

The following table presents a summary of building-wide estimated *current* cancer risks and non-cancer hazards using a composite of maximum concentrations for each COPC attributable to possible vapor intrusion (e.g., chemicals detected in indoor air and sub-slab soil vapor) including PCE, and TCE for commercial/industrial receptors based on indoor air sampling and analysis. Note, TCE was not detected in indoor air or outdoor and one-half the laboratory reporting limit was used to estimate risks (see **Table 5**) because it is a degradation product of PCE, was detected in sub-slab soil vapor and because of its toxicity.

Pagantar	Cancer Risk	Non-Cancer Hazard
Receptor		
Current Commercial/Industrial Receptor	8E-07	3.96E-02

The largest contributor to current cancer risk is PCE which was not detected above screening levels in any of the samples. It is noted that 14 volatile organic compound (VOC) analytes were reported in at least one indoor air sample. Of these, only PCE is most likely attributable to potential vapor intrusion. While not detected in indoor air samples, TCE is a known degradation product of PCE and was included based on its toxicity. Data for the remaining 14 VOCs indicate that these are from outdoor air or indoor sources and are unrelated to vapor intrusion.

Future Vapor Intrusion Risks

Four VOCs were reported above laboratory reporting limits: PCE, TCE, toluene and 1,1,2-trichlorotrifluoroethane (1,1,2-TCTFA). Of these only PCE was reported above screening levels using an attenuation factor of 0.03. In the case of toluene and 1,1,2-TCTFA the reported concentrations are three orders of magnitude below the screening level. The assessment of health risks to the future worker included PCE and TCE. In the case of TCE, which was reported below the laboratory reporting limit, one half the reporting limit was used to estimate risk. The following table presents a summary of the range of estimated cancer risks and non-cancer hazards for commercial/industrial receptors based on use of 0.03 attenuation factor (see Section 3.17 Uncertainty Assessment):

Double and Doubles	Cance	er Risk	Non-Car	ncer Hazard
Depth and Receptor	Low	High	Low	High
Sub-Slab Soil Vapor Commercial/Industrial Receptor	1E-05	6E-04	1.3E-01	7.6E+00

The largest contributor to cancer risk is PCE detected above screening levels, based on an attenuation factor of 0.03.

DISCUSSION

Use of a composite sample containing the maximum concentrations of chemicals attributable to potential vapor intrusion (detected in both indoor air and sub-slab soil vapor with no evidence of other sources), PCE and TCE, yielded an estimated maximum potential cancer risk for the *current* worker of 8E-07 which is below the point of departure of 1E-06.

A range of potential *future* vapor intrusion risks was estimated by comparing all results against human health risk-based soil vapor screening levels derived by dividing indoor air screening levels representing no unacceptable cancer risk or non-cancer hazards of less than 1 established either by DTSC or the U.S. Environmental Protection Agency for commercial use properties, by an overly conservative attenuation factor of 0.03.

Use of the 0.03 attenuation factor to simulate estimated potential *future* cancer risks to commercial/industrial workers indicates that cancer risks for PCE range from **1E-05 to 7E-04** and were above the target non-cancer hazard of 1 in five of nine locations. For TCE, estimated potential *future* sitewide risks to a commercial/industrial receptor ranged from **6E-08** to 8E-07. In no case did the concentrations of PCE and TCE reported in sub-slab soil vapor result in levels in indoor air predicted by the 0.03 attenuation factor thus showing that the attenuation factor of 0.03 is excessively conservative at this Site.

It is Stantec's opinion that vapor intrusion is a potentially complete exposure pathway for COPCs detected in both indoor air and sub-slab soil vapor but if occurring is occurring at levels representing no unacceptable potential human health risk.

The estimated risks presented here are based on numerous conservative assumptions to be protective of human health and to ensure that the risks presented are more likely to be overestimated rather than underestimated. Please see Section 3.12 for a discussion of the uncertainties associated with these findings.

This SCREENING LEVEL VAPOR INTRUSION HUMAN HEALTH RISK ASSESSMENT REPORT was prepared by Stantec Consulting Services Inc. (Stantec) for Magellan Aerospace. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

	tatutany ham	
Prepared by	V	
	(signature)	

Patrick Vaughan, MS, Principal-Risk Assessor

Reviewed by (signature)

Kevin Miskin, PE, Senior Principal Engineer

Approved by

(signature)

Lewis Simmons, PG, Principal Geologist

Table of Contents

EXEC	CUTIVE SUMMARY	2
1.0	INTRODUCTION	1.3
1.1	OVERVIEW OF APPROACH	
1.2	ORGANIZATION OF REPORT	
2.0	BACKGROUND	2.3
2.1	SITE DESCRIPTION AND LAND USE	2.3
2.2	PHYSICAL SETTING	2.4
2.3	PAST ASSESSMENTS	2.5
3.0	CONCEPTUAL SITE MODEL	3.8
3.1	SURROUNDING PROPERTY USE	
3.2	POTENTIAL SOURCES	
3.3	POTENTIALLY EXPOSED POPULATIONS	
3.4	POTENTIAL EXPOSURE PATHWAYS	
3.5	POTENTIALLY EXPOSED POPULATIONS	
3.6	EXPOSURE ASSESSMENT	
	3.6.1 RISK ASSESSMENT DATASETS	
	3.6.2 SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCS)	3.10
	3.6.3 EXPOSURE POINT CONCENTRATIONS	3.10
3.7	SELECTION OF TOXICITY VALUES	3.11
3.8	HUMAN HEATH RISK-BASED SCREENING LEVELS	3.11
	3.8.1 Vapor Intrusion Screening Levels	3.11
3.9	RISK CHARACTERIZATION	
3.10	RISK CHARACTERIZATION SUMMARY	
3.11	DISCUSSION	
3.12	UNCERTANTY ASSESSMENT	3.15
4.0	REFERENCES	4.1

LIST OF TABLES

- Table 1 Summary of Indoor/Outdoor Air Dataset
- Table 2 Summary of Soil Vapor Dataset
- Table 3 Summary Statistics and Selection of COPCs
- Table 4 Summary of Empirically Derived Building Attenuation Factors
- Table 5 Estimated Current Potential Risks -Indoor Air
- Table 6 Estimated Future Potential Vapor Intrusion Risks-COPCs in Soil Vapor

LIST OF FIGURES

Figure 1 - Site Location Map

Figure 2 – Site Plan with Sample Locations

LIST OF APPENDICES

Appendix A - Certified Laboratory Analytical Reports

October 11, 2021

Abbreviations

%R Percent recovery AA Ambient air

bgs Below ground surface

Cal-EPA California Environmental Protection Agency

COC Chain-of-custody

COPCs Chemicals of potential concern

CR Cancer risk

Dasco Engineering Corporation

DCE Dichloroethene

DTSC California Department of Toxic Substances Control EA Properties East-Adjacent Properties of Hi-Shear Corporation

EPC Exposure Point Concentration
ESA Environmental Site Assessment

ft Feet

FREY Frey Environmental Inc.

GER Genesis Engineering & Redevelopment

HASP Health and safety plan
H&P Mobile Geochemistry

HERO DTSC Human and Ecological Risk Office

HHRA Human health risk assessment

Hi-Shear Corporation

HVAC Heating, ventilation and air conditioning

IA Indoor air in Inch

IRIS Integrated Risk Information System

IUR Inhalation Unit Risk

LARWQCB Los Angeles Regional Water Quality Control Board

LCS Laboratory control sample

LCSD Laboratory control sample duplicate

LRL Laboratory Reporting Limit

Middletown Magellan Aerospace, Middletown, Inc.

mL Milliliter

msl Mean seal level

μg/m³ Micrograms per cubic meter

PCE Tetrachloroethene

RfC Reference Concentration

RME Reasonable Maximum Exposure RSLs USEPA Region 9 Regional

Screening Levels

Robinson Helicopter Company

SCP Site Cleanup Program

Stantec Stantec Consulting Services, Inc.

October 11, 2021

SLs Cal-EPA, DTSC, HERO, HHRA Note Number 3, Screening Levels

(June 2020)

TCA Trichloroethane
TCE Trichloroethylene

TCDB Toxicity Criteria Database

USEPA United States Environmental Protection Agency

VOCs Volatile organic compounds

VI Vapor intrusion

VP Sub-slab vapor probe μg/L Micrograms per liter

μg/m³ Micrograms per cubic meter

October 11, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc (Stantec) has prepared this Human Health Risk Assessment (HHRA) for Property 3 located at 2530 and 2540 Skypark Drive Torrance, California 90505, in response to the Los Angeles Water Board issued Cleanup and Abatement Order No. R4-2021-0079 (Order).

1.1 OVERVIEW OF APPROACH

The risk assessment (RA) approach used to conduct this human health risk assessment (HHRA) is consistent with guidance within the state of California (DTSC 2014) with consideration of recent draft guidance (DTSC 2020) and is conservative in order to minimize the possibility of underestimating potential human health risks. To ensure a health protective (i.e., conservative) approach, a reasonable maximum exposure (RME) scenario was evaluated for the identified receptors. Risks and hazards were estimated using a deterministic approach developed based on site information that identifies potential receptors and potentially complete exposure pathways for risk characterization.

1.2 ORGANIZATION OF REPORT

The r	emainder	of the	HHRA	Report is	organized	as follo	ws:
11101	Cilialiaci	OI UIC	111111	INCOULTS	OI Gai IIZCG	as iono	w.

- ☐ Section 2.0 Background
- Section 3.0 Human Health Risk Assessment
- Section 4.0 References

2.0 BACKGROUND

2.1 SITE DESCRIPTION AND LAND USE

The Site (a.k.a. Property 3) consists of interconnected buildings located at 2530 and 2540 Skypark Drive in Torrance, California. Property 3 is part of a larger 27-acre parcel (Assessor Identification Number 7377-006-906) owned by the City of Torrance, which includes the Hi-Shear facility, the EA Properties, and the Torrance Airport. The Site is in a predominantly commercial and light industrial area. Property 3 is improved with a large slab-on-grade building occupying a footprint of approximately 37,000 square feet. The building was formerly configured as a warehouse with office space occupying a second floor. The building has since been renovated into its current configuration, with the second floor removed, creating a building space with 15- to 20-foot-high ceilings. The building is constructed over a slab-on-grade foundation and is bordered by asphalt or concrete pavement on all sides.

Frey Environmental Inc. (Frey) reportedly prepared a Phase I Environmental Site Assessment (ESA) report, dated September 14, 2015, for the 24701 and 24747 Crenshaw Boulevard (both part of Property 2) and 2530 and 2540 Skypark Drive (Property 3) addresses. While the complete Phase I ESA was not available to Stantec for review, a summary of findings was presented in Frey's Evaluation of Subsurface VOCs, dated February 23, 2018 (Frey, 2018). The Phase I ESA noted that aerospace and manufacturing

October 11, 2021

industries had occupied the building addresses since the 1960s, and that VOCs were potentially utilized during the various manufacturing processes and generated heavy metal products, byproducts, and wastes. The Phase I also documented the use of petroleum-based products by current building occupants.

2.2 PHYSICAL SETTING

2.2.1 Topography

The Site is situated at an elevation of approximately 81 to 83 feet (ft) above mean sea level (msl). The topography slopes gently towards the north. The Site is bounded to the east by a commercial/industrial manufacturing facility (Property 2 of the EA Properties), to the north by Skypark Drive, to the south by a car dealership facility (Property 1 of the EA Properties), and to the west by a commercial/industrial manufacturing facility (the Hi-Shear facility).

2.2.2 Site Geology

A more detailed discussion of regional and local geology is presented in Sections 2.2 and 2.3 of Genesis Engineering & Redevelopment's (GER's) *Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report*, dated July 3, 2020 (GER, 2020). GER described soils beneath the project area in four units as follows:

- Unit 1: Silt and clay are predominant in the upper 15 to 25 feet of sediment with interbedded lenses of fat clay. This unit is generally uniform in thickness throughout the area; however, it thickens to 35 feet in the southwest part of the investigation area.
- Unit 2: This unit consists of primarily silty sand which grades to sand to the north along Crenshaw Boulevard. This unit extends to a depth of 40 to 50 feet below the ground surface ("bgs") and has a corresponding thickness between 20 feet and 30 feet.
- Unit 3: This unit consists generally of silt, clay, and fat clay that varies in thickness between 5 feet and 15 feet. Unit 3 is interbedded with clayey sand, silty sand, and/or sand layers that range in thickness between 1 foot and 3 feet. In the borings adjacent to Crenshaw Boulevard perched groundwater has occasionally been observed on top of Unit 3 or within the unit's interbeds. This unit is not as laterally continuous as are Units 1, 2, and 4 and tends to pinch out in areas resulting in windows that interconnect Unit 2 with Unit 4.
- Unit 4: Unit 4 is dominated by poorly graded to well graded sands and silty sand with interbedded 1 to 2-foot-thick layers of clayey sand. This unit is first encountered at a depth of 55 feet to 65 feet bgs and extends below the water table to at least 265 feet bgs. Occasional 1- to 3-foot-thick discontinuous layers of silty sand and clayey sand occur throughout the unit. Heaving sands are encountered below the water table throughout the unit starting at approximately 110 feet bgs.

October 11, 2021

2.2.3 Site Hydrogeology

As presented in Sections 2.2 and 2.3 of GER's report (GER, 2020), the Gage Aquifer is present at a depth of approximately 90 feet bgs with a thickness of approximately 100 feet in the vicinity of Property 3 and is comprised primarily of sand. A perched water layer was reported by GER at a depth of approximately 60 feet bgs in the vicinity of the EA Properties, with the static water table being encountered at a depth of approximately 90 feet bgs. Groundwater generally flows to the southeast beneath Property 3. As presented in GER's Second Semi-Annual 2020 Groundwater Monitoring Report, dated February 18, 2021 (GER, 2021), groundwater elevations observed in the Hi-Shear groundwater monitoring well network have been steadily increasing since at least 2007, with average groundwater elevations increasing by approximately one foot per year since 2014.

2.3 PAST ASSESSMENTS

- Stantec understands that multiple rounds of soil, soil vapor, and groundwater assessment have been performed on the Hi-Shear and EA Properties (including Property 3) by Hi-Shear's consultants. Reports documenting these assessment activities are available on the State Water Resources Control Board's online GeoTracker database page for SCP No. 0218 (https://geotracker.waterboards.ca.gov/profile_report.asp?global_id=SL204231523). The most recent report documenting environmental assessment activities at Property 3 and the surrounding parcels is GER's Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III Interim Report (GER, 2020). A copy of a figure depicting the sample locations, as well as tables summarizing the collected analytical data are attached in Appendix B. The following summarizes key findings by GER as they relate to Property3 (determined to be on-site and nearby vapor probe locations VP-26, VP-30, VP-81, VP-132, and VP-133):
- To date, no investigations have identified VOCs in soil samples beneath Property 3 that indicate an on-site VOC source. As identified in GER's Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III Interim Report (GER, 2020) the highest concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) in on-site soil are 0.010 milligrams per kilogram (mg/kg) and 0.013 mg/kg, respectively (both of which are well below applicable commercial/industrial screening criteria). In contrast, PCE and TCE concentrations in soil beneath the adjacent upgradient Hi-Shear property have been detected at concentrations as high as 1,600 mg/kg and 5,500 mg/kg, respectively (in HS3 at 50 feet bgs), as documented in Camp Dresser & McKee Inc.'s Report of Subsurface Soil Investigation at Hi-Shear Torrance Facility, dated May 15, 1991. Overall, the observed increasing concentration trend in soil vapor with depth, a general absence of appreciable concentrations of VOCs in shallow soil beneath Property 3, and known sources/releases of PCE (and other VOCs) at the adjacent/upgradient Hi-Shear property suggest that VOC impacts beneath Property 3 (and the EA Properties, more generally) are the result of releases that have occurred at off-site locations; chiefly from the Hi-Shear property.
- Based on data presented in GER's Second Semi-Annual 2020 Groundwater Monitoring Report (GER, 2021), one groundwater monitoring well (MW-8) is located on the north side of the Property 3 building; a second groundwater monitoring well (MW-15) is located between the western edge of Property 3 and the adjacent Hi-Shear Property. During a December 26, 2019 groundwater sampling event (the last time wells MW-8 and MW-15 were sampled), the sample collected from MW-8

October 11, 2021

contained PCE and TCE at concentrations of 70 micrograms per liter ($\mu g/L$) and 5,000 $\mu g/L$, respectively, while the sample collected from MW-15 contained PCE and TCE at concentrations of 79 $\mu g/L$ and 22 $\mu g/L$, respectively. It should be noted that samples collected from well MW-15 historically contained PCE and TCE at concentrations of up to 1,300 $\mu g/L$ and 56,000 $\mu g/L$, respectively. During the December 26, 2019 groundwater sampling event, GER observed the groundwater gradient to be towards the southeast (away from the Hi-Shear property and towards Properties 1, 2 and 3, which would be directly downgradient of GER's reported groundwater gradient and flow direction).

When reviewing data collected from Property 3, the highest detected concentrations of PCE and TCE in soil vapor were observed in VP-132 at concentrations of 881,000 micrograms per cubic meter (µg/m3 [at a depth of 80 feet bgs]) and 424,000 µg/m3 (also at a depth of 80 feet bgs), respectively. A review of data presented in GER's report indicates that most of the collected soil vapor data on the EA Properties (including Property 3) exhibits increasing concentrations with depth suggests that the observed impacts are volatilizing from groundwater or the deep smear-zone resulting from fluctuations in groundwater levels over time.

In summary, based on the available data, the elevated vapor-phase concentrations of VOCs historically detected beneath Property 3 appear to represent volatilization of contaminants in groundwater or in smear-zone soils resulting from adsorption from impacted groundwater, rather than from a release at Property 3.

In 2020, based on previous work performed by others, Stantec conducted a vapor intrusion assessment to evaluate the primary constituents of potential concern (COPCs), PCE, TCE, cis-1,2 dichloroethene (DCE), trans-1,2 DCE, 1,1-DCE, and vinyl chloride, as defined and determined by GER's *Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report* (GER, 2020).

As presented in Table 2 of GER's 2020 report, vapor-phase COPC concentrations increase with depth to groundwater, with the highest observed concentrations being detected in soil vapor samples collected directly above groundwater; suggesting COPCs are partitioning from groundwater and/or smear-zone soils (interval of groundwater fluctuations within the lower vadose zone). Similarly, soil analytical data presented in Table 3 of GER's 2020 report (presented in Appendix B) suggests that the bulk of COPCs adsorbed to soil beneath Property 3 are constrained to smear-zone soils. Accordingly, the secondary source mass of the COPCs detected in groundwater and/or smear-zone soils are likely to be the primary source of COPCs in vapor phase below the Site building.

Of the identified COPCs, PCE is the primary risk-driver based on prevalence, concentration, and toxicity. While Stantec's Work Plan (Stantec, 2020) proposed limiting the analysis of the collected samples to the identified COPCs, in the LARWQCB's October 6, 2020, response letter, the LARWQCB requested that the collected samples be analyzed for the full suite of VOCs The VI Study scope of work proposed:

- Conducting a non-intrusive visual building survey
- Collecting three outdoor ambient air samples
- Collecting nine indoor air samples
- Installing and sampling nine sub-slab vapor probes

October 11, 2021

- Collecting pressure/vacuum measurements from the installed sub-slab vapor probes
- Analyzing ambient air, indoor air, and sub-slab vapor samples for VOCs; and
- Preparing a report summarizing the VI Study procedures and findings.

The following modifications were made to the VI Study:

- Sample Location Addendum: Due to difficulties in securing access, and the desire to complete the work as soon as possible, the results of the building survey and chemical use inventory, along with selected indoor and outdoor air sample locations were not presented in an addendum submitted to the LARWQCB prior to collecting the indoor air and sub-slab vapor samples. Stantec staff involved in the project's management met with the field staff to discuss the findings of the visual building survey and considered ongoing business operations when selecting the sampling locations. Accordingly, the deviation is not expected to have a significant impact on the findings from the completed scope of work.
- Differential Pressure Monitoring: The Work Plan proposed the collection of differential pressures
 during the completion of the indoor air sampling activities. Due to the desire to avoid the potential
 for introducing subsurface vapors into indoor air samples, the sub-slab vapor pins were not
 installed until after the indoor air sampling work was completed. It should be noted that none of
 the sub-slab vapor pins exhibited a probe pressure that differed from that within the building
 space.
- Sub-Slab Vapor Sampling: The Work Plan proposed the use of a water dam at each sub-slab vapor sampling location as an additional measure to seal and isolate the sub-slab environment from the indoor air environment. In some instances, the water dam would have interfered with sampling. Therefore, all samples were collected utilizing a helium shroud without the extra precaution of a water dam.

There were no other significant deviations from the proposed scope of work.

Stantec compared the ambient (outdoor) air, indoor air, and sub-slab vapor analytical data to the following screening criteria:

- United States Environmental Protection Agency, Region 9, Regional Screening Levels (RSLs) for Indoor Air for Target Cancer Risk (TR) = 1E-06, Target Hazard Quotient (THQ) = 1.0, and industrial land use (November 2020); and
- California Environmental Protection Agency, Department of Toxic Substances Control Human and Ecological Risk Office (HERO), Human Health Risk Assessment Note Number 3, Modified Screening Levels (SLs) for Indoor Air (June 2020) for commercial/industrial land use.
- Sub-slab vapor COPC results were compared to the RSLs, and SLs referenced above
 established utilizing a conservative attenuation factor of 0.03 (see Section 3.12 of this reportUncertainty Assessment). In instances in which a COPC has both an RSL and an SL, the COPC
 concentrations were compared to the more protective RSL or SL.

October 11, 2021

Four VOCs were reported above laboratory reporting limits in sub-slab samples: PCE, TCE, toluene and 1,1,2-trichlorotrifluoroethane (1,1,2-TCTFA). Of these, only tetrachloroethene [PCE], was reported above sub-slab screening levels using a conservative attenuation factor of 0.03. In the case of toluene and 1,1,2-TCTFA the reported concentrations are three orders of magnitude below their screening levels. Fourteen (14) VOCs were reported in at least one indoor air sample. Of these, only benzene, chloroform, and ethylbenzene were reported above the commercial industrial screening level (PCE was not detected above its screening level). Based on the data collected by Stantec, the following conclusions were made with respect to the analytes detected in indoor air and/or sub-slab vapor samples at concentrations above their respective RSLs and/or SLs:

- Benzene is present in indoor and outdoor ambient air at similar concentrations. A comparison of
 indoor air data to ambient air data suggests the benzene concentrations observed in indoor air
 are not originating subsurface vapors or from the indoor building space, but rather are reflective
 of background ambient air conditions in the vicinity of the Site.
- PCE was reported above the SL at all eight sub-slab vapor sample locations; however, PCE was
 not detected in any of the indoor samples at concentrations exceeding the SL. The ratio of indoor
 air to sub-slab PCE concentrations ranged from 0.0015 to 0.00003 with a mean ratio of 0.0001.

Based on evaluation of the data, this study did not find evidence of a significant vapor intrusion pathway of concern. The primary COPC for vapor intrusion is PCE. However, PCE was not reported above the chronic SL in indoor air.

3.0 CONCEPTUAL SITE MODEL

A key step in the HHRA process is the development of a CSM that identifies the likely contaminant source areas, exposure pathways, and potential receptors. The CSM for human health presents potentially complete and incomplete current and future exposure pathways for the Site. The CSM is a dynamic model that is used to include or exclude sources of COPCs, receptors, or exposure pathways based on site history and current information.

3.1 SURROUNDING PROPERTY USE

The Property is in an area of mixed commercial and industrial use with Skypark Drive to the north and Property 3 to the east. Properties to the south and west are developed as surface parking lots.

3.2 POTENTIAL SOURCES

Potential sources of subsurface impacts have been identified at the Hi-Shear Corporation facility located at 2600 Skypark Drive in Torrance, California and the LARWQCB has required evaluation of possible additional sources at East Adjacent Properties (EA Properties) which includes Property 3. As presented in Table 2 of GER's 2020 report, vapor phase COPC concentrations increase with depth to groundwater, with the highest observed concentrations being detected in soil vapor samples collected directly above groundwater; suggesting COPCs are partitioning from groundwater and/or smear-zone soils (interval of groundwater fluctuations within the lower vadose zone). Similarly, soil analytical data presented in Table 3 of GER's 2020 report (presented in Appendix B) suggests that the bulk of COPCs adsorbed to soil

October 11, 2021

beneath Property 3 are restricted to smear-zone soils. Accordingly, the secondary source mass of the COPCs detected in groundwater and/or smear-zone soils are likely to be the primary source of COPCs in vapor phase below the Subject Property building.

3.3 POTENTIALLY EXPOSED POPULATIONS

The Subject Property is in use as a manufacturing facility and there are no known plans for a change in use given the industrialized uses in the vicinity. As such, commercial workers are the potentially exposed population under the current and reasonably likely future uses.

3.4 POTENTIAL EXPOSURE PATHWAYS

An exposure pathway is the route that a chemical takes from the source to an exposed individual. An exposure pathway generally consists of the following four elements (EPA, 1989):

- A source and mechanism of chemical release to the environment
- An environmental transport medium (e.g., soil, water, or soil vapor)
- An exposure point, or point of potential human contact, with the contaminated medium
- An exposure route (e.g., ingestion) at the point of human contact

If any of the above elements are missing, the pathway is considered incomplete and exposure does not occur.

Exposures via the inhalation pathway consist of COPCs in air eventually reaching a receptor who inhales airborne vapor and gases. The following inhalation pathways relevant to soil vapor sources were reviewed for inclusion in the risk assessment and consist of:

Transport and inhalation of chemicals in soil vapor that migrate to indoor air.

The inhalation of chemicals migrating to outdoor air from the subsurface, though a potentially complete pathway, was deemed to be insignificant as a potential exposure pathway.

3.5 POTENTIALLY EXPOSED POPULATIONS

Based on the current and reasonably likely future use of the building, this risk assessment has evaluated the potential health effects to only one RME receptor: the on-site commercial worker. The commercial worker is assumed to be at the Site for 8 hours a day, 5 days a week, 250 days/year, for 25 years.

3.6 EXPOSURE ASSESSMENT

Exposure is defined in the USEPA risk assessment guidelines as the contact of a receptor with a chemical or physical agent (USEPA, 1989 and 1992). The goal of the exposure assessment is to identify and quantify known and hypothetical exposure pathways relevant to an assessment of human health risk

October 11, 2021

at a Site, and to determine the quantities or exposure doses or exposure concentrations of COPCs received by the potentially exposed populations.

3.6.1 RISK ASSESSMENT DATASETS

Nine indoor air samples including one duplicate sample and nine collocated sub-slab soil vapor samples including one duplicate sample were collected across the building footprint in February 2021. Indoor and sub-slab soil vapor datasets are provided in **Tables 1 and 2**.

3.6.2 SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPCS)

Although the DTSC-approved work plans specified analytical methods capable of detecting potential COPCs below their respective screening levels, sample preparation or analytical adjustments, such as dilution of a sample to allow for quantitation of an extremely high level of one compound, could result in elevated detection limits for other compounds. Therefore, before eliminating chemicals because they are not detected, the VIHHRA compared the laboratory reporting limit for a chemical to its corresponding screening level. If the reporting limit is higher than the corresponding screening level, the chemical may be present at levels greater than the corresponding reference concentrations, which may result in undetected risk. For chemicals reported as not detected above the laboratory reporting limit (LRL) where the LRL was below the screening level, one-half the LRL was used for evaluation.

Only PCE was detected at concentrations above screening levels in sub-slab soil vapor samples; however, PCE was reported below screening levels in indoor air. PCE is the primary COPC and was selected as a chemical of potential concern (COPCs) for potential vapor intrusion and carried forward for quantitative evaluation (see **Table 3**). Even though it was not detected in indoor air or in sub-slab vapor samples above screening levels, TCE was also selected as a COPC because it is a degradation product of PCE and because of its toxicity. Toluene although detected in both sub-slab soil vapor and indoor air, was excluded as a COPC since concentrations in indoor air are primarily attributable to either outdoor air or indoor sources. All other VOCs were below screening levels for indoor air and sub-slab, or, in the case of benzene, reported at concentrations consistent with background ambient air.

3.6.3 EXPOSURE POINT CONCENTRATIONS

The Exposure Point Concentration (EPC) is the concentration of a COPC that could be contacted by a receptor during the assumed duration of exposure. EPCs for soil vapor represent either the chemical concentration or for chemicals reported as not-detect, the laboratory reporting limit, on a sample point-by-point.

3.6.4 DATA USABILITY ASSSEMENT

All laboratory data underwent a Stage 2 data verification and validation process. The major findings are as follows:

 H&P Mobile Geochemistry Report-ST021221-12. Nine sub-slab soil vapor samples including one duplicate sample were analyzed by US EPA Method TO-15 as part of the data package. There

October 11, 2021

were no identified modifications to the method; no analytes were detected in the laboratory method blanks; and all surrogate recoveries were within method acceptance limits.

H&P Mobile Geochemistry Report-ST020821-12. Nine indoor and 3 outdoor air samples were
analyzed as part of the data package. No data qualifiers were assigned by the laboratory. No
exceptions to the method were noted; no analytes were detected in the laboratory method blanks;
all surrogate recoveries were within method acceptance limits; and %Rec for all analytes was
within acceptance limits in the LCS sample.

Based on this information all laboratory data are considered usable for their intended use.

3.7 SELECTION OF TOXICITY VALUES

Potential toxic effects of chemicals are generally classified as carcinogenic (i.e., cancer causing), or non-carcinogenic (i.e., non-cancer health effects). These endpoints are separately quantified in HHRAs as cancer risks and non-cancer health effects, respectively. Toxicity values numerically express the magnitude of potential toxic effects of chemicals. Reference doses (RfDs) and reference concentrations (RfCs) are used to quantify non-cancer health effects, and cancer slope factors (SFs) and inhalation unit risks (IURs) are used to quantify cancer risks. Both cancer and non-cancer endpoints may be evaluated for carcinogenic chemicals depending on the chemicals' toxic effects and availability of RfDs/RfCs.

In accordance with the September 4, 2018, *Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals* rule, (California Code of Regulations, title 22, Chapter 50 Section 68400.5 and Chapter 51 Sections 69020, 69021, and 69022 [the Rule]), individual chemical screening levels in this SLHHRA were based on:

- Table 1 Toxicity Criteria required by the Rule.
- USEPA Integrated Risk Information System (IRIS).
- Table 2 DTSC-recommended toxicity criteria for analytes with more than one non-IRIS toxicity value.
- For COPCs, listed in more than source, the more protective toxicity values from the most current version of the USEPA RSL tables (U.S. EPA May 2021) or the Toxicity Criteria Database (TCDB; CalEPA, last searched in September 2021) were used.

3.8 HUMAN HEATH RISK-BASED SCREENING LEVELS

3.8.1 Vapor Intrusion Screening Levels

This HHRA used screening levels calculated using standardized equations that combine conservative exposure assumptions with U.S. EPA or Cal/EPA toxicity data. USEPA Regional Screening Levels (RSLs) are concentrations that the USEPA considers to be protective of human health (including sensitive groups) over a lifetime. These values are intended to be protective; however, they are calculated without site-specific information and are not always applicable for every site.

October 11, 2021

The USEPA maintains a list of RSLs which are updated semi-annually (i.e., spring and fall). RSLs are risk-based concentrations derived from standardized equations developed for USEPA's Superfund program.

Cal/EPA Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) maintains a list of screening levels established for ambient (indoor) air that are presented in Human Health Risk Assessment Notes (HHRA Note 3). The most recent version, released in June 2020, makes recommendations on the use of U.S. EPA RSLs for tap water, soil and air (both for residential and industrial/commercial use) and provides alternate values to be used in lieu of RSLs for some compounds (Cal/EPA 2019). HERO Note 3 includes tables for compounds with air screening levels specific to California. For chemicals not listed, the EPA RSLs were used.

Screening levels for soil vapor are not provided by DTSC in HERO Note 3 but were calculated by dividing the indoor air screening level by the DTSC default sub-slab and "near source" soil vapor to indoor air attenuation factor of 0.03

Soil vapor screening levels are provided by the California Regional Water Quality Control Board-San Francisco Bay Region (RWQCB-SFBR) however, except for use of TPH soil vapor Environmental Screening Levels (ESLs) DTSC recommends against use of the ESLs.

3.9 RISK CHARACTERIZATION

For this HHRA, since current information indicates worker occupancy and exposure conditions are aligned with exposure assumptions used to develop DTSC (DTSC 2019) and USEPA screening levels for current and reasonably likely future commercial/industrial receptors, potential vapor intrusion risks were estimated using a comparison of the concentration of each chemical to the most protective carcinogenic or non-carcinogenic screening levels (SLs) as discussed in Section 3.7 and 3.8. All screening levels are based on a target Cancer Risk (CR) of 1E-06 and a hazard index (HI) = 1.

Theoretical cancer risks and non-cancer hazard quotients (HQs) for each chemical were estimated as follows:

For carcinogenic chemicals:

Cancer Risk =
$$\frac{EPC}{SL} \times 0.000001$$

For non-carcinogenic chemicals or carcinogens with non-cancer screening levels:

$$Hazard\ Quotient = \frac{EPC}{SL}$$

Ratios of the concentration of a particular chemical in soil vapor to its human health risk-based concentration were calculated and then summed regardless of toxic endpoint across all chemicals to estimate a total CR and non-cancer HI.

October 11, 2021

Stantec collected nine paired indoor air/sub-slab samples across the building footprint in addition to three ambient (outdoor air samples). Consistent with the *Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion* (DTSC 2020), the results of the indoor air sampling were used to estimate *current* potential inhalation risks but only for those chemicals detected in both sub-slab soil vapor and indoor air. The results of the sub-slab soil vapor sampling and analysis were used to estimate potential *future* vapor intrusion risks based on use of an extremely conservative generic soil vapor to indoor air attenuation factor of 0.03. The uncertainties associated with that approach are discussed in Section 3.12.

3.10 RISK CHARACTERIZATION SUMMARY

This section presents the results of the risk characterization which integrates the results of the toxicity and exposure assessments to estimate potential cancer risk (CR) and non-cancer hazard index (HI) associated with exposure to COPCs at the Site.

Various demarcations of acceptable risk have been established by regulatory agencies. USEPA considers that under most situations, cancer risks in the range of one-in-one million (1 x10⁻⁶ or 1E-06) to one-in-ten thousand (1 x 10⁻⁴ or 1E-04) may be considered acceptable with cancer risks less than 1E-06 considered *de minimis*. For vapor intrusion, Cal-EPA guidance (Cal-EPA, 2011) indicates that cumulative risk between 1E-06 and 1E-04 fall within a risk management range where further evaluation, remediation or mitigation may be considered. A CR greater than 1E-04 indicates that mitigation and/or remediation is needed. Agencies within California may also consider, on a site-specific basis, a CR of 1E-05 (one-in-one hundred thousand) as representing an acceptable risk threshold for commercial/industrial receptors.

Current Inhalation Risks

The following table presents a summary of estimated *current* building-wide cancer risks and non-cancer hazards for commercial/industrial receptors based on indoor air sampling and analysis of PCE, and TCE as the sole COPCs. Note, TCE was not detected in indoor air or outdoor and one-half the laboratory reporting limit was used to estimate risks (see **Table 5**).

Pagantar	Cance	er Risk	Non-Cancer Hazard			
Receptor	Low	High	Low	High		
Current Commercial/Industrial Receptor	9E-08	8E-07	7.26E-05	3.96E-02		

The largest contributor to current cancer risk is PCE which was not detected in any of the samples above current indoor air screening levels.

Future Vapor Intrusion Risks

Four VOCs were reported above laboratory reporting limits: PCE, TCE, toluene and 1,1,2-trichlorotrifluoroethane (1,1,2-TCTFA). Of these only PCE was reported above screening levels using an attenuation factor of 0.03. In the case of toluene and 1,1,2-TCTFA the reported concentrations are three orders of magnitude below the screening level. The assessment of health risks to the future worker included PCE and TCE. In the case of TCE, which was reported below the laboratory reporting limit, one half the reporting limit was used to estimate risk. The following table presents a summary of the range of

October 11, 2021

estimated cancer risks and non-cancer hazards for commercial/industrial receptors based on use of 0.03 attenuation factor (see Section 3.17 Uncertainty Assessment):

Double and Double	Cance	er Risk	Non-Cancer Hazard			
Depth and Receptor	Low	High	Low	High		
Sub-Slab Soil Vapor Commercial/Industrial Receptor	1E-05	6E-04	1.3E-01	7.6E+00		

The largest contributor to cancer risk is PCE detected above screening levels, based on an attenuation factor of 0.03.

3.11 DISCUSSION

Nine sub-slab soil vapor samples including one duplicate sample and nine collocated indoor air samples including one duplicate were collected at 9 locations across the entire building footprint in February 2021. Analytical results were used to evaluate a reasonable maximum exposure (RME) scenario under the current commercial/industrial use in two ways: 1) indoor air sample results were used to estimate *current* vapor intrusion risk, and 2) sub-slab soil vapor results were used to estimate potential *future* vapor intrusion risk should building conditions change (e.g., the building slab integrity is compromised).

Based on the ratio of indoor air to sub-slab concentrations suggests that PCE is the only COPC that can be reasonably attributed to vapor intrusion. All other analytes appear to be from sources other than vapor intrusion. Use of a composite sample containing the maximum concentrations of chemicals detected in both indoor air and sub-slab soil vapor yielded an estimated potential cancer risk of **8E-07** which is below the point of departure of 1E-06 and below an acceptable risk of 1E-05 used on a site-specific basis for industrial use properties. Similarly, noncancer hazards were estimated to be 3.96E-02 which is below the target HI of one. These results indicate no unacceptable risk to the current and reasonably foreseeable workers.

A range of potential *future* vapor intrusion risks was estimated by comparing all results against human health risk-based soil vapor screening levels derived by dividing indoor air screening levels representing no unacceptable cancer risk or non-cancer hazards of less than 1 established either by DTSC or the U.S. Environmental Protection Agency for commercial use properties, by an extremely conservative attenuation factor of 0.03.

Use of the 0.03 attenuation factor to simulate *future* potential cancer risks indicates that commercial/industrial use cancer risks for COPCs range from **1E-05** to **6E-04** and above the target non-cancer hazard target of 1 in 6 locations (1.3 E-01 to 7.6E+00). In no case did the concentrations of COPCs in sub-slab soil vapor result in levels in indoor air predicted by the 0.03 attenuation factor. The use of an attenuation factor of 0.03 has been demonstrated to be a very conservative estimate of indoor air concentrations in typical slab-on-grade commercial and industrial buildings in California.

October 11, 2021

It is Stantec's opinion that vapor intrusion is a potentially complete exposure pathway for COPCs detected in both indoor air and sub-slab soil vapor but if occurring, is occurring at levels representing no unacceptable potential human health risk.

3.12 UNCERTANTY ASSESSMENT

In general, uncertainties in the HHRA process are essentially the accumulated uncertainties associated with the methodologies used in estimating the health risk results (EPA 1989). They are the product of many factors affecting each component of the HHRA process. These factors generally include, at a minimum, measurement errors, conservative exposure and modeling assumptions, and uncertainty and variability of the values used in the assessment.

The term "uncertainty" is often used in risk assessment to describe what are two conceptually different terms: uncertainty and variability. Uncertainty can be described as the lack of a precise knowledge resulting in a fundamental data gap. Variability describes the natural heterogeneity of a population. Uncertainty can sometimes be reduced or eliminated through further measurements or study. By contrast, variability is inherent in what is being observed. Although variability can be better understood, it cannot be reduced through further measurement or study, although it may be more precisely defined. However, the additional cost of further data collection may become disproportional to the reduction in uncertainty.

The risks and hazards presented are consistent with EPA's stated goal of RME representing the high end of the possible risk distribution, which is generally considered to be greater than the 90th percentile and less than the 98th percentile. However, these estimates are based on numerous and often conservative assumptions and, in the absence of definitive information, assumptions are used to ensure that actual sites risks are not underestimated. The cumulative effect of these assumptions can result in an analysis with an overall conservativeness greater than the individual components. Accordingly, it is important to note that the risks presented here are based on numerous conservative assumptions in order to be protective of human health and to ensure that the risks presented here are more likely to be overestimated rather than underestimated.

Specific uncertainties associated with this HHRA include:

□ According to the Cal-EPA 2020 draft vapor intrusion guidance, the attenuation factor of 0.03 should be applied for initial vapor intrusion screening regardless of depth of sample and assumes that attenuation does not occur from the source to the receptor. Moreover, this attenuation factor has not yet been confirmed to be appropriate for the generally Mediterranean climate in southern California.

The empirically derived attenuation factors which are the ratios of the indoor air concentrations arising from vapor intrusion (i.e., a chemical detected in both subsurface soil vapor and indoor air) to the subsurface concentrations at a point of depth of interest (USEPA 2012) range from 0.0015 to 0.00005 for PCE (**Table 4**) indicating that for this building, applying an attenuation factor of 0.03 is overly conservative and not predictive of potential current or future vapor intrusion risk.

According to USEPA the use of screening levels based on an attenuation factor of 0.03 used in assessments reflects the goal to use a health-protective value that ensures a low probability of a

October 11, 2021

	false-negative (USEPA 2021b). However, as evidenced by this VI HHRA of the Subject Property, application of sub-slab soil vapor screening levels did in fact result in an overestimate of potential vapor intrusion risk based on indoor air sampling and analysis.
	Indoor air results indicate that COPCs (notably PCE and TCE) are not encountered at all locations sampled within the building. The use of the maximum concentrations when evaluating <i>current</i> VI risk leads to an overestimate of potential risk.
	There is uncertainty regarding the estimates of <i>current</i> risk using indoor air data for chemicals detected both in indoor air and in sub-slab soil vapor since such estimates do not consider or allow adjustments made for the contribution of chemicals in outdoor air to those identified in indoor air.
	The exposure pathways at commercial properties assume standard exposure assumptions (USEPA, 2014, and DTSC 2019) but are not anticipated to underestimate calculated cancer risks and noncancer hazards.
	The assumption that individuals within a receptor population (or subpopulation) will receive the same intake doses. Variability in parameters such as absorption rate, inhalation rate, frequency and duration of exposure, body weight, and activity pattern will exist even in a narrowly defined age group or identified sensitive subpopulation (USEPA, 1992).
П	It is assumed that contaminant concentrations will not decline over time due to source depletion

October 11, 2021

4.0 REFERENCES

- DTSC 2019. Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk Health (HERO). Human Health Risk Assessment Note Number 1. April 9.
- Cal-EPA 2011b. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). California Environmental Protection Agency, Department of Toxic Substances Control. October 2011.
- Cal-EPA 2020. "Supplemental Guidance: Screening and Evaluating Vapor Intrusion, Draft for Public Comments," February.

California Geological Survey (CGS), 2002, California Geomorphic Provinces, Note 36.

- 2010a. Fault Activity California, adjustable Мар of scale, http://www.quake.ca.gov/gmaps/FAM/faultactivitymap.html. Alquist-Priolo Earthquake Fault Zones of California. http://www.quake.ca.gov/gmaps/ap/ap maps.htm.
- DTSC 2014. Human Health Risk Assessment Note 4-Screening Level Human Health Risk Assessments. Cal-EPA Department of Toxic Substances Control, Human and Ecological Risk Office. August 23, 2014.
- DTSC 2019. Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk Health (HERO). Human Health Risk Assessment Note Number 1. April 9.
- USEPA 1989. Risk Assessment Guidance for Superfund (RAGS): Volume I Human Health Evaluation Manual (Part A)." EPA/540/1 89/002. U.S. Environmental Protection Agency. December.
- USEPA. 1992. "Guidelines for Exposure Assessment." Notice. Federal Register 57 (104): 22888 22938. 29 May.
- USEPA 2012. EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings. U.S. EPA, Office of Solid Waste and Emergency Response. March 16.
- USEPA 2014. Vapor Intrusion Screening Level (VISL) Calculator User's Guide. U.S. EPA, Office of Solid Waste and Emergency Response. May 2014.
- USEPA 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Intrusion Sources to Indoor Air. U.S. EPA Office of Emergency and Remedial Response. June 2015.

October 11, 2021

- USEPA 2021a. United Stated Environmental Protection Agency, 2019, Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1). May.
- USEPA 2021b. United Stated Environmental Protection Agency, 2021, Record of Decision, Facet Enterprises, Inc. Superfund Site, Operable Unit 3, Chemung County, New York. September.
- Frey Environmental, Inc., 2018, *Evaluation of Subsurface VOCs*, 24701-24747 Crenshaw Boulevard & 2530-2540 Skypark Drive, Torrance, California. February 23.
- Genesis Engineering & Redevelopment (GER), 2020. Soil, Soil Vapor, and Groundwater Evaluation

 Delineation Module III Interim Report, Skypark-Crenshaw Environmental Task Force. July 3.
- GER, 2021. Second Semi-Annual 2020 Groundwater Monitoring Report, Hi-Shear Corporation, 2600 Skypark Drive, Torrance, California. February 18.
- Stantec 2020. Vapor Intrusion Study Report-Property 3, 2530 and 2540 Skypark Drive, Torrance, California 90505, Torrance, California. Stantec Consulting Services, Inc. April.
- United States Geological Survey (USGS), 1981, Torrance, 7.5 Minute Topographic Map, Scale 1 inch = 2,400 feet.

TABLES

TABLE 1 Summary of Indoor Air & Ambient Air Sample Analytical Results East-Adjacent Properties - Property 3 2530 & 2540 Skypark Drive, Torrance, California 90505

Sample Location	Date Sampled	2-Butanone (ug/m³)	Benzene (ug/m³)	Carbon tetrachloride (ug/m³)	Chloromethane (ug/m³)	Dichlorodifluoromethane (ug/m³)	Ethylbenzene (ug/m³)	4-Ethyltoluene (ug/m³)	Methylene chloride (ug/m³)	PCE (ug/m³)	TCE (ug/m³)	Toluene (ug/m³)	Trichlorofluoromethane (ug/m³)	1,1,2-Trichlorotrifluoroethane (ug/m³)	1,2,4-Trimethylbenzene (ug/m³)	m,p-Xylene (ug/m³)	o-Xylene (ug/m³)	All Other VOCs
EPA Reg. 9	9 RSL (Industrial) ¹	22,000	1.6	2.0	390	440	4.9		1,200	47	3.0	22,000		22,000	260	440	440	various
DTSC SL (Comn	nercial/Industrial) ²		0.42	2.0				-	12	2.0		1,300	5,300	-		-		various
Indoor Air Sample		2.2	0.04	0.57	4.4	1.0	<0.44	-0.50	0.05	4.4	40 FF	7.0	4.5	<0.77	0.00	4.5	0.0	ND
IA-1 IA-1 REP	2/5/2021 2/5/2021	3.2 3.3	0.84 0.81	0.57 0.57	1.4 1.3	<1.0 <1.0	0.44	<0.50 <0.50	0.85 0.78	1.1 1.0	<0.55 <0.55	7.3 6.7	1.5 1.4	<0.77	0.60 0.65	1.5 1.5	0.6 0.7	ND ND
14.0	0/5/0004	0.4	0.04	0.57	4.0		0.44	-0.50	0.70	4.0	-0.55	0.0		.0.77	0.75	4.5	0.7	ND
IA-2	2/5/2021	3.4	0.84	0.57	1.3	1.1	0.44	<0.50	0.78	1.2	<0.55	3.9	1.1	<0.77	0.75	1.5	0.7	ND
IA-3	2/5/2021	3.3	1.3	0.57	1.3	<1.0	1.1	<0.50	0.88	1.5	<0.55	14	1.3	<0.77	1.4	3.9	1.8	ND
IA-4	2/5/2021	4.0	1.4	0.57	1.3	<1.0	0.88	<0.50	0.88	1.4	<0.55	6.6	1.4	<0.77	1.0	3.2	1.3	ND
IA-5	2/5/2021	4.1	1.2	0.57	1.2	<1.0	0.92	0.50	0.88	1.2	<0.55	7.8	1.1	<0.77	1.4	3.4	1.5	ND
IA-6	2/5/2021	3.4	1.2	0.51	1.2	<1.0	0.88	<0.50	0.88	1.0	<0.55	5.2	1.2	<0.77	1.3	3.1	1.4	ND
IA-7	2/5/2021	3.7	1.3	0.57	1.2	<1.0	0.92	<0.50	0.92	0.90	<0.55	5.6	1.3	<0.77	1.3	3.2	1.4	ND
IA-8 Ambient Air Samp	2/5/2021	3.9	1.3	0.51	1.2	<1.0	1.1	<0.50	0.92	1.0	<0.55	7.6	1.3	<0.77	1.5	4.1	1.7	ND
AA-1	2/5/2021	1.3	1.1	0.57	1.3	<1.0	0.57	<0.50	1.1	<0.69	<0.55	2.3	1.4	<0.77	0.90	2.0	0.88	ND
AA-2	2/5/2021	3.0	0.81	0.57	1.4	<1.0	<0.44	<0.50	0.78	<0.69	<0.55	1.7	1.4	<0.77	<0.50	1.1	0.48	ND
AA-3	2/5/2021	2.6	0.74	0.51	1.2	1.0	0.53	<0.50	0.88	<0.69	<0.55	1.8	1.3	<0.77	0.80	1.8	0.75	ND
Indoor	Max	4.10	1.40	0.57	1.40	1.10	1.10	0.50	0.92	1.50	0.00	14.00	1.50	0.00	1.50	4.10	1.80	
	Min Max	3.20	0.81 1.10	0.51 0.57	1.20 1.40	1.00	0.44 0.57	0.50	0.78 1.10	0.90	0.00	3.90 2.30	1.10 1.40	0.00	0.60	1.50 2.00	0.60	
Outdoor	Min	1.30	0.74	0.51	1.20	1.00	0.53	0.00	0.78	0.00	0.00	1.70	1.30	0.00	0.80	1.10	0.48	

Notes:

Analysis for full-scan VOCs by USEPA Test Method TO-15.

PCE = Tetrachloroethene

TCE = Trichloroethene

VOC = Volatile organic compound

ug/m³ = Micrograms per cubic meter ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample

< = Analyte not reported at or above the laboratory's reporting limit

-- = Not analyzed or not applicable

Bold concentrations represent detections exceeding established screening level.

- 1 = US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), November 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.
- 2 = Department of Toxic Substances Control HERO Note 3, Table 1 DTSC Recommended Screening Levels for Indoor Air, June 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.

TABLE 2
Summary of Sub-Slab Vapor Sample Analytical Results
East-Adjacent Properties - Property 3
2530 & 2540 Skypark Drive, Torrance, California 90505

Sample Location	Date Sampled	2-Butanone (ug/m³)	Benzene (ug/m³)	Carbon tetrachloride (ug/m³)	Chloromethane (ug/m³)	Dichlorodifluoromethane (ug/m³)	Ethylbenzene (ug/m³)	4-Ethyltoluene (ug/m³)	Methylene chloride (ug/m³)	PCE (ug/m³)	TCE (ug/m³)	Toluene (ug/m³)	Trichlorofluoromethane (ug/m³)	1,1,2- Trichlorotrifluoroethane (ug/m³)	1,2,4-Trimethylbenzene (ug/m³)	m,p-Xylene (ug/m³)	o-Xylene (ug/m³)	All Other VOCs	Helium (LCC)
_	RSL (Industrial) ¹	733,333	53	67	13,000	14,667	163		40,000	1,567	100	733,333		733,333	8,667	14,667	14,667	various	
DISC SL (Comn	nercial/Industrial) ²		14	67			-	-	400	67		43,333	176,667		-	-		various	
VP-1 VP-1 DUP	2/10/2021 2/10/2021	<150 <150	<16 <16	<32 <32	<10 <10	<25 <25	<22 <22	<25 <25	<18 <18	5,700 6,000	75 77	19 <19	<28 <28	750 810	<25 <25	<44 <44	<22 <22	ND ND	<0.10 <0.10
VP-2	2/10/2021	<300	<32	<64	<21	<50	<44	<50	<35	26,000	<55	63	<56	340	<50	<88>	<44	ND	<0.10
VP-3	2/10/2021	<150	<16	<32	<10	<25	<22	<25	<18	13,000	<27	21	<28	360	<25	<44	<22	ND	<0.10
VP-4	2/10/2021	<600	<65	<130	<41	<100	<88	<100	<71	43,000	<110	<76	<110	220	<100	<180	<88	ND	<0.10
VP-5	2/10/2021	<60	<6.5	<13	<4.1	<10	<8.8>	<10	<7.1	3,200	<11	21	<11	260	<10	<18	<8.8	ND	<0.10
VP-6	2/10/2021	<150	<16	<32	<10	<25	<22	<25	<18	8,500	<27	23	<28	240	<25	<44	<22	ND	<0.10
VP-7	2/10/2021	<60	<6.5	<13	<4.1	<10	<8.8	<10	<7.1	3,600	<11	18	<11	180	<10	<18	<8.8	ND	<0.10
VP-8	2/10/2021	<30	4.8	<6.4	<2.1	<5.0	<4.4	<5.0	<3.5	670	<5.5	14	<5.6	160	<5.0	<8.8	<4.4	ND	<0.10
	max min	<600 <30	<65 <16	<130 <6.4	<21 <4.1	<100 <10	<88 <4.4	<100 <5.0	<35 <3.5	43,000 670	77 75	63 14	<110 <5.6	810 160	<100 <5.0	<180 <8.8	<88 <4.4		

Notes

Analysis for full-scan VOCs by USEPA Test Method TO-15, and for helium by ASTM Method D1945M.

PCE = Tetrachloroethene

TCE = Trichloroethene

VOC = Volatile organic compound

LCC = Leak-check compound

ug/m³ = Micrograms per cubic meter

ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample

< = Analyte not reported at or above the laboratory's reporting limit

-- = Not analyzed or not applicable

Bold concentrations represent detections exceeding established screening level.

- 1 = US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), November 2020 with an attenuation factor of 0.03 was utilized to calculate the listed values. The lower of the carcinogenic and non-carcinogenic values was utilized for each analyte.
- 2 = Department of Toxic Substances Control HERO Note 3, Table 1 DTSC Recommended Screening Levels for Indoor Air, June 2020 with an attenuation factor of 0.03 was utilized to calculate the listed values. The lower of the carcinogenic and non-carcinogenic values was utilized for each analyte.

TABLE 3
Summary Statistics and Selection of COPCs
East-Adjacent Properties - Property 3
2530 & 2540 Skypark Drive, Torrance, California 90505

CHEMICAL	Frequ	uency of [Detection		MAX (µg/ı	m³)	Lo	west SL ((µg/m³)	AF	Max > Any	COPC? 1
CHEWICAL	Indoor	Outdoor	Soil Vapor	Indoor	Outdoor	Soil Vapor	Indoor	Outdoor	Soil Vapor	ΛI	SL?	COPC
2-Butanone	9/9	3/3	0/9	4.1	3	<600	22,000	22,000	733,333		N	Ν
Benzene	9/9	3/3	0/9	1.4	1.1	<65	0.42	0.42	14		N^2	N
Carbon tetrachloride	9/9	3/3	0/9	0.57	0.57	<130	2	2	67		N	N
Chloromethane	9/9	3/3	0/9	1.4	1.4	<21	390	390	13,000		N	N
Dichlorodifluoromethane	2/9	1/3	0/9	1.1	1	<100	440	440	14,667		N	N
Ethylbenzene	8/9	1/3	0/9	1.1	0.57	<88>	5	5	163		N	N
4-Ethyltoluene	0/9	0/3	0/9	0.5	0	<100					N	N
Methylene chloride	9/9	3/3	0/9	0.92	1.1	<35	12	12	400		N	N
PCE	9/9	0/3	9/9	1.5	0	43,000	2	2	67	0.0001	Υ	Υ
TCE	0/9	0/3	2/9	<0.55	< 0.55	77	3	3	100		N	N^3
Toluene	9/9	3/3	7/9	14	2.3	63	1,300	1,300	43,333	0.6667	N	N
Trichlorofluoromethane	9/9	3/3	0/9	1.5	1.4	<110	5,300	5,300	176,667		N	N
1,1,2-Trichlorotrifluoroethane	0/9	0/3	9/9	< 0.77	< 0.77	810	22,000	22,000	733,333		N	N
1,2,4-Trimethylbenzene	9/9	2/3	0/9	1.5	0.9	<100	260	260	8,667		N	N
m,p-Xylene	9/9	3/3	0/9	4.1	2	<180	440	440	14,667		N	N
o-Xylene	9/9	3/3	0/9	1.8	0.88	<88>	440	440	14,667		N	N

Notes:

COPC-Y = chemical detected in sub-slab soil vapor AND/OR indoor air and AF not indicative of other sources.

COPC-N = chemical not detected in sub-slab soil vapor but detected at least once in indoor air

AF = attenuation factor based on maximum detected values-indoor air/sub/slab.

¹. COPC Reason Codes:

^{-- =} AF not calcualted. Either indoor air or sub-slab soil vapor values missing.

². = Benzene sub-slab soil vapor reporting limit elevated above its SL in 1/09 samples. All other LRLs below its SL.

^{3.} = TCE not identified as a COPC but was evaluated because it is a degradation product of PCE and because of its toxicity.

TABLE4
Summary of Empirically-Derived Building Attenuation Factors
East-Adjacent Properties - Property 3
2530 & 2540 Skypark Drive, Torrance, California 90505

Sample Location	Date Sampled	2-Butanone (ug/m³)	Benzene (ug/m³)	Carbon tetrachloride (ug/m³)	Chloromethane (ug/m³)	Dichlorodifluoromethane (ug/m³)	Ethylbenzene (ug/m³)	4-Ethyltoluene (ug/m³)	Methylene chloride (ug/m³)	PCE (ug/m³)	TCE (ug/m³)	Toluene (ug/m³)	Trichlorofluoromethane (ug/m³)	1,1,2-Trichlorotrifluoroethane (ug/m³)	1,2,4-Trimethylbenzene (ug/m³)	m,p-Xylene (ug/m³)	o-Xylene (ug/m³)	All Other VOCs
EPA Reg.	9 RSL (Industrial) ¹	22,000	1.6	2.0	390	440	4.9	-	1,200	47	3.0	22,000		22,000	260	440	440	various
DTSC SL (Comr	nercial/Industrial)2		0.42	2.0		-		-	12	2.0		1,300	5,300		-			various
Indoor Air Sampl	es																	
IA-1	2/5/2021	3.2	0.84	0.57	1.4	1.0	<0.44	<0.50	0.85	1.1	<0.55	7.3	1.5	<0.77	0.60	1.5	0.6	ND
VP-1	2/10/2021	<150	<16	<32	<10	<25	<22	<25	<18	5,700	75	19	<28	750	<25	<44	<22	ND
AF										0.0002		0.3842						
IA-1 REP	2/5/2021	3.3	0.81	0.57	1.3	<1.0	0.44	<0.50	0.78	1.0	<0.55	6.7	1.4	<0.77	0.65	1.5	0.7	ND
VP-1 DUP	2/10/2021	<150	<16	<32	<10	<25	<22	<25	<18	6,000	77	<19	<28	810	<25	<44	<22	ND
AF										0.0002								
IA-2	2/5/2021	3.4	0.84	0.57	1.3	1.1	0.44	<0.50	0.78	1.2	<0.55	3.9	1.1	<0.77	0.75	1.5	0.7	ND
VP-2	2/10/2021	<300	<32	<64	<21	<50	<44	<50	<35	26,000	<55	63	<56	340	<50	<88	<44	ND
AF										0.00005		0.0619						
IA-3	2/5/2021	3.3	1.3	0.57	1.3	<1.0	1.1	< 0.50	0.88	1.5	< 0.55	14	1.3	<0.77	1.4	3.9	1.8	ND
VP-3	2/10/2021	<150	<16	<32	<10	<25	<22	<25	<18	13,000	<27	21	<28	360	<25	<44	<22	ND
AF	0/5/0004	4.0		0.55			0.00	0.50	0.00	0.0001	0.55	0.6667			4.0			
IA-4	2/5/2021	4.0	1.4	0.57	1.3	<1.0	0.88	<0.50	0.88	1.4	<0.55	6.6	1.4	<0.77	1.0	3.2	1.3	ND
VP-4	2/10/2021	<600	<65	<130	<41	<100	<88>	<100	<71	43,000	<110	<76	<110	220	<100	<180	<88>	ND
AF.	0/5/0004	- 4 4	4.0	0.57	4.0	-4.0	0.00	0.50	0.00	0.00003	-0.55	7.0		-0.77	- 4 4	0.4	4.5	ND
IA-5	2/5/2021	4.1	1.2	0.57	1.2	<1.0	0.92	0.50	0.88	1.2	<0.55 <11	7.8	1.1	< 0.77	1.4	3.4	1.5	ND
VP-5	2/10/2021	<60	<6.5	<13	<4.1	<10	<8.8>	<10	<7.1	3,200	\$11	21 0.3714	<11	260	<10	<18	<8.8>	ND
AF IA-6	2/5/2021	3.4	1.2	0.51	1.2	<1.0	0.88	<0.50	0.88	0.0004 1.0	<0.55	5.2	1.2	<0.77	1.3	3.1	1.4	ND
VP-6	2/10/2021	<150	<16	<32	<10	<25	<22	<25	<18	8,500	<27	23	<28	240	<25	3.1 <44	<22	ND
AF	2/10/2021	<u> 130</u>	<u> </u>	~ 32	<u> </u>	723	~22	~23	10	0.0001	~21	23	\20	240	~23	\44	~22	IND
IA-7	2/5/2021	3.7	1.3	0.57	1.2	<1.0	0.92	<0.50	0.92	0.0001	<0.55	5.6	1.3	<0.77	1.3	3.2	1.4	ND
VP-7	2/10/2021	<60	<6.5	<13	<4.1	<10	<8.8	<10	<7.1	3,600	<11	18	<11	180	<10	<18	<8.8	ND
AF	2, 10,202 .	-00	0.0				0.0			0.0003							0.0	
IA-8	2/5/2021	3.9	1.3	0.51	1.2	<1.0	1.1	<0.50	0.92	1.0	<0.55	7.6	1.3	<0.77	1.5	4.1	1.7	ND
VP-8	2/10/2021	<30	4.8	<6.4	<2.1	<5.0	<4.4	<5.0	<3.5	670	<5.5	14	<5.6	160	<5.0	<8.8	<4.4	ND
AF			0.2708	-						0.0015		0.5429						
Ambient Air Sam	ples																	
AA-1	2/5/2021	1.3	1.1	0.57	1.3	<1.0	0.57	<0.50	1.1	<0.69	<0.55	2.3	1.4	<0.77	0.90	2.0	0.88	ND
AA-2	2/5/2021	3.0	0.81	0.57	1.4	<1.0	<0.44	<0.50	0.78	<0.69	<0.55	1.7	1.4	<0.77	<0.50	1.1	0.48	ND
AA-3	2/5/2021	2.6	0.74	0.51	1.2	1.0	0.53	<0.50	0.88	<0.69	<0.55	1.8	1.3	<0.77	0.80	1.8	0.75	ND
Notoci																		

Notes

Analysis for full-scan VOCs by USEPA Test Method TO-15.

PCE = Tetrachloroethene

TCE = Trichloroethene

VOC = Volatile organic compound

ug/m³ = Micrograms per cubic meter

ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample

< = Analyte not reported at or above the laboratory's reporting limit

-- = Not analyzed or not applicable

Bold concentrations represent detections exceeding established screening level.

- 1 = US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), November 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.
- 2 = Department of Toxic Substances Control HERO Note 3, Table 1 DTSC Recommended Screening Levels for Indoor Air, June 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.

TABLE 5.

Summary of Estimated *Current* Potential Vapor Intrusion Risks from COPCs in Indoor Air East-Adjacent Properties - Property 3 2530 & 2540 Skypark Drive, Torrance, California 90505

Distribution of COPCs and Risks Across Building Footprint

	PCE							TCE					
Comple	Conc	Scree	ening Level	CR	HQ	Conc	Scree	ning Level	CR	HQ			
Sample		Cancer	Non-Cancer	CK	ΠQ		Cancer	Non-Cancer	CR	ПQ			
IA-1	1.1	2	180	5.5E-07	6.11E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-1 REP	1.0	2	180	5.0E-07	5.56E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-2	1.2	2	180	6.0E-07	6.67E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-3	1.5	2	180	7.5E-07	8.33E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-4	1.4	2	180	7.0E-07	7.78E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-5	1.2	2	180	6.0E-07	6.67E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-6	1.0	2	180	5.0E-07	5.56E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-7	0.90	2	180	4.5E-07	5.00E-03	<0.55	3	8.8	9.2E-08	3.13E-02			
IA-8	1.0	2	180	5.0E-07	5.56E-03	<0.55	3	8.8	9.2E-08	3.13E-02			

Building-Wide Risks-Max Concentrations of COPCs in Indoor Air

COPC	Max Concentration	Screening Level Cancer	Screening Level Non-Cancer	CR	HQ
PCE	1.5	2	180	7.5E-07	8.33E-03
TCE	<0.55 ¹	3	8.8	9.2E-08	3.13E-02
	8.E-07	3.96E-02			

Notes:

Risks calculated using 1/2 the laboratory reporting limit.

TABLE 7

ESTIMATED POTENTIAL FUTURE RISKS-SUB-SLAB SOIL VAPOR

PROPERTY 3 2530 AND 2540 SKYPARK DRIVE, TORRANCE, CA

TABLE 6.

Summary of Estimated *Future* Potential Vapor Intrusion Risks COPCs in Sub-Slab Soil Vapor East-Adjacent Properties - Property 3 2530 & 2540 Skypark Drive, Torrance, California 90505

	VP-1			VP-1 Dup			VP-2			VP-3					
Chemical	Screening Level (µg/m3)		Concentration Pote (ug/m3)		Potential Risk Co		Concentration Potential		Concentration Po		Potential Risk		Potentia	Potential Risk	
	Cancer	Non-Cancer	(ug/iiis)	CR	HQ	(ug/iii3)	CR	HQ	(ug/iii3)	CR	HQ	(ug/m3)	CR	HQ	
	67	5,800	5,700	8.5E-05	9.83E-01	6,000	9.0E-05	1.03E+00	26,000	3.9E-04	4.48E+00	13,000	1.9E-04	2.24E+00	
	100	290	75	7.5E-07	2.59E-01	77	7.7E-07	2.66E-01	<55	2.8E-07	9.48E-02	<27	1.4E-07	4.66E-02	
				9.E-05	1.2E+00		9.E-05	1.3E+00		4.E-04	4.6E+00		2.E-04	2.3E+00	

			VP-4			VP-5			VP-6			VP-7		
Chemical	Screening L	.evel (μg/m3)	Concentration	Potentia	al Risk	Concentration	Potenti	al Risk	Concentration	Potenti	al Risk	Concentration	Potentia	l Risk
Chemical	Cancer	Non-Cancer	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ	(ug/m3)	CR	HQ
PCE	67	5,800	43,000	6.4E-04	7.41E+00	3,200	4.8E-05	5.52E-01	8,500	1.3E-05	1.47E+00	3,600	5.4E-05	6.21E-01
TCE	100	290	<110	5.5E-07	1.90E-01	<11	5.5E-08	1.90E-02	<27	1.4E-07	4.66E-02	<11	5.5E-08	1.90E-02
•				6.E-04	7.6E+00		5.E-05	5.7E-01		1.E-05	1.5E+00		5.E-05	6.4E-01

	VP-8								
Chemical	Screening L	.evel (μg/m3)	Concentration	Potential Risk					
Chemical	Cancer	Non-Cancer	(ug/m3)	CR	HQ				
PCE	67	5,800	670	1.0E-05	1.16E-01				
TCE	100	290	<5.5	2.8E-08	9.48E-03				
	•			1.E-05	1.3E-01				

Notes:

Sub-slab soil vapor screening levels derived using a soil vapor to indoor air attenuation factor of 0.03

FIGURES

ATTACHMENT A CERTIFIED LABORATORY ANALYTICAL REPORTS

Ben Chevlen Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

H&P Project: ST020821-12

Client Project: 185804979 / Skypark Dr

Dear Ben Chevlen:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 05-Feb-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr Reported:
Project Manager: Ben Chevlen 16-Feb-21 12:25

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
IA-1	E102028-01	Vapor	05-Feb-21	05-Feb-21
IA-1 REP	E102028-02	Vapor	05-Feb-21	05-Feb-21
IA-2	E102028-03	Vapor	05-Feb-21	05-Feb-21
IA-3	E102028-04	Vapor	05-Feb-21	05-Feb-21
IA-4	E102028-05	Vapor	05-Feb-21	05-Feb-21
IA-5	E102028-06	Vapor	05-Feb-21	05-Feb-21
IA-6	E102028-07	Vapor	05-Feb-21	05-Feb-21
IA-7	E102028-08	Vapor	05-Feb-21	05-Feb-21
IA-8	E102028-09	Vapor	05-Feb-21	05-Feb-21
AA-1	E102028-10	Vapor	05-Feb-21	05-Feb-21
AA-2	E102028-11	Vapor	05-Feb-21	05-Feb-21
AA-3	E102028-12	Vapor	05-Feb-21	05-Feb-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

DETECTIONS SUMMARY

le ID: IA-1	Laboratory ID: E10				
Amalysta	D 1:	Reporting	TT 1	M.d. I	NI-4
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	1.0	1.0	ug/m3	EPA TO-15	
Chloromethane	1.4	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.5	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.85	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.2	0.60	ug/m3	EPA TO-15	
Benzene	0.84	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.57	0.32	ug/m3	EPA TO-15	
Toluene	7.3	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	1.1	0.69	ug/m3	EPA TO-15	
m,p-Xylene	1.5	0.44	ug/m3	EPA TO-15	
o-Xylene	0.66	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.60	0.50	ug/m3	EPA TO-15	
le ID: IA-1 REP	Laboratory ID: E10	02028-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.3	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.4	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.78	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.3	0.60	ug/m3	EPA TO-15	
Benzene	0.81	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.57	0.32	ug/m3	EPA TO-15	
Toluene	6.7	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	1.0	0.69	ug/m3	EPA TO-15	
Ethylbenzene	0.44	0.44	ug/m3	EPA TO-15	
m,p-Xylene	1.5	0.44	ug/m3	EPA TO-15	
o-Xylene	0.70	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.65	0.50	ug/m3	EPA TO-15	
le ID: IA-2	Laboratory ID: E10	02028-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	1.1	1.0	ug/m3	EPA TO-15	
Chloromethane	1.3	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.1	0.56	ug/m3	EPA TO-15	
	0.78	0.35	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12 290 Conejo Ridge Avenue, Suite 200 Project Number: 185804979 / Skypark Dr Reported: Thousand Oaks, CA 91361 Project Manager: Ben Chevlen 16-Feb-21 12:25 Sample ID: IA-2 Laboratory ID: E102028-03 Reporting Analyte Notes Result Limit Units Method 0.16 EPA TO-15 Benzene 0.84 ug/m3 0.57 0.32 EPA TO-15 Carbon tetrachloride ug/m3 EPA TO-15 3.9 0.76 Toluene ug/m3EPA TO-15 Tetrachloroethene 1.2 0.69 ug/m3 EPA TO-15 Ethylbenzene 0.44 0.44 ug/m3 m,p-Xylene 1.5 0.44 ug/m3 EPA TO-15 o-Xylene 0.70 0.44 ug/m3 EPA TO-15 1,2,4-Trimethylbenzene 0.75 0.50 EPA TO-15 ug/m3 Sample ID: Laboratory ID: E102028-04 IA-3 Reporting Notes Analyte Result Limit Units Method 0.21 EPA TO-15 Chloromethane 1.3 ug/m3 Trichlorofluoromethane (F11) 1.3 0.56 ug/m3EPA TO-15 Methylene chloride (Dichloromethane) 0.88 0.35 ug/m3 EPA TO-15 EPA TO-15 2-Butanone (MEK) 3.3 0.60 ug/m3 Benzene 1.3 0.16 ug/m3 EPA TO-15 EPA TO-15 Carbon tetrachloride 0.57 0.32 ug/m3 Toluene 0.76 EPA TO-15 14 ug/m3 Tetrachloroethene 1.5 0.69 ug/m3 EPA TO-15 Ethylbenzene 0.44 ug/m3 EPA TO-15 1.1 3.9 0.44 ug/m3 EPA TO-15 m,p-Xylene EPA TO-15 o-Xylene 1.8 0.44 ug/m3 1,2,4-Trimethylbenzene EPA TO-15 1.4 0.50 ug/m3 Sample ID: IA-4 Laboratory ID: E102028-05 Reporting Analyte Limit Method Notes Result Units Chloromethane 1.3 0.21 ug/m3 EPA TO-15 Trichlorofluoromethane (F11) 1.4 0.56 ug/m3 EPA TO-15 Methylene chloride (Dichloromethane) 0.88 0.35 ug/m3 EPA TO-15 EPA TO-15 2-Butanone (MEK) 4.0 0.60 ug/m3 Benzene 1.4 0.16 ug/m3 EPA TO-15 0.32 EPA TO-15 Carbon tetrachloride 0.57 ug/m3 Toluene 6.6 0.76 ug/m3 EPA TO-15 Tetrachloroethene EPA TO-15 1.4 0.69 ug/m3Ethylbenzene 0.88 0.44 ug/m3 EPA TO-15 EPA TO-15 m,p-Xylene 3.2 0.44 ug/m3 o-Xylene 1.3 0.44 ug/m3 EPA TO-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
290 Conejo Ridge Avenue, Suite 200	Project Number: 18580	• •	r		Reported: 16-Feb-21 12:25 Notes		
Thousand Oaks, CA 91361	Project Manager: Ben C	Chevlen		1	6-Feb-21 12:25		
Sample ID: IA-4	Laboratory ID: E	102028-05					
		Reporting					
Analyte	Result	Limit	Units	Method	Notes		
1,2,4-Trimethylbenzene	1.0	0.50	ug/m3	EPA TO-15			
Sample ID: IA-5	Laboratory ID: E	102028-06					
		Reporting					
Analyte	Result	Limit	Units	Method	Notes		
Chloromethane	1.2	0.21	ug/m3	EPA TO-15			
Trichlorofluoromethane (F11)	1.1	0.56	ug/m3	EPA TO-15			
Methylene chloride (Dichloromethane)	0.88	0.35	ug/m3	EPA TO-15			
2-Butanone (MEK)	4.1	0.60	ug/m3	EPA TO-15			
Benzene	1.2	0.16	ug/m3	EPA TO-15			
Carbon tetrachloride	0.57	0.32	ug/m3	EPA TO-15			
Toluene	7.8	0.76	ug/m3	EPA TO-15			
Tetrachloroethene	1.2	0.69	ug/m3	EPA TO-15			
Ethylbenzene	0.92	0.44	ug/m3	EPA TO-15			
m,p-Xylene	3.4	0.44	ug/m3	EPA TO-15			
o-Xylene	1.5	0.44	ug/m3	EPA TO-15			
4-Ethyltoluene	0.50	0.50	ug/m3	EPA TO-15			
1,2,4-Trimethylbenzene	1.4	0.50	ug/m3	EPA TO-15			
Sample ID: IA-6	Laboratory ID: E	102028-07					
		Reporting					
Analyte	Result	Limit	Units	Method	Notes		
Chloromethane	1.2	0.21	ug/m3	EPA TO-15			
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15			
Methylene chloride (Dichloromethane)	0.88	0.35	ug/m3	EPA TO-15			
2-Butanone (MEK)	3.4	0.60	ug/m3	EPA TO-15			
Benzene	1.2	0.16	ug/m3	EPA TO-15			
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15			
Toluene	5.2	0.76	ug/m3	EPA TO-15			
Tetrachloroethene	1.0	0.69	ug/m3	EPA TO-15			
Ethylbenzene	0.88	0.44	ug/m3	EPA TO-15			
m,p-Xylene	3.1	0.44	ug/m3	EPA TO-15			
o-Xylene	1.4	0.44	ug/m3	EPA TO-15			
1,2,4-Trimethylbenzene	1.3	0.50	ug/m3	EPA TO-15			
Sample ID: IA-7	Laboratory ID: E	102028-08					
	Euroratory ID.	Reporting					
Analyte	Result	Limit	Units	Method	Notes		
•	1.2	0.21	ug/m3	EPA TO-15			

290 Conejo Ridge Avenue, Suite 200

Stantec - Thousand Oaks

Chloromethane

2-Butanone (MEK)

Carbon tetrachloride

Benzene

Toluene

Ethylbenzene

Trichlorofluoromethane (F11)

Methylene chloride (Dichloromethane)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

Thousand Oaks, CA 91361 Project Manager: Ben Chevlen 16-Feb-21 12:25 Sample ID: IA-7 Laboratory ID: E102028-08 Reporting Analyte Method Notes Result Limit Units 0.56 EPA TO-15 Trichlorofluoromethane (F11) 1.3 ug/m3 Methylene chloride (Dichloromethane) 0.92 0.35 EPA TO-15 ug/m3 EPA TO-15 2-Butanone (MEK) 0.60 3.7 ug/m3EPA TO-15 Benzene 1.3 0.16 ug/m3 EPA TO-15 Carbon tetrachloride 0.57 0.32 ug/m3 Toluene 5.6 0.76 ug/m3 EPA TO-15 Tetrachloroethene 0.90 0.69 ug/m3 EPA TO-15 Ethylbenzene 0.92 0.44 EPA TO-15 ug/m3 m,p-Xylene 3.2 0.44 ug/m3 EPA TO-15 o-Xylene 1.4 0.44 ug/m3 EPA TO-15 1,2,4-Trimethylbenzene 1.3 0.50 ug/m3 EPA TO-15 Laboratory ID: E102028-09 Sample ID: IA-8 Reporting Analyte Units Method Notes Limit Result EPA TO-15 Chloromethane 1.2 0.21 ug/m3 EPA TO-15 Trichlorofluoromethane (F11) 1.3 0.56 ug/m3 EPA TO-15 Methylene chloride (Dichloromethane) 0.92 0.35 ug/m3 3.9 0.60 EPA TO-15 2-Butanone (MEK) ug/m3 Benzene 1.3 0.16 ug/m3 EPA TO-15 Carbon tetrachloride 0.51 0.32 ug/m3 EPA TO-15 Toluene 0.76 ug/m3 EPA TO-15 7.6 Tetrachloroethene 0.69 EPA TO-15 1.0 ug/m3 Ethylbenzene EPA TO-15 1.1 0.44 ug/m3 EPA TO-15 m,p-Xylene 4.1 0.44 ug/m3EPA TO-15 o-Xylene 1.7 0.44 ug/m3 1,2,4-Trimethylbenzene EPA TO-15 1.5 0.50 ug/m3 Laboratory ID: E102028-10 Sample ID: AA-1 Reporting Analyte Method Notes Result Limit Units EPA TO-15

1.3

1.4

1.1

1.3

1.1

0.57

2.3

0.57

0.21

0.56

0.35

0.60

0.16

0.32

0.76

0.44

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3 ug/m3 EPA TO-15

EPA TO-15

EPA TO-15

EPA TO-15

EPA TO-15 EPA TO-15

EPA TO-15

Project: ST020821-12

Project Number: 185804979 / Skypark Dr

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200	r		Reported:		
Thousand Oaks, CA 91361	Project Manager: Ben 0	Chevlen			16-Feb-21 12:25
Sample ID: AA-1	Laboratory ID: E	E102028-10			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
m,p-Xylene	2.0	0.44	ug/m3	EPA TO-15	
o-Xylene	0.88	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.90	0.50	ug/m3	EPA TO-15	
Sample ID: AA-2	Laboratory ID: E	E102028-11			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.4	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.4	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.78	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.0	0.60	ug/m3	EPA TO-15	
Benzene	0.81	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.57	0.32	ug/m3	EPA TO-15	
Toluene	1.7	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15	
o-Xylene	0.48	0.44	ug/m3	EPA TO-15	
Sample ID: AA-3	Laboratory ID: E	E102028-12			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	1.0	1.0	ug/m3	EPA TO-15	
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.3	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.88	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	2.6	0.60	ug/m3	EPA TO-15	
Benzene	0.74	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.8	0.76	ug/m3	EPA TO-15	
Ethylbenzene	0.53	0.44	ug/m3	EPA TO-15	
m,p-Xylene	1.8	0.44	ug/m3	EPA TO-15	
o-Xylene	0.75	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.80	0.50	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

The Mobile Geoeffelmstry, The.												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
IA-1 (E102028-01) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21										
Dichlorodifluoromethane (F12)	1.0	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15				
Chloromethane	1.4	0.21	"	"	"	"	"	"				
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"				
Vinyl chloride	ND	0.13	"	"	"	"	"	"				
Bromomethane	ND	0.39	"	"	"	"	"	"				
Chloroethane	ND	0.27	"	"	"	"	"	"				
Trichlorofluoromethane (F11)	1.5	0.56	"	"	"	"	"	"				
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"				
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"				
Methylene chloride (Dichloromethane)	0.85	0.35	"	"	"	"	"	"				
Carbon disulfide	ND	0.32	"	"	"	"	"	"				
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"				
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"				
2-Butanone (MEK)	3.2	0.60	"	"	"	"	"	"				
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"				
Chloroform	ND	0.25	"	"	"	"	"	"				
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"				
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"				
Benzene	0.84	0.16	"	"	"	"	"	"				
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"				
Trichloroethene	ND	0.55	"	"	"	"	"	"				
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"				
Bromodichloromethane	ND	0.68	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"				
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"				
Toluene	7.3	0.76	"	"	"	"	"	"				
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"				
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"				
Dibromochloromethane	ND	1.7	"	"	"	"	"	"				
Tetrachloroethene	1.1	0.69	"	"	"	"	"	"				
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"				
Chlorobenzene	ND	0.47	"	"	"	"	"	"				
Ethylbenzene	ND	0.44	"	"	"	"	"	"				
m,p-Xylene	1.5	0.44	"	"	"	"	"	"				
Styrene	ND	0.43	"	"	"	"	"	"				
o-Xylene	0.66	0.44	"	"	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr Project Manager: Ben Chevlen Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-1 (E102028-01) Vapor Sampled: 05-Feb-2	21 Received: 05-			- 40001					
Bromoform	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.60	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	76	134	"	"	"	"	
Surrogate: Toluene-d8		108 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.7 %	77		"	"	"	"	
IA-1 REP (E102028-02) Vapor Sampled: 05-	Feb-21 Received	l: 05-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.78	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.3	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.81	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr

Project Manager: Ben Chevlen 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-1 REP (E102028-02) Vapor	Sampled: 05-Feb-21	Received	: 05-Feb-21							
Bromodichloromethane		ND	0.68	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene		ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)		ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	0.46	"	"	"	"	"	"	
Toluene		6.7	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)		ND	0.83	"	"	"	"	"	"	
Dibromochloromethane		ND	1.7	"	"	"	"	"	"	
Tetrachloroethene		1.0	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)		ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	0.70	"	"	"	"	"	"	
Chlorobenzene		ND	0.47	"	"	"	"	"	"	
Ethylbenzene		0.44	0.44	"	"	"	"	"	"	
m,p-Xylene		1.5	0.44	"	"	"	"	"	"	
Styrene		ND	0.43	"	"	"	"	"	"	
o-Xylene		0.70	0.44	"	"	"	"	"	"	
Bromoform		ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene		ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene		ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			104 %	76-1		"	"	"	"	
Surrogate: Toluene-d8			102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			87.0 %	77-1	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

		Paparting			,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 (E102028-03) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Dichlorodifluoromethane (F12)	1.1	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.1	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.78	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.4	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.84	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	3.9	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.2	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.44	0.44	"	"	"	"	"	"	
m,p-Xylene	1.5	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.70	0.44	"	"	"	"	"	"	
o rejunt	0.70	U. TT							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

	110		Geoch	iciliisti y	, 11100				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 (E102028-03) Vapor Sampled: 05-Feb-21	Received: 05-F	eb-21							
Bromoform	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.75	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	II .	"	II	
Surrogate: 1,2-Dichloroethane-d4		105 %	76-1	134	,,	"	"	"	
Surrogate: Toluene-d8		104 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	77-1		"	"	"	"	
IA-3 (E102028-04) Vapor Sampled: 05-Feb-21	Received: 05-F	eb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.3	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.88	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.3	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.3	0.16	"	"	"	"	"	"	
	0.57	0.32	"	"	"	"	"	"	
Carbon tetrachloride									
Trichloroethene	ND	0.55	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Thousand Oaks, CA 91361 Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-3 (E102028-04) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	14	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.5	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	1.1	0.44	"	"	"	"	"	"	
m,p-Xylene	3.9	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.8	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.4	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		104 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Thousand Oaks, CA 91361 Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-4 (E102028-05) Vapor Sampled: 05-Feb-2	1 Received: 05-I	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.88	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	4.0	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.4	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	6.6	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.4	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.88	0.44	"	"	"	"	"	"	
m,p-Xylene	3.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.3	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

		XI WIUDII	it Georgi	cillisti y	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-4 (E102028-05) Vapor Sampled: 05-Feb-2	Received: 05-I	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.0	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	II .	
Surrogate: 1,2-Dichloroethane-d4		95.3 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.1 %	77-1		"	"	"	"	
IA-5 (E102028-06) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.1	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.88	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	4.1	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.2	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Thousand Oaks, CA 91361

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-5 (E102028-06) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	7.8	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.2	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.92	0.44	"	"	"	"	"	"	
m,p-Xylene	3.4	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.5	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	0.50	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.4	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
G		04004	76.1		,,	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		94.9 %	76-13		,,	"	"	"	
Surrogate: Toluene-d8		101 %	78-12		,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	77-12	<i>()</i>		**			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

		X1 1/10/011	30001	iciiiisti y,	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-6 (E102028-07) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.88	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.4	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.2	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	5.2	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.0	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.88	0.44	"	"	"	"	"	"	
m,p-Xylene	3.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.4	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Ben Chevlen Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

		XI MIODII	e Geoen	iciliisti y	, 1110.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-6 (E102028-07) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.3	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	II .	II .	
Surrogate: 1,2-Dichloroethane-d4		92.6 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	77-1		"	"	"	"	
IA-7 (E102028-08) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	,,	"	
Trichlorofluoromethane (F11)	1.3	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.92	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	,,	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	,,	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.7	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.3	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.10	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.33	"	"	"	"	"	n .	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Thousand Oaks, CA 91361 Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-7 (E102028-08) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	5.6	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	0.90	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.92	0.44	"	"	"	"	"	"	
m,p-Xylene	3.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.4	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.3	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.4 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		101 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Thousand Oaks, CA 91361

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-8 (E102028-09) Vapor Sampled: 05-Feb-2	Received: 05-I	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.3	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.92	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.9	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.3	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	7.6	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.0	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	1.1	0.44	"	"	"	"	"	"	
m,p-Xylene	4.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.7	0.43	"	"	"	"	"	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
			Cints	Tactor	Batch	Терагса	rmaryzea	Wichiod	
IA-8 (E102028-09) Vapor Sampled: 05-Feb-21									
Bromoform	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.5	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	TI .	
Surrogate: 1,2-Dichloroethane-d4		92.9 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		127 %	77-		"	"	"	"	
AA-1 (E102028-10) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	,,	"	
Trichlorofluoromethane (F11)	1.4	0.56	"	"	"	"	,,	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	,,	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	,,	"	
Methylene chloride (Dichloromethane)	1.1	0.35	"	"	"	"	,,	"	
Carbon disulfide	ND	0.32	"	"	"	"	,,	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	,,	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	,,	"	
2-Butanone (MEK)	1.3	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.40	"	,,	"	"	,,	"	
1,1,1-Trichloroethane	ND	0.25	"	,,	"	"	,,	"	
1,2-Dichloroethane (EDC)	ND ND	0.55	,,	,,	"	"	,,	"	
Benzene		0.41	"	"	"	"	"	"	
Carbon tetrachloride	1.1		"	"	"	"	"	"	
	0.57	0.32	"	,,	"	,,	,,	"	
Trichloroethene	ND	0.55	"	"	"	,,	,,	"	
1,2-Dichloropropane	ND	0.47	"	"	"		"		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr Project Manager: Ben Chevlen Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-1 (E102028-10) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	2.3	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.57	0.44	"	"	"	"	"	"	
m,p-Xylene	2.0	0.44	"	"	"	"	"	n .	
Styrene	ND	0.43	"	"	"	"	"	n .	
o-Xylene	0.88	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	n .	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	n .	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	n .	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	n .	
1,2,4-Trimethylbenzene	0.90	0.50	"	"	"	"	"	n .	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	n .	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	n .	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.9 %	76-13	R <i>4</i>	,,	"	"	"	
Surrogate: Toluene-d8		102 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	77-12		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-2 (E102028-11) Vapor Sampled: 05-Feb-21	Received: 05	-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.4	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.78	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.0	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.81	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.7	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.48	0.44	"	"	"	"	"	"	
0-Ayiene	0.46	0.44							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12 Project Number: 185804979 / Skypark Dr

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Reported:
Project Manager: Ben Chevlen 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Note
AA-2 (E102028-11) Vapor Sampled: 05-Feb-2	1 Received: 05-	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11106	11-Feb-21	11-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	II .	
Surrogate: 1,2-Dichloroethane-d4		95.7 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.4 %	77-1		"	"	"	"	
AA-3 (E102028-12) Vapor Sampled: 05-Feb-2	1 Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	1.0	1.0	ug/m3	1	EB11106	11-Feb-21	12-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane					"	"			
Cinoroculane	ND	0.27	"		"	"	"	"	
Trichlorofluoromethane (F11)	1.3	0.27 0.56	"	"	"	"	"	"	
			"	"			"	" "	
Trichlorofluoromethane (F11)	1.3	0.56	"	"	"	"	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Trichlorofluoromethane (F11) 1,1-Dichloroethene	1.3 ND	0.56 0.40	"	" " "	"	"	" " " " " " " " " " " " " " " " " " " "		
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	1.3 ND ND	0.56 0.40 0.77	" "	" " "	" "	" "	" " " " " " " " " " " " " " " " " " " "	"	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	1.3 ND ND 0.88	0.56 0.40 0.77 0.35	" "	" " " " " " " " " " " " " " " " " " " "	" " "	" "	" " " " " " " " " " " " " " " " " " " "	"	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	1.3 ND ND 0.88 ND	0.56 0.40 0.77 0.35 0.32	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	" "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	1.3 ND ND 0.88 ND ND	0.56 0.40 0.77 0.35 0.32 0.40	" " " " "	" " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	11 11 11	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	1.3 ND ND 0.88 ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41	" " " " " " "		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	11 11 11	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	1.3 ND ND 0.88 ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41	11 11 11 11		11 11 11 11 11		"	" " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	1.3 ND ND 0.88 ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40	0 0 0 0		11 11 11 11 11 11 11 11 11 11 11 11 11	"	"	" " " " " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	1.3 ND ND 0.88 ND ND ND 2.6 ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25	11 11 11 11 11 11 11 11 11 11 11 11 11	"	n n n n n n n n n n n n n n n n n n n		" " " " " " " " " " " " " " " " " " " "	" " " " " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	1.3 ND ND 0.88 ND ND ND ND 2.6 ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55	0	" "			" " " " " " " "	" " " " " " " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	1.3 ND ND 0.88 ND ND ND ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41	0	" "			" " " " " " " "	" " " " " " " " " "	
Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	1.3 ND ND 0.88 ND ND ND ND ND ND ND	0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55		" " " " " " " " " " " " " " " " " " " "			" " " " " " " " "		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-3 (E102028-12) Vapor Sampled: 0	5-Feb-21 Received: 05	-Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11106	11-Feb-21	12-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.8	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.53	0.44	"	"	"	"	"	"	
m,p-Xylene	1.8	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.75	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.80	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.6 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		132 %	77-	127	"	"	"	"	S-GC

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EB11106-BLK1)				Prepared & Analyzed: 11-l
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Frichlorofluoromethane (F11)	ND	0.56	"	
,1-Dichloroethene	ND	0.40	"	
,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
ans-1,2-Dichloroethene	ND	0.40	"	
,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
,1,1-Trichloroethane	ND	0.55	"	
,2-Dichloroethane (EDC)	ND	0.41	"	
enzene	ND	0.16	"	
arbon tetrachloride	ND	0.32	"	
richloroethene	ND	0.55	"	
,2-Dichloropropane	ND	0.47	"	
romodichloromethane	ND	0.68	"	
s-1,3-Dichloropropene	ND	0.46	"	
-Methyl-2-pentanone (MIBK)	ND	0.83	"	
ans-1,3-Dichloropropene	ND	0.46	"	
bluene	ND	0.76	"	
,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	1.7	"	
Tetrachloroethene	ND	0.69	"	
,2-Dibromoethane (EDB)	ND	0.78	"	
,1,1,2-Tetrachloroethane	ND	0.70	"	
Chlorobenzene	ND	0.47	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

%REC

16-Feb-21 12:25

RPD

Stantec - Thousand Oaks

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Ben Chevlen

Spike

Source

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB11106 - TO-15										
Blank (EB11106-BLK1)				Prepared &	ኔ Analyzed:	11-Feb-21				
Ethylbenzene	ND	0.44	ug/m3							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	1.9	"							
Hexachlorobutadiene	ND	2.7	"							
Surrogate: 1,2-Dichloroethane-d4	43.0		"	42.7		101	76-134			
Surrogate: Toluene-d8	43.5		"	41.6		105	78-125			
Surrogate: 4-Bromofluorobenzene	65.1		"	72.6		89.7	77-127			
1 CC (ED11107 BC1)				Prepared &	ኔ Analyzed:	11-Feb-21				
LCS (EB11106-BS1) Dichlorodifluoromethane (F12)	47.0	1.0	22 c/m 2	20.2	c / maryzea.	88.6	59-128			
Vinyl chloride	17.9	1.0	ug/m3	10.4		91.2	64-127			
Chloroethane	9.5 12.1	0.13 0.27	,,	10.4			63-127			
Trichlorofluoromethane (F11)		0.27	,,	22.6		113 85.2	62-126			
1,1-Dichloroethene	19.3		,,	16.2		82.2	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	13.3 26.4	0.40 0.77	,,	31.0		85.0	66-126			
			,,	14.2		74.4	62-115			
Methylene chloride (Dichloromethane)	10.5	0.35	,,							
trans-1,2-Dichloroethene	12.7	0.40	,,	16.2		78.7	67-124			
1,1-Dichloroethane	13.1	0.41	,,	16.5		79.2	68-126			
cis-1,2-Dichloroethene	13.0	0.40	,,	16.0		81.2	70-121			
Chloroform	16.6	0.25	"	19.8		83.8	68-123			
1,1,1-Trichloroethane	19.0	0.55		22.2		85.6	68-125			
1,2-Dichloroethane (EDC)	13.8	0.41	"	16.5		83.5	65-128			
Benzene	10.6	0.16	"	13.0		81.6	69-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Thousand Oaks, CA 91361

Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Project Manager: Ben Chevlen

Reported: 16-Feb-21 12:25

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB11106 - TO-15										
LCS (EB11106-BS1)				Prepared &	Analyzed:	11-Feb-21				
Carbon tetrachloride	21.9	0.32	ug/m3	25.6		85.6	68-132			
Trichloroethene	19.3	0.55	"	21.9		88.0	71-123			
Toluene	13.1	0.76	"	15.4		85.2	66-119			
1,1,2-Trichloroethane	18.7	0.55	"	22.2		84.1	73-119			
Tetrachloroethene	22.8	0.69	"	27.6		82.6	66-124			
1,1,1,2-Tetrachloroethane	24.8	0.70	"	28.0		88.6	67-129			
Ethylbenzene	14.6	0.44	"	17.7		82.3	70-124			
m,p-Xylene	13.2	0.44	"	17.7		74.6	61-134			
o-Xylene	14.3	0.44	"	17.7		80.8	67-125			
1,1,2,2-Tetrachloroethane	18.6	0.70	"	28.0		66.4	65-127			
Surrogate: 1,2-Dichloroethane-d4	44.1		"	42.7		103	76-134			
Surrogate: Toluene-d8	42.9		"	41.6		103	78-125			
Surrogate: 4-Bromofluorobenzene	70.8		"	72.6		97.6	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Ben Chevlen16-Feb-21 12:25

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

LCC Leak Check Compound

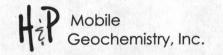
ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.

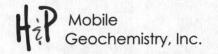

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.



2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02/05/2

Lab Client and Project Information										E OIL	抽机				e Rec	eipt (La	ab Us	e Only	()	
Lab Client/Consultant:	intec			Project Name / #:	18580	2497	9					Date	Rec'di_	1812	4	Contro	1#:Q	100	65.0	3
Lab Client Project Manager:	en Chevle	en		Project Location: Report E-Mail(s):	-30/2540	Skyp	vk De	- Ton	ans				Project #	011	020	821-	-12			
Lab Client Address: 290	nela Pida	A STATE OF THE STA	0.000									Lab W	/ork Ord	der#E	102	028	3			
Lab Client City, State, Zip:	neso Field		113/01	lewis.s	imons @s	tantee	. con	١		an n		Samp	le Intact	Y	es 🗌	No [Notes Be	low	
Phone Number: 562	- 299 - 95	1/2/2	11/01	ben. di	revien	@STO	inte	ca	m			Receipt Gauge ID: 60 204						Temp:	QT	
Reporting Requireme	ents	T	urnaroun			npler Info	NAMES OF TAXABLE PARTY.					Outside Lab:								
A	Level IV			s for preliminary	Sampler(s): J.Ar						to tall	Recei	pt Notes	s/Tracki	ng #:					
Excel EDD Other EDD:				or final report)	Signature:	31-	, D.	VIIIA												
CA Geotracker Global ID:		□ Rush	Rush (specify): Date: Date: Date: Date: Date: Da													Lah	PM Initi	ials: 1/	B	
		IXusii	(Specify)	0403/21													Lub		als. VC	
Additional Instructions to Labora	atory:								+											
* Professed VOC units /places sh	one and							+	ct Lis			5m	tions	_ 0		D194				
* Preferred VOC units (please choose one): \(\text{\pmg/L} \) \(\text{\pmg/m}^3 \) \(\text{\pmp/pmv} \) \(\text{\pmg/m}^3 \) \(\text{\pmp/pmv} \) \(\text{\pmg/m}^3 \)						Project TO-15]T0-15	TO-15	☐TO-15m	natic Fraction TO-15m	He	015m	STM	Section 34						
Птал Табтали Първол	Прынт				CONTAINER	CC		F X	List /	11.0			phatic	Comp	EPA 8	by A				
	FIELD POINT			SAMPLE TYPE Indoor Air (IA), Ambient	SIZE & TYPE	#INE	e only	Ss Standa 8260SV	Ss Short I 8260SV	ates 0SV	alene 0SV	TPHv as Gas	matic/Alipl 8260SVm	Deck (e by E	ases				
	NAME	DATE	TIME	Air (AA), Subslab (SS),	400mL/1L/6L Summa, Tedlar,	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	8260SV				Aromatic/Aliphatic Fractions 3260SVm T0-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945				
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Soil Vapor (SV)	Tube, etc.	Ü		> _	> <u></u>	ô ∐	N L	₽ 🗆	A 🗆	9 L	ž					14
A-1		02/05/2	1749	1	64	490	-2.05	X												
IA-1 REP			1749	1A	64	486	-2.21	7												
IA-2	A Comment of the Comm		1748	IA	67	502	75.57	7												
1A-5	100		1	IA	61	489	-5.42	>												Aug N
IA-1			1746	IA IA	94	483	11/4	1												
A-5			1745	IA	11	482	201	V				12								
A-6				IA	61	101	-3.86	7												
1A - 7			1742	(A	61	504	-2.24	1												
1A-8			754	IA	64	50	-5.22	1												
AA -	0 104 1	- Company	1818	Pate:	Time:	5b3 Received by:	1-1-16					Company		10	Date		100	Time:	100	
Approved/Relinquished by: My Medler C	Medi	~ Stu	Hec	2/5/21	1925 Time:	Received by:	20/1	_		1		Company	+	F	Date	040	5/2/	Time:	925	
Approved/Relinquished by:		Company		Date.	Time.							Company			Date			Time:		
Approved/Relinquished by: Company: Date: Time: Received by:								Company			Date			tille.	4					

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02/05/21 Page 2 of 4

	Lal	b Client an	d Projec	t Information						aset1				Sampl	e Rec	eipt (L	ab Us	e Onl	y)	
Lab Client/Consultant:	nter			Project Name / #:	18580	4979						Date	Rec'd:	2/8	121	Contro	ol #: 2	LIC	XS	.0.
Lab Client Project Manager:	vis Simon	,		Project Location:			D	- To	vann			H&P	Project	# Sq	702	087	GEORGE CONTRACTOR	SECRETARIA DE LA CONTRACTORIO		
Lab Client Address: 290 (me	io, 12idae	3/4	or karone	Report E-Mail(s):	levis.gi pen.chevler	July	Och	L				Lab V	Vork Or	der# 1	-	202	1	here a		
Lab Client City, State, Zip: 1	Jaio	A 913	61	The ball of	(ew19.51	mony	asco	niee.	con	1847 E 1819		Samp	ole Intac	7] No [PER DESCRIPTION OF THE PERSON	Notes B	elow	
Phone Number: 5/2 - 10	19-9866	# 1171	01	E	en-chevler	new sta	wtec	. cov	n			Rece	eipt Gau	ige ID:	402	nl		Temp	R	=
Reporting Requiren	REAL PROPERTY AND ADDRESS OF THE PERSON AND	Т	urnarour	nd Time	Sar	npler Info	rmatio	n				Outsi	de Lab:		402	~ '				
Standard Report Level III		—		s for preliminary	Sampler(s): J. A			B.Vi	1			Rece	ipt Note	s/Tracki	ing #:					
Excel EDD Other EDD:				s for final report) Signature:					100											
CA Geotracker Global ID:		Rush	(specify):_	Date: 02/05/21						14 14							Lab	o PM Init	tials:	B
Additional Instructions to Labo	ratory:																			
* Preferred VOC units (please o	choose one):	y of Same						Full List 170-15	t / Project Lis	□ 10-15	☐TO-15	☐ TO-15m	natic Fractions	mpound	A 8015m	ASTM D1945				
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard F	VOCs Short List / Project List	Oxygenates 8260SV	Naphthalene 8260SV	TPHv as Gas		Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945		Pag Nic		
AA - 2		02/05/21	1800	AA	61	505	-3.80	X												
AA-3		02/05/21	1812 95912	AA	62	851	-3.08	X												
Approved/Relinquished by: Approved/Relinquished by: Approved/Relinquished by:	Juldh	Company:	IEC	2/5/21 Date:	1925 Time:	Received by:	R	Sh				Company	IIT	P	Date.	02/0	5/21	Time:	925	
Approved/Relinquished by:	/	Company:		Date:	Time:	Received by:						Company			Date	:		Time:	187	

FMS008 Revision: 1 evised: 10/23/14

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #:	5102	OSZI-TECH			Consultant:	stantec			
Site Address:	2970/2	540 skypa	rk or	Cons	sultant Rep:	Infly M. J. Avellano,	edler	Reviewed:	EC
9		5050		÷	H&P Rep:	J. Avellano,	B.Villarosa	Scanned:	T10-
		SAMPLE ID	: IA	./	ŝ.				
Summa ID #:	490	Start Date:	02-05-21	Check Date:	01-05-21	Check Date:	02-05-21	End Date:	02-05-21
Flow Cont ID #:	F242	Start Time:	0748	Check Time:	1117	Check Time:	1424	End Time:	1741
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	27	Check Vac ("Hg):	-14	End Vac ("Hg):	-4
Summa Canister H	Height above	e Ground (ft):	5		DIAGRAM	(and/or send pl	hoto to H&P	PM).	
Description of Sun	nma Caniste	er Placement:			Photo.	sent to pr	>		
-87						,			
77						4			1
						.91			
Outdoor Temp Hi (F):	64	Barometric Pressure:	Binky	Weather Cond A.MO					
Outdoor Temp Low (F):	48	Wind Speed:		P.M 50					
Indoor Temp Avg (F):	70	Wind Direction:	NW						
PRODUCT INVEN	ITORY (nea	rby products the	at may con	tain chemicals	of concern;	continue on ba	ck if needed	d):	
Nam	e of Produc	t			Lis	st of Chemicals	1		
OUTDOOR SOUR	CES (possil	ble sources of o	chemicals c	of concern from	outdoor act	ivities; continue	e on back if	needed):	
	Source					Location			

FMS008 Revision: 1 vised: 10/23/14

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #:	51	020521-TE	e _M		Consultant:	Stantec			
Site Address:				Cons	sultant Rep:	Enily M	edler	Reviewed:	EC
		- //			H&P Rep:	J. Arelland	L. Villan	Scanned:	Mons
			71	/ 10					
		SAMPLE ID): LA-1	Pop					MI ATA
Summa ID #:	486	Start Date:	02-05-21	Check Date:	02-05-1	Check Date:	02-05-21	End Date:	04-05-21
Flow Cont ID #:	F222	Start Time:	0748	Check Time:	1117	Check Time:	1424+	End Time:	1748 17
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30	Check Vac ("Hg):		Check Vac ("Hg):	-11	End Vac ("Hg):	480
Summa Canister F	leight above	Ground (ft):	5		DIAGRAM	(and/or send p	hoto to H&F	PM):	
Description of Sun					Photo	sent to	DA		
Description of Guil	iiiia Cailiste	a Flacement.			1,10,0	7617 70	<i>p</i>		
									1
Outdoor Temp Hi		Barometric		Weather Cond	litione:				
(F):	64	Pressure:							
Outdoor Temp	48	Wind Speed:	ii .	A.M0	Court				
Low (F): Indoor Temp Avg		Wind	The	P.M	cany				
(F):	70	Direction:	NV						- 4
DDODUCT INVEN	TODY (non	ubri mua dirata tla	- A	oin chamicala	of composure:	aantinua on ha	als if mandas	4).	
PRODUCT INVEN			at may cont	ain chemicais				۱).	
Nam	e of Produc	t			Lis	st of Chemicals			
I.									
OUTDOOR SOUR	CES (possil	ole sources of	chemicals o	f concern from	outdoor act	ivities; continue	e on back if	needed):	***
				Location					

FMS008 Revision: 1 vised: 10/23/14

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

		Log one	, Ct. 1111			ıı Guinipii	9		
H&P Project #:	STOS	0921-TECH		-	Consultant:	starteu			
Site Address:						Enily 1	2.0	Reviewed:	EC
	· ·					J. Arellano			
						2.7186 11410 7	D 1 D 7 104 800 0		
		SAMPLE ID		2	pin-				
Summa ID #:	902	Start Date:	02-05-21	Check Date:	02-05-21	Check Date:	02-05-21	End Date:	02-05-21
Flow Cont ID #:	F234	Start Time:		Check Time:	1116	Check Time:	1423	End Time:	1748
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-22	Check Vac ("Hg):	-14	End Vac ("Hg):	-4
Summa Canister H	Height above	e Ground (ft):	5'		DIAGRAM	(and/or send p	hoto to H&P	PM):	
Description of Sun	nma Caniste	er Placement:			Photo	sent to	pm		
Outdoor Temp Hi		Barometric	0	Weather Cond	litions:				
(F):	64	Pressure:	10 in Ha	$\Delta m = 0$					
Outdoor Temp Low (F):	48	Wind Speed:	4mph	Weather Cond A.M O. P.M So.	Creart				
Indoor Temp Avg (F):	70	Wind Direction:	NW	791. 70.					<i>(</i> -
PRODUCT INVEN	ITORY (nea	by products the	at may cont	ain chemicals	of concern;	continue on ba	ck if needed):	
Nam	e of Produc				Lis	st of Chemicals			
									-
	OFC /====:1:	olo pourses of a	ah amaic e le -	f concern from	outdo-=	ivition continu	o on beat if	noodod):	
OUTDOOR SOUR		ne sources of o	cnemicals o	t concern from	outdoor act		e on back if	neeaea):	
	Source					Location			

FMS008 Revision: 1

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

		_09 0110	, , , , , , , , , , , , , , , , , , ,	4001// 1/11	JIOIIL / (oampii	9		
H&P Project #:	570	020921-TEC	H		Consultant:	Stanter			
H&P Project #: Site Address:	2530/	2540 sky	park Dr	Cons		Emily M	edler	Reviewed:	EC
		17			H&P Rep:	J. Arellane	D. Villan	Scanned	M
					it the transfer	V. I J. CHAND	P. + 111918	Alex	1000
		SAMPLE ID): <i>[A-</i>	3				10345	
Summa ID#:	489	Start Date:	02-05-21	Check Date:	02-05-21	Check Date:	02-05-21	End Date:	02-05-21
Flow Cont ID #:	F235	Start Time:		Check Time:	1120	Check Time:		End Time:	1747
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-70	Check Vac ("Hg):	-22	Check Vac ("Hg):	- 14	End Vac ("Hg):	-5
Summa Canister H	Height above	Ground (ft):	5'		DIAGRAM	(and/or send p	hoto to H&P	PM):	
Description of Sun			,		Photo	sent to pi	78-2		
Description of Cur	iiiia Gailiste	n i lacement.				zeni io pi	7)		
Outdoor Temp Hi	(Barometric	70 11	Weather Cond	litions:				
(F):	64	Pressure:	70 in Ha	A.M0	vercast				
Outdoor Temp Low (F):	48	Wind Speed:	4nph	A.M 0	Salarus .				1
Indoor Temp Avg		Wind		174 20	my				
(F):	70	Direction:	NW						
PRODUCT INVEN	TORY (near	rby products th	at may cont	ain chemicals	of concern;	continue on ba	ck if needed	1):	***
Nam	e of Produc	t			Lis	st of Chemicals			
OUTDOOR SOUR	CES (noseil	ole sources of a	chemicals o	f concern from	outdoor acti	ivities: continue	on back if	needed\	
	Source	3001063 01 0	onemicais 0	i concent ironi	outdoor acti		OH DACK II	needed).	
	Source					Location			

FMS008 Revision: I

Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #:	STOZO	PSDI-TECH			Consultant:	Stantec			
Site Address:	2530/	2540 ikyo	arle pr	Cons	sultant Rep:	Enily Mo	dler	Reviewed:	EC
1.8					H&P Rep:	J. Arellano, L	3. Villarera	¿Scanned:	Mon
				#) = :					
11 . 3	- 5 T	SAMPLE ID	1A	ZO IA-	4				19
Summa ID #:	485	Start Date:	02-09-21	Check Date:	02-0521	Check Date:	02-05-21	End Date:	02-09-21
Flow Cont ID #:	F213	Start Time:	0746	Check Time:	1114			End Time:	1746
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-22	Check Vac ("Hg):	-14	End Vac ("Hg):	-6
Summa Canister H	Height above	Ground (ft):	51		DIAGRAM	(and/or send ph	noto to H&F	PM):	
Description of Sun	nma Caniste	er Placement:			Photo	sent to p	M		
						′			
Outdoor Temp Hi	(11	Barometric	2011	Weather Cond	ditions:				
			100	AMOV	ercart				
Low (F):	48	Wind Speed;	4mph	P.M 50	nny				
Indoor Temp Avg (F):	70	Wind Direction:	NW						
	ITORY (nea		at may cont	ain chemicals	of concern;	continue on bac	ck if needed	d):	
Nam	e of Produc	t			Lis	t of Chemicals			
Flow Cont ID#: F2/3 Start Time: 0746 Check Time: 1/14 Check Time: 1423 End Time: 1746 Flow Rate (hrs or cc/min): 10 Hr Start Vacuum ("Hg): -70 Check Vac ("Hg): -22 Check Vac ("Hg): -14 End Vac ("Hg): -6 Summa Canister Height above Ground (ft): 5' Description of Summa Canister Placement: Outdoor Temp Hi (F): 64 Barometric Pressure: 30/nHg Outdoor Temp Low (F): 48 Wind Speed: 4mph Wind Speed: 4mph Wind Speed: 4mph Wind Speed: 4mph Wind Speed: 4mph									
OUTDOOR SOUR	CES (possil	ole sources of	chemicals o	f concern from	outdoor act	ivities; continue	on back if	needed):	
	Source					Location			
									-

FMS008 Revision: 1

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

				4001// \lill		-	9		
H&P Project #:	STO	20521-TEG	4	_	Consultant:	Startec			
Site Address:	25701.	2540 styp	arls Pr	Cons	sultant Rep:	Enily Med	Ver	Reviewed:	EC
				37-3300	H&P Rep	J. Arellano,	B Villange	/Scanned:	11
						y / //eliany	C 1/19/ 030	Ney	160
DE DE ALLE		SAMPLE ID	: <i>IA-</i>	5					
Summa ID #:	488	Start Date:	02-05-21	Check Date:	02-0521	Check Date:	02-05-21	End Date:	02-05-21
Flow Cont ID #:	F227	Start Time:		Check Time;	1120	Check Time:	1426	End Time:	1753
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-27	Check Vac ("Hg):	-15	End Vac ("Hg):	
Summa Canister H	leight above	Ground (ft):	5		DIAGRAM	(and/or send pl	hoto to H&P	PM):	
Description of Sum	nma Caniste	r Placement:			Photo	sent to	pr		
						· ·			
									1
									1
Outdoor Town Hil		Danier de la l		100					
Outdoor Temp Hi (F):	64	Barometric Pressure:	301449	Weather Cond	itions:				1
Outdoor Temp Low (F):	48	Wind Speed:	Yaul	AM 0	vercast				1
Indoor Temp Avg		Wind		149.	7				
(F):	70	Direction:	NW						
				Pt.					
PRODUCT INVEN	TORY (near	by products the	at may cont	ain chemicals o	of concern; of	continue on ba	ck if needed):	
Name	e of Product				Lis	t of Chemicals			
OUTDOOR SOURC	CES (possib	le sources of c	hemicals of	concern from	outdoor acti	vities; continue	on back if	needed):	
	Source					Location		,	
	300100					LUCAUUII			

FMS008 Revision: 1

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #:	STO	20521-TECK			Consultant:	Stante			
Site Address:	25701	2540 skyp	art or	Cons	sultant Rep:	Emily /	Medler	Reviewed:	EC
		17			H&P Rep:	J. Arellano, B			Mon
1 11 11		SAMPLE ID	: IA-	6					المراجعة المراجعة
Summa ID #:	487	Start Date:	02-05-21	Check Date:	02-0521	Check Date:	02-05-11	End Date:	02-0521
Flow Cont ID #:	F227	Start Time:	0744	Check Time:	1113	Check Time:	1422	End Time:	1745
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-24	Check Vac ("Hg):	-16	End Vac ("Hg):	-4
Summa Canister H	Height above	e Ground (ft):	5'			(and/or send pl		PM):	
Description of Sun	nma Caniste	er Placement:			Photo	sent to	pn		
				}					
Outdoor Temp Hi	64	Barometric	30inHg	Weather Cond					
(F): Outdoor Temp		Pressure:			ercart				
Low (F):	48	Wind Speed:	4mph	V.M-Sonn	4				
Indoor Temp Avg (F):	70	Wind Direction:	NW						
PRODUCT INVEN	ITORY (nea	rby products th	at may cont	ain chemicals	of concern;	continue on ba	ck if needed	d):	
	ne of Produc					at of Chemicals			
OUTDOOR SOUR	CES (possil	ble sources of o	chemicals o	f concern from	outdoor act	ivities; continue	e on back if	needed):	
	Source					Location		7-	

FMS008 Revision: 1

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #:	51020	7921-TECH			Consultant:	Stantec			
Site Address: 2			pr	Cons	sultant Rep:	Emily Me	dler	Reviewed:	EC
		7			H&P Rep:	J. Arpllago	B. Villamora	Scanned:	1100
								NA.	
		SAMPLE ID	: IA.	・フ					
Summa ID #:	504	Start Date:	02-05-21	Check Date:	02-08-21	Check Date:	02-09-21	End Date:	02-05-21
Flow Cont ID #:	F245	Start Time:	0743	Check Time:	1113	Check Time:	1421	End Time:	1742
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-70	Check Vac ("Hg):	-23	Check Vac ("Hg):	-13	End Vac ("Hg):	-4
Summa Canister He	eight above	Ground (ft):	5'		DIAGRAM	(and/or send pl	hoto to H&F	PM):	
Description of Sumi	ma Caniste	r Placement			Photo	rent to	om		
Boothpaon of Cann	ma Gamoto	in i idoomoni.		1	10	26-71 /- /			
				0					
Outdoor Temp Hi		Barometric	2	Weather Cond	litione:				
(F):	64	Pressure:	30inHa						
Outdoor Temp	49	Wind Speed:	1.	A.M C P.M S					
Low (F): Indoor Temp Avg		Wind	4 mgh	P.M 3	unny				
(F):	10	Direction:	NW						
PRÖDUCT INVENT	ORY (near	by products the	at may conta	ain chemicals	of concern; of	continue on ba	ck if needed	d):	
Name	of Product	t]			Lis	t of Chemicals			
e e									
- II.									
OUTDOOR SOURC	ES (possib	le sources of o	hemicals of	concern from	outdoor acti	vities; continue	on back if	needed):	
S	ource					Location	4	N.	
								- V	

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

Page 1 of 1

		_	ot. IIIc			7	a		
H&P Project #:	5702052	1-TECH			Consultant:	Startec			
Site Address:	2570/2	540 dem	ack Dr			Emily M	edler	Reviewed:	EC
(4	6.7012	in single			H&P Ren	J. Arelland	/E. Valle	Scanned	11
(2					rior riop.	V. / INCHANA	V.VIIIACE	ales	1000
	371	SAMPLE ID	: IA-	8					
Summa ID #:	501	Start Date:	02-05-21	Check Date:	02-05-21	Check Date:	02-05-21	End Date:	02-05-21
Flow Cont ID #:	F231	Start Time:		Check Time:	1/2/	Check Time:	1426	End Time:	1754
Flow Rate (hrs or cc/min):	10Hr	Start Vacuum ("Hg):	-26	Check Vac ("Hg):	-18	Check Vac ("Hg):	-10	End Vac ("Hg):	-4
Summa Canister H	Height above	e Ground (ft):	5			(and/or send p		PM):	
Description of Sun	nma Caniste	r Placement:			Photo	sent to	pn		
									1
Outdoor Temp Hi	/	Barometric	20. 11	Weather Cond	litions:				
(F):	64	Pressure:	30in Hy	A.M 0	vercut				
Outdoor Temp Low (F):	48	Wind Speed:	4noh	P.M SU	nny				
Indoor Temp Avg		Wind							
(F):	70	Direction:	NW						
								15	
PRODUCT INVEN	TORY (near	rby products th	at may cont	ain chemicals	of concern;	continue on ba	ck if needed	3):	
Nam	e of Produc	t		_	Lis	st of Chemicals	3		
OUTDOOR SOUR	CES (possil	ole sources of	chemicals o	f concern from	outdoor act	ivities; continu	e on back if	needed):	
	Source					Location			

FMS008 Revision: I Revised: 10/23/14

Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

H&P Project #:	STOZE	PS21-TECH			Consultant:	Startec			
Site Address:			rearle Pi	Cons	sultant Rep:	Enly Me	dler	Reviewed:	
				<u>.</u>	H&P Rep:	J. Arellano	B. Villano	Scanned:	The
	Land -	SAMPLE ID	: AA-1	,					TALES.
Summa ID #:	503	Start Date:	02-05-21	Check Date:	02-09-21	Check Date:	02-05-21	End Date:	02-05-21
Flow Cont ID #:	F215	Start Time:		Check Time:	1/26	Check Time:	1439	End Time:	1818
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30	Check Vac ("Hg):		Check Vac ("Hg):	-15	End Vac ("Hg):	-9
Summa Canister F	Height above	Ground (ft):	5.5		DIAGRAM	(and/or send p	hoto to H&F	PM):	
Description of Sun					Phon	to sent to	pn		
							/		
Outdoor Temp Hi	(11	Barometric	20	Weather Cond	ditions:				
(F): Outdoor Temp	64	Pressure:	Mintly	/ /	premant				
Low (F):	48	Wind Speed:	4mph	P.M 2	hous				
Indoor Temp Avg (F):	70	Wind Direction:	NW						
PRODUCT INVEN			at may con	tain chemicals				1):	
Nam	e of Produc	t			LI	st of Chemicals	<u> </u>		
OUTDOOR SOUR	CES (possii	ble sources of	chemicals o	of concern from	outdoor ac	tivities; continu	e on back if	needed):	
	Source					Location			

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14
Page | of |

		_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			9		
H&P Project #:	57	020541-TEC	H		Consultant:	Stantec			
Site Address:	2520/	2540 Shus	ark Dr	Cons	ultant Rep:	Emily /	Yedler	Reviewed:	EC
,					H&P Rep:	Errily /	8 Villares	Scanned:	110-5
					Amon C Artis				
		SAMPLE ID	AA	2					1-31-
Summa ID #:	505	Start Date:	02-05-21	Check Date:	02-05-21	Check Date:	02-05-21	End Date:	15-20-20
Flow Cont ID #:	F214	Start Time:	0803	Check Time:	1108	Check Time:	1434	End Time:	1800
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-24	Check Vac ("Hg):	1 1//	End Vac ("Hg):	-7
Summa Canister H	leight above	e Ground (ft):	5			(and/or send p		PPM):	
Description of Sun	nma Caniste	er Placement:			Photo	sent to p	700		
•					, , , ,	/			
]					
Outdoor Temp Hi		Barometric	70	Weather Cond	litions:				
(F):	64	Pressure:	30 intly	AM-OIN	econt				
Outdoor Temp Low (F):	48	Wind Speed:	4mph	A.M OVE P.M SUN	ny				
Indoor Temp Avg	70	Wind	NW		,				
(F):	70	Direction:	10 00						
PRODUCT INVEN	ITORY (nea	rby products th	at may con	tain chemicals	of concern;	continue on ba	ack if neede	d)	
Nam	e of Produc	t			Lis	st of Chemical	s		
N	114		No 1	Frow					
,	/ · /		1-0 1	1770					
								_	
									- 10
OUTDOOR SOUR	CES (possi	ble sources of	chemicals o	of concern from	outdoor ac	tivities; continu	ie on back if	f needed):	
	Source					Location			
Trat	Che.		Park	ing lot					
11017	7,0		inch	19 101					

H&P Project #:

STO20521-TECH

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14

Page I of I

Log Sheet: Indoor/Ambient Air Sampling Consultant: Stantec

Site Address:	25701	1540 s/14p	ank Dr	Cons	ultant Rep:	Emily Med	l ler	Reviewed:	EC
					H&P Rep:	Emily Med	B. Villaren	&Scanned:	Mans
			11	7					70 00
ALTER TO		SAMPLE ID	1111						
Summa ID #:	851	Start Date:		Check Date:	02-05-21			End Date:	01-05-21
Flow Cont ID #:	F224	Start Time:	0808	Check Time:	1110	Check Time:	1435	End Time:	1812
Flow Rate (hrs or cc/min):	10 Hr	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-25	Check Vac ("Hg):	-14	End Vac ("Hg):	-5
Summa Canister F	Height above	Ground (ft):	9		DIAGRAM	(and/or send pl	hoto to H&F	PM)	
Description of Sun	nma Caniste	er Placement:			Photo	sent to p	om		
						,			
									1
									- 1
Outdoor Temp Hi	64	Barometric	30 10 Hg	Weather Cond					
(F): Outdoor Temp				A.M-OV P.M-SU	ercast				
Low (F):	48		4 mph	P.M-SU	nny				
Indoor Temp Avg (F):	70	Wind Direction:	NW						
DDODLIGT INVEN	TODY (axa	illissi nun desata th	-1	ain ahamiaala	of concern:	continue on ha	ok if poodo	47:	
PRODUCT INVEN			at may cont	alli Chemicais		st of Chemicals		471	
Nam	e of Produc	i.			LI	St of Chemicals			
OUTDOOR SOUR	CES (possi	ble sources of	chemicals o	f concern from	outdoor act	tivities; continu	e on back if	needed):	
	Source					Location			

Lewis Simons Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

H&P Project: ST021221-12

Client Project: 185804979 / Skypark Dr

Dear Lewis Simons:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 10-Feb-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VP-7	E102047-01	Vapor	10-Feb-21	10-Feb-21
VP-6	E102047-02	Vapor	10-Feb-21	10-Feb-21
VP-4	E102047-03	Vapor	10-Feb-21	10-Feb-21
VP-2	E102047-04	Vapor	10-Feb-21	10-Feb-21
VP-1	E102047-05	Vapor	10-Feb-21	10-Feb-21
VP-1 Dup	E102047-06	Vapor	10-Feb-21	10-Feb-21
VP-3	E102047-07	Vapor	10-Feb-21	10-Feb-21
VP-5	E102047-08	Vapor	10-Feb-21	10-Feb-21
VP-8	E102047-09	Vapor	10-Feb-21	10-Feb-21

Stantec - Thousand Oaks

Analyte

Trichloroethene

1,1,2-Trichlorotrifluoroethane (F113)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361	Project Number: 185 Project Manager: Lev		r		Reported: 24-Feb-21 12:00
	DETECTIONS SU	MMARY			
Sample ID: VP-7	Laboratory ID:	E102047-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	180	15	ug/m3	EPA TO-15	
Toluene	18	7.6	ug/m3	EPA TO-15	
Tetrachloroethene	3600	14	ug/m3	EPA TO-15	
Sample ID: VP-6	Laboratory ID:	E102047-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	240	39	ug/m3	EPA TO-15	
Toluene	23	19	ug/m3	EPA TO-15	
Tetrachloroethene	8500	34	ug/m3	EPA TO-15	
Sample ID: VP-4	Laboratory ID:	E102047-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	220	150	ug/m3	EPA TO-15	
Tetrachloroethene	43000	140	ug/m3	EPA TO-15	
Sample ID: VP-2	Laboratory ID:	E102047-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	340	77	ug/m3	EPA TO-15	
Toluene	63	38	ug/m3	EPA TO-15	
Tetrachloroethene	26000	69	ug/m3	EPA TO-15	
Sample ID: VP-1	Laboratory ID:	E102047-05			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	750	39	ug/m3	EPA TO-15	
Trichloroethene	75	27	ug/m3	EPA TO-15	
Toluene	19	19	ug/m3	EPA TO-15	
Tetrachloroethene	5700	34	ug/m3	EPA TO-15	
Sample ID: VP-1 Dup	Laboratory ID:	E102047-06			

Result

810

77

Reporting

Limit

39

27

Units

ug/m3

ug/m3

Method

EPA TO-15

EPA TO-15

Project: ST021221-12

Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361	Project: STO Project Number: 185 Project Manager: Lev	5804979 / Skypark D	r		Reported: 24-Feb-21 12:00
Sample ID: VP-1 Dup	Laboratory ID:	E102047-06			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Tetrachloroethene	6000	34	ug/m3	EPA TO-15	
Sample ID: VP-3	Laboratory ID:	E102047-07			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	360	39	ug/m3	EPA TO-15	
Toluene	21	19	ug/m3	EPA TO-15	
Tetrachloroethene	13000	34	ug/m3	EPA TO-15	
Sample ID: VP-5	Laboratory ID:	E102047-08			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	260	15	ug/m3	EPA TO-15	
Toluene	21	7.6	ug/m3	EPA TO-15	
Tetrachloroethene	3200	14	ug/m3	EPA TO-15	
Sample ID: VP-8	Laboratory ID:	E102047-09			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	ug/m3	EPA TO-15	
Benzene	4.8	3.2	ug/m3	EPA TO-15	
Toluene	14	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	670	6.9	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Soil Vapor/Air Analysis by ASTM D1945M

										
			Reporting		Dilution					2.7
Analyte		Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
VP-7 (E102047-01) Vapor	Sampled: 10-Feb-21	Received: 10-	Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-6 (E102047-02) Vapor	Sampled: 10-Feb-21	Received: 10-	-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-4 (E102047-03) Vapor	Sampled: 10-Feb-21	Received: 10-	-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-2 (E102047-04) Vapor	Sampled: 10-Feb-21	Received: 10-	-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-1 (E102047-05) Vapor	Sampled: 10-Feb-21	Received: 10-	-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-1 Dup (E102047-06) Va	npor Sampled: 10-Fe	b-21 Received	d: 10-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-3 (E102047-07) Vapor	Sampled: 10-Feb-21	Received: 10-	-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-5 (E102047-08) Vapor	Sampled: 10-Feb-21	Received: 10-	Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-8 (E102047-09) Vapor	Sampled: 10-Feb-21	Received: 10-	-Feb-21							
Helium (LCC)		ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-7 (E102047-01) Vapor Sampled: 10-Feb-21	Received: 10-	-Feb-21				•			
Dichlorodifluoromethane (F12)	ND	10	ug/m3	2	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	4.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	14	"	"	"	"	"	"	
Vinyl chloride	ND	5.2	"	"	"	"	"	"	
Bromomethane	ND	32	"	"	"	"	"	"	
Chloroethane	ND	16	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	11	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	180	15	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	7.1	"	"	"	"	"	"	
Carbon disulfide	ND	13	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	16	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.2	"	"	"	"	"	"	
2-Butanone (MEK)	ND	60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
Chloroform	ND	9.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	8.2	"	"	"	"	"	"	
Benzene	ND	6.5	"	"	"	"	"	"	
Carbon tetrachloride	ND	13	"	"	"	"	"	"	
Trichloroethene	ND	11	"	"	"	"	"	"	
1,2-Dichloropropane	ND	19	"	"	"	"	"	"	
Bromodichloromethane	ND	14	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	17	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
Toluene	18	7.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	17	"	"	"	"	"	"	
Dibromochloromethane	ND	17	"	"	"	"	"	"	
Tetrachloroethene	3600	14	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	16	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
Chlorobenzene	ND	9.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.8	"	"	"	"	"	"	
m,p-Xylene	ND	18	"	"	"	"	"	"	
Styrene	ND	8.6	"	"	"	"	"	"	
o-Xylene	ND	8.8	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

		CCT TVIOUT	Geoch	oninger y	,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-7 (E102047-01) Vapor Sampled: 10-Feb-2	21 Received: 10-	Feb-21							
Bromoform	ND	21	ug/m3	2	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
4-Ethyltoluene	ND	10	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	75	"	"	"	"	"	"	
Hexachlorobutadiene	ND	110	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		105 %	76-1	134	"	"	,,	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.7 %	77-1		"	"	"	"	
VP-6 (E102047-02) Vapor Sampled: 10-Feb-2	21 Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	25	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	10	"	"	LD12310	"	"	"	
Dichlorotetrafluoroethane (F114)	ND ND	35	"	"	"	"	"	"	
Vinyl chloride	ND	13	"	"	"	"	"	"	
Bromomethane	ND	79	"	"	"	"	"	"	
Chloroethane	ND	40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	28	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	240	39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	18	"	"	"	"	"	"	
Carbon disulfide	ND	32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	21	"	"	"	"	"	"	
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20	"	"	"	"	"	"	
Chloroform			"	"	"	"	"	"	
1,1,1-Trichloroethane		_	"	"	"	"	"	"	
* *			"	"	"	"	"	"	
Benzene (25°)			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND ND ND ND ND ND	25 28 21 16 32 27 47	" "	" "	" " "	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-6 (E102047-02) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Bromodichloromethane	ND	34	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
Toluene	23	19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	41	"	"	"	"	"	"	
Dibromochloromethane	ND	43	"	"	"	"	"	"	
Tetrachloroethene	8500	34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
Chlorobenzene	ND	23	"	"	"	"	"	"	
Ethylbenzene	ND	22	"	"	"	"	"	"	
m,p-Xylene	ND	44	"	"	"	"	"	"	
Styrene	ND	22	"	"	"	"	"	"	
o-Xylene	ND	22	"	"	"	"	"	"	
Bromoform	ND	52	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
4-Ethyltoluene	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	190	"	"	"	"	"	"	
Hexachlorobutadiene	ND	270	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		106 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		104 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.4 %	77-		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr

Project Manager: Lewis Simons

Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

		Reporting	. George		, 2110•				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-4 (E102047-03) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	100	ug/m3	20	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	140	"	"	"	"	"	"	
Vinyl chloride	ND	52	"	"	"	"	"	"	
Bromomethane	ND	320	"	"	"	"	"	"	
Chloroethane	ND	160	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	110	"	"	"	"	"	"	
1,1-Dichloroethene	ND	80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	220	150	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	71	"	"	"	"	"	"	
Carbon disulfide	ND	130	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	"	"	"	"	"	"	
1,1-Dichloroethane	ND	82	"	"	"	"	"	"	
2-Butanone (MEK)	ND	600	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	80	"	"	"	"	"	"	
Chloroform	ND	99	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	110	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	82	"	"	"	"	"	"	
Benzene	ND	65	"	"	"	"	"	"	
Carbon tetrachloride	ND	130	"	"	"	"	"	"	
Trichloroethene	ND	110	"	"	"	"	"	"	
1,2-Dichloropropane	ND	190	"	"	"	"	"	"	
Bromodichloromethane	ND	140	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	170	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	92	"	"	"	"	"	"	
Toluene	ND	76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	110	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	170	"	"	"	"	"	"	
Dibromochloromethane	ND	170	"	"	"	"	"	"	
Tetrachloroethene	43000	140	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	43000 ND	160	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	140	"	"	"	"	"	"	
Chlorobenzene	ND	94		"	"	"	"	"	
Ethylbenzene	ND ND	9 4 88	,,	"	"	"	"	"	
m,p-Xylene	ND ND	00 180	,,	,,	"	,,	"	"	
Styrene	ND ND	86	,,	,,	"	"	"	"	
o-Xylene	ND ND	88	,,	"	"	"	"	"	
0-Ayiciic	ND	00							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-4 (E102047-03) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Bromoform	ND	210	ug/m3	20	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	140	"	"	"	"	"	"	
4-Ethyltoluene	ND	100	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	100	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	100	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	240	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	240	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	240	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	750	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1100	"	"	"	n .	"	n	
Surrogate: 1,2-Dichloroethane-d4		108 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.3 %	77-1		"	"	"	"	
VP-2 (E102047-04) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	50	ug/m3	10	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	71	"	"	"	"	"	"	
Vinyl chloride	ND	26	"	"	"	"	,,	"	
Bromomethane	ND	160	"	"	"	"	"	"	
Chloroethane	ND	80	"	"	"	"	,,	"	
Trichlorofluoromethane (F11)	ND	56	"	"	"	"	,,	"	
1,1-Dichloroethene	ND	40	"	"	"	"	,,	"	
1,1,2-Trichlorotrifluoroethane (F113)	340	77	"	"	"	"	,,	"	
Methylene chloride (Dichloromethane)	ND	35	"	"	"	"	,,	"	
Carbon disulfide	ND	63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	41	"	"	"	"	,,	"	
2-Butanone (MEK)	ND	300	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
Chloroform	ND	49	"	"	"	,,	"	"	
1,1,1-Trichloroethane	ND	55	"	"	"	,,	"	"	
1,2-Dichloroethane (EDC)	ND	41	"	"	"	"	"	"	
Benzene (EDC)	ND ND	32	"	,,	"	,,	,,	"	
Carbon tetrachloride	ND ND	64	"	,,	"	,,	,,	"	
Trichloroethene	ND	55	"	"	"	"	"	"	
1,2-Dichloropropane		94	"	"	"	"	"	"	
1,2-121011010p10pane	ND	94							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 (E102047-04) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Bromodichloromethane	ND	68	ug/m3	10	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
Toluene	63	38	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	83	"	"	"	"	"	"	
Dibromochloromethane	ND	86	"	"	"	"	"	"	
Tetrachloroethene	26000	69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
Chlorobenzene	ND	47	"	"	"	"	"	"	
Ethylbenzene	ND	44	"	"	"	"	"	"	
m,p-Xylene	ND	88	"	"	"	"	"	"	
Styrene	ND	43	"	"	"	"	"	"	
o-Xylene	ND	44	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
4-Ethyltoluene	ND	50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	380	"	"	"	"	"	"	
Hexachlorobutadiene	ND	540	"	"	"	"	"	"	
					_			_	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1		"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	77-1	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804979 / Skypark Dr

Thousand Oaks, CA 91361 Pro

Project Manager: Lewis Simons 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 (E102047-05) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	25	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	10	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	35	"	"	"	"	"	"	
Vinyl chloride	ND	13	"	"	"	"	"	"	
Bromomethane	ND	79	"	"	"	"	"	"	
Chloroethane	ND	40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	28	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	750	39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	18	"	"	"	"	"	"	
Carbon disulfide	ND	32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	21	"	"	"	"	"	"	
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20	"	"	"	"	"	"	
Chloroform	ND	25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	28	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	21	"	"	"	"	"	"	
Benzene	ND	16	"	"	"	"	"	"	
Carbon tetrachloride	ND	32	"	"	"	"	"	"	
Trichloroethene	75	27	"	"	"	"	"	"	
1,2-Dichloropropane	ND	47	"	"	"	"	"	"	
Bromodichloromethane	ND	34	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
Toluene	19	19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	41	"	"	"	"	"	"	
Dibromochloromethane	ND	43	"	"	"	"	"	"	
Tetrachloroethene	5700	34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
Chlorobenzene	ND	23	"	"	"	"	"	"	
Ethylbenzene	ND	22	"	"	"	"	"	"	
m,p-Xylene	ND	44	"	"	"	"	"	"	
Styrene	ND	22	"	"	"	"	"	"	
o-Xylene	ND	22	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

	110	WI 1/1001	e Geoen	iciliisti y	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 (E102047-05) Vapor Sampled: 10-Feb-	-21 Received: 10-I	Feb-21							
Bromoform	ND	52	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
4-Ethyltoluene	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	190	"	"	"	"	"	"	
Hexachlorobutadiene	ND	270	"	"	"	"	"	II	
Surrogate: 1,2-Dichloroethane-d4		106 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		104 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	77-1		"	"	"	"	
VP-1 Dup (E102047-06) Vapor Sampled: 10-	-Feb-21 Received:	: 10-Feb-21							
Dichlorodifluoromethane (F12)	ND	25	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	10	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	35	"	"	"	"	"	"	
Vinyl chloride	ND	13	"	"	"	"	"	"	
Bromomethane	ND	79	"	"	"	"	"	"	
Chloroethane	ND	40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	28	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	810	39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	18	"	"	"	"	"	"	
Carbon disulfide	ND	32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	21	"	"	"	"	"	"	
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20	"	"	"	"	"	"	
Chloroform	ND	25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	28	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	21	"	"	"	"	"	"	
Benzene	ND	16	"	"	"	"	"	"	
Carbon tetrachloride	ND	32	"	"	"	"	"	"	
Trichloroethene	77	27	"	"	"	"	"	"	
1,2-Dichloropropane	ND	47	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 Dup (E102047-06) Vapor Samp	oled: 10-Feb-21 Received	l: 10-Feb-21							
Bromodichloromethane	ND	34	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
Toluene	ND	19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	41	"	"	"	"	"	"	
Dibromochloromethane	ND	43	"	"	"	"	"	"	
Tetrachloroethene	6000	34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
Chlorobenzene	ND	23	"	"	"	"	"	"	
Ethylbenzene	ND	22	"	"	"	"	"	"	
m,p-Xylene	ND	44	"	"	"	"	"	"	
Styrene	ND	22	"	"	"	"	"	"	
o-Xylene	ND	22	"	"	"	"	"	"	
Bromoform	ND	52	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
4-Ethyltoluene	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	190	"	"	"	"	"	"	
Hexachlorobutadiene	ND	270	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		107 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		78.9 %	77-		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-3 (E102047-07) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	25	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	10	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	35	"	"	"	"	"	"	
Vinyl chloride	ND	13	"	"	"	"	"	"	
Bromomethane	ND	79	"	"	"	"	"	"	
Chloroethane	ND	40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	28	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	360	39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	18	"	"	"	"	"	"	
Carbon disulfide	ND	32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	21	"	"	"	"	"	"	
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20	"	"	"	"	"	"	
Chloroform	ND	25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	28	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	21	"	"	"	"	"	"	
Benzene	ND	16	"	"	"	"	"	"	
Carbon tetrachloride	ND	32	"	"	"	"	"	"	
Trichloroethene	ND	27	"	"	"	"	"	"	
1,2-Dichloropropane	ND	47	"	"	"	"	"	"	
Bromodichloromethane	ND	34	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
Toluene	21	19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	41	"	"	"	"	"	"	
Dibromochloromethane	ND	43	"	"	"	"	"	"	
Tetrachloroethene	13000	34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
Chlorobenzene	ND	23	"	"	"	"	"	"	
Ethylbenzene	ND	22	"	"	"	"	"	"	
m,p-Xylene	ND	44	"	"	"	"	"	"	
Styrene	ND	22	"	"	"	"	"	"	
o-Xylene	ND	22	"	"	"	"	"	"	
o-Ayiene	טויו	22							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-3 (E102047-07) Vapor Sampled: 10-Feb-2	1 Received: 10-	Feb-21							
Bromoform	ND	52	ug/m3	5	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
4-Ethyltoluene	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	190	"	"	"	"	"	"	
Hexachlorobutadiene	ND	270	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	77-1		"	"	"	"	
VP-5 (E102047-08) Vapor Sampled: 10-Feb-2	1 Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	10	ug/m3	2	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	4.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	14	"	"	"	"	"	"	
Vinyl chloride	ND	5.2	"	"	"	"	"	"	
Bromomethane	ND	32	"	"	"	"	"	"	
Chloroethane	ND	16	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	11	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	260	15	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	7.1	"	"	"	"	"	"	
Carbon disulfide	ND	13	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	16	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.2	"	"	"	"	"	"	
2-Butanone (MEK)	ND	60	"	"	"	"	"	"	
	ND	8.0	"	"	"	"	"	"	
cis-1.2-Dichloroethene		0.0		,,	"	"	,,	"	
cis-1,2-Dichloroethene Chloroform		99	"						
Chloroform	ND	9.9 11	"	"	"	"	"	"	
Chloroform 1,1,1-Trichloroethane	ND ND	11		"		"	"	" "	
Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND ND ND	11 8.2	"		"				
Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	ND ND ND ND	11 8.2 6.5	"		"				
Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND ND ND	11 8.2	"	"	" "	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-5 (E102047-08) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Bromodichloromethane	ND	14	ug/m3	2	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	17	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
Toluene	21	7.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	17	"	"	"	"	"	"	
Dibromochloromethane	ND	17	"	"	"	"	"	"	
Tetrachloroethene	3200	14	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	16	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
Chlorobenzene	ND	9.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.8	"	"	"	"	"	"	
m,p-Xylene	ND	18	"	"	"	"	"	"	
Styrene	ND	8.6	"	"	"	"	"	"	
o-Xylene	ND	8.8	"	"	"	"	"	"	
Bromoform	ND	21	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
4-Ethyltoluene	ND	10	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	75	"	"	"	"	"	"	
Hexachlorobutadiene	ND	110	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.4 %	77-1	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-8 (E102047-09) Vapor Sampled: 10-Feb-21	Received: 10-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	4.8	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	14	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	670	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
·	ND	7.7							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons Reported: 24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-8 (E102047-09) Vapor Sampled: 10-Feb	-21 Received: 10-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12316	23-Feb-21	23-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	76	134	"	"	"	"	
Surrogate: Toluene-d8		104 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.4 %	77-		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

Soil Vapor/Air Analysis by ASTM D1945M - Quality Control H&P Mobile Geochemistry, Inc.

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB11714 - GC

Analyte

 Blank (EB11714-BLK1)
 Prepared & Analyzed: 17-Feb-21

 Helium (LCC)
 ND
 0.10
 %

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB12316 - TO-15				
Blank (EB12316-BLK1)				Prepared & Analyzed: 23-Feb-
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
ichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
,1-Dichloroethene	ND	4.0	"	
,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
rans-1,2-Dichloroethene	ND	8.0	"	
,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
,1,1-Trichloroethane	ND	5.5	"	
2-Dichloroethane (EDC)	ND	4.1	"	
enzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
is-1,3-Dichloropropene	ND	4.6	"	
-Methyl-2-pentanone (MIBK)	ND	8.3	"	
rans-1,3-Dichloropropene	ND	4.6	"	
oluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,2-Tetrachloroethane	ND	7.0	"	
Chlorobenzene	ND ND	4.7	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr Project Manager: Lewis Simons

Spike

Source

Reported: 24-Feb-21 12:00

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB12316 - TO-15										
Blank (EB12316-BLK1)				Prepared &	Analyzed:	23-Feb-21				
Ethylbenzene	ND	4.4	ug/m3							
n,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
p-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
G	42.0		,,	42.7		101	76.124			
Surrogate: 1,2-Dichloroethane-d4	43.0		,,	42.7		101	76-134			
Surrogate: Toluene-d8	42.8 61.8		,,	41.6 72.6		103	78-125			
Surrogate: 4-Bromofluorobenzene	01.8			/2.0		85.2	77-127			
LCS (EB12316-BS1)				Prepared &	Analyzed:	23-Feb-21				
Dichlorodifluoromethane (F12)	100	5.0	ug/m3	101		100	59-128			
Vinyl chloride	59	2.6	"	52.0		114	64-127			
Chloroethane	58	8.0	"	53.6		109	63-127			
Trichlorofluoromethane (F11)	110	5.6	"	113		96.6	62-126			
1,1-Dichloroethene	73	4.0	"	80.8		90.4	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	140	7.7	"	155		91.6	66-126			
Methylene chloride (Dichloromethane)	58	3.5	"	70.8		81.5	62-115			
rans-1,2-Dichloroethene	68	8.0	"	80.8		84.0	67-124			
1,1-Dichloroethane	69	4.1	"	82.4		83.8	68-126			
cis-1,2-Dichloroethene	70	4.0	"	80.0		87.6	70-121			
Chloroform	92	4.9	"	99.2		92.4	68-123			
1,1,1-Trichloroethane	110	5.5	"	111		98.1	68-125			
1,2-Dichloroethane (EDC)	78	4.1	"	82.4		94.7	65-128			
Benzene	57	3.2	"	64.8		87.5	69-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Surrogate: 4-Bromofluorobenzene

Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804979 / Skypark Dr

Spike

72.6

95.4

77-127

Source

Project Manager: Lewis Simons

Reported: 24-Feb-21 12:00

RPD

%REC

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

69.2

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB12316 - TO-15										
LCS (EB12316-BS1)				Prepared &	Analyzed:	23-Feb-21				
Carbon tetrachloride	130	6.4	ug/m3	128		98.5	68-132			
Trichloroethene	110	5.5	"	110		97.7	71-123			
Toluene	70	3.8	"	76.8		90.8	66-119			
1,1,2-Trichloroethane	100	5.5	"	111		90.8	73-119			
Tetrachloroethene	130	6.9	"	138		93.8	66-124			
1,1,1,2-Tetrachloroethane	140	7.0	"	140		97.0	67-129			
Ethylbenzene	81	4.4	"	88.4		92.1	70-124			
m,p-Xylene	76	8.8	"	88.4		85.6	61-134			
o-Xylene	82	4.4	"	88.4		92.6	67-125			
1,1,2,2-Tetrachloroethane	110	7.0	"	140		79.7	65-127			
Surrogate: 1,2-Dichloroethane-d4	46.4		"	42.7		109	76-134			
Surrogate: Toluene-d8	41.5		"	41.6		99.8	78-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-12

290 Conejo Ridge Avenue, Suite 200Project Number:185804979 / Skypark DrReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 12:00

Notes and Definitions

LCC Leak Check Compound

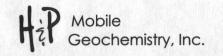
ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.


Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02-10-21
Page ___ of ___

	Lak	Client an	d Projec	t Informa	ation							9043			5	Sample	e Rec	eipt (L	ab Us	e Only	()	
Lab Client/Consultant: Stante	°c			Project Na	ame / #:	1858	10497	9						Date	Rec'd:	2/1	2	Contro	/#: C	भाग	085	5.07
Lab Client Project Manager: Lews	Sinons			Project Lo	cation:	530/	2540	skype	ark	Dr				H&P F	Project	# ST	021	221	-18	112	400	20
	ejo Ridge F	to		Report E-	Mail(s):							er ge		Lab W	Vork gr	er# E	301	BI	02	04	7	
Lab Client City, State, Zip: Thousand	oakr, CA	91361	Here was	in all the	Lew	is. sie	ions @	stante	c.car	7				REPORT AND DESCRIPTION OF THE PERSON NAMED IN	CONTRACTOR AND ADDRESS.	OCCUPATION PLANTS	THE MANUSCRIPTION	No [HEUMESCH UNG HA	AND THE RESIDENCE OF THE PARTY	STATISTICS OF THE PARTY OF THE	
Phone Number: (962) 799		Superior 1	nenga saa		ben.	chevi	en est	antec.	one				12 100	Rece	ipt Gau	ge ID:	601	-06		Temp:	7	-
Reporting Requireme		Т	urnarour	d Time			Sam	pler Info	rmatio	n				Outsio	de Lab:			00			4	
	Level IV	✓ Stand	ard (7 day	s for prelim	inary	Sampler	(s): J. /	Arelland	,				ar e	Recei	pt Note	s/Tracki	ng #:					
Excel EDD Other EDD:				or final rep		Signatur		-														
CA Geotracker Global ID:		Rush	(specify):			Date:	02-10	-21											Lab	PM Initi	ials: I	B
Additional Instructions to Labora			(-)				0 = 70														NV.	
* Preferred VOC units (please ch	oose one): Veri	fy with	ben	chevle	n per		British s	erson es dentunci emitsen	etrake Aurakan Resta	rd Full List N TO-15	ist / Project List	☐ TO-15	☐ TO-15	☐ TO-15m	Aromatic/Aliphatic Fractions 8260SVm TO-15m	ompound PA NHe	PA 8015m	Fixed Gases by ASTM D1945				
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLI Indoor Air (I/ Air (AA), Su Soil Vap	A), Ambient bslab (SS),	SIZE 8 400m Summa	AINER & TYPE L/1L/6L a, Tedlar, e, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List / Project 8260SV TO-15	Oxygenates 8260SV	Naphthalene	TPHv as Gas ☐ 8260SVm ☐ TO-15m	Aromatic/Alip	Leak Check Compound	Methane by EPA 8015m	Fixed Gases t				
VP-7		02-10-21	1115	SV		450	nd.	624	0.25	/						/						
VP-6		1	1127	1				602	0.30	1						1						
VP-4			1141					608	0.33	1						/						
VP-2			1155	Carry 1				629	14.0	1						/						
VP-1			1207					630	0.35	1						1						
VP-1 Dup			1207					603	0.38	(5						
VP-7			1222					633	0.34	/						-						
VP-5			1243					631	0.39	1						/						
VP-8		1	1704			7		635	0.26	/												
Approved/Relinquished by: Approved/Relinquished by:		Company:	ATEC	Date: 2/(D	121	Time:	415	Received by:	5. A	rella	no			Company	7:	if a	Date Date	02-10	-21	Time:	1419	5
Approved/Relinquished by:		Company		Date:		Time:		Received by:						Company	r:		Date			Time:		

FMS006 Revision: 3

Revision: 3 Revised: 1/15/2016 Effective: 1/25/2016

Page 1 of 1

Log Sheet: Soil Vapor Sampling with Helium Shroud

H&P Project #:		1- TECH/HI	8			Date:	02-10	-21			
Site Address:	2570/2540	skypark	pr	(Bobinson	(building)	Page:	1	of	/		
Consultant:						P Rep(s):	J. Arel	lano		Reviewed: EC	
Consultant Rep(s):	Bon									Scanned: Mo.	-5

Equipment Info	
Inline Gauge ID#: TOS	
Pump ID#:	
He Meter ID#: 0/7	
Shroud ID#: 047	
a the control of the	-

Purge Volume								
PV	Amount: 300 ml							
PV	Includes:							
	□ Tubing							
	☐ Sand/40%							

☐ Dry Bent 50%

MGD 2002 Helium	Detector	Calibration
	Time	Helium (%)
Calibration Standard	n/a	2.5
Opening Calibration	1050	2.7
Closing Calibration	1370	2.4
Acceptable Range	n/a	2.1 - 2.9

Shroud P	roced	lure:		
HEP	50	g		
1171	-	,		

	Sample and Summa Information							Probe Specs							Purge & Collection Information							Shroud Info		
	Point ID	Summa ID#	Sample Kit ID #	Start Time	Initial Vac ("Hg)	End / Sample Time	End Vac ("Hg)	Probe Depth (ft)	Tube Length (ft)	Tube OD (in.)	Sand Ht (in.)		Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec	1	Purge Flow Rate (mL/min)	Pump Time (min: sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☑ H ₂ O	He % Before	He % After	ppmv	Probe Pressur
1	VP-7	624	259	1111	-27	1119	0	VP	2'	5	_			-	V	200	200	-	200	0	57.3	952	0	0
2	VP-6	602	342	1123	-28	1127	0	VP	2'	_				all a	1	300	400	-	400			52.9	-	0
3	VP-4	608	188	1137	-25.9	1141	0	VP	2	_				-	/	700	200	,	200					0
4	VP-2	629	334	1151	-27	1155	0	VP	2					-	/	300	400	-	400	0	2000	54.2	1350	0
5	VP-1	630	341	1204	-28	1207	0	VP	2	_				-	1	700	200	_	200	0		51.7		0
6	VP-1 Pup	603	282	1204	-27.5	1207	0	VP	2	-					V	100	200	-	400	0	86.9	51.7	50	0
7	VP-3	633	096	1218	-29	1222	0	VP	2	l			THE SA	-	1	300	6200	-	200	0	66.2	59.8	0	0
8	VP-5	631	131	1239	-28	1243	0	VP	2	_					V	300	4200	-	200			61.2		0
9	VP-8	635	345	1301	-27	1304	0	Vp	2	_				-	~	30c	1200	_	200	0	61.3		750	0
10																					1.,			

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

#Ulent requerted probe presure reading before purge

#Attached 2' of nylaflow with I-way valve termination to Vapor pin