

Vapor Intrusion Study Report

East Adjacent Properties – Property 2 24701, 24707, and 24747 Crenshaw Boulevard Torrance, California 90505 Investigative Order No.: R4-2020-0035

March 30, 2021

Prepared for:

Magellan Aerospace, Middletown, Inc. Robinson Helicopter Company

Prepared by:

Stantec Consulting Services Inc. 290 Conejo Ridge Avenue Thousand Oaks, California 91361

Submitted to:

Mr. Kevin Lin, PE Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, California 90013

Sign-off Sheet

This document entitled *Vapor Intrusion Study Report* was prepared by Stantec Consulting Services Inc. ("Stantec") for Magellan Aerospace, Middletown, Inc. and Robinson Helicopter Company (collectively the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

02/28/23

Prepared by

Benjamin Chevlen, P.G.

Senior Geologist

Reviewed by

Kevin Miskin, P.E. Senior Principal Engineer

Approved by

Lewis D. Simons P.G. Principal Geologist

Table of Contents

EXEC	CUTIVE SUMMARY	
ABBF	REVIATIONS	
1.0	INTRODUCTION	
1.1 1.2	PURPOSE AND OBJECTIVESCOPE OF WORK	
2.0	BACKGROUND	2.1
2.1	SITE DESCRIPTION AND LAND USE	2.1
2.2	PHYSICAL SETTING	2.1
	2.2.1 Topography	2.1
	2.2.2 Site Geology	
	2.2.3 Site Hydrogeology	
2.3	HISTORICAL SITE ASSESSMENT SUMMARY	
2.4	STUDY AREA DESCRIPTION	2.4
3.0	VAPOR INTRUSION STUDY	_
3.1	PRE-FIELD ACTIVITIES	
	3.1.1 Site Access & Notification	
	3.1.2 Health and Safety Plan	
	3.1.3 Utility Locating	
3.2	VISUAL BUILDING SURVEY	
3.3	VAPOR INTRUSION SAMPLING	
	3.3.1 General Techniques and Methods	
	3.3.2 Ambient Air Sampling	
	3.3.4 Sub-Slab Vapor Probe Installation and Sampling	
3.4	LABORATORY TESTING AND DATA VALIDATION	
3.5	DEVIATIONS FROM THE WORK PLAN	
4.0	DISCUSSION OF RESULTS	4.4
4.0 4.1	BUILDING SURVEY	
4.1 4.2	AMBIENT AIR	
4.2 4.3	INDOOR AIR	
4.3 4.4	SUB-SLAB VAPOR	
5.0	CONCLUSIONS	
6.0	REFERENCES	6 1

LIST OF TABLES

Table 1 Summary of Indoor Air & Ambient Air Sample Analytical Results

Table 2 Summary of Sub-Slab Vapor Sample Analytical Results

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Vapor Intrusion Study Sample Locations

LIST OF APPENDICES

Appendix A LARWQCB Correspondences

Appendix B Historical Data

Appendix C Visual Building Survey

Appendix D Laboratory Analytical & Data Validation Reports

Executive Summary

This report was prepared on behalf of Magellan Aerospace, Middletown, Inc. (Middletown) and Robinson Helicopter Company (Robinson) by Stantec Consulting Services Inc. (Stantec) to document vapor intrusion study ("VI Study") findings at a property addressed as 24701, 24707, and 24747 Crenshaw Boulevard addresses (the Subject Property; Figure 1), collectively referred to as "Property 2" in the Los Angeles Regional Water Quality Control Board's (LARWQCB's) Investigative Order No. R4-2020-0035, dated May 12, 2020.

The LARWQCB has been overseeing environmental investigations at the Hi-Shear Corporation's (Hi-Shear's) facility located at 2600 Skypark Drive in Torrance, California (Site Cleanup Program [SCP] No. 0218) and at properties adjacent to the Hi-Shear facility which are identified as the East Adjacent Properties of Hi-Shear Corporation (EA Properties [SCP No. 1481]). Property 2, or the Subject Property, is one of the EA Properties.

The VI Study was conducted pursuant to the investigative order and was performed to evaluate whether the presence of subsurface VOCs potentially posed a vapor intrusion risk to Site workers. The VI Study scope of work included:

- Conducting a non-intrusive visual building survey;
- Collecting three outdoor ambient air samples;
- · Collecting ten indoor air samples;
- Installing and sampling ten sub-slab vapor probes;
- Collecting pressure/vacuum measurements from the installed sub-slab vapor probes;
- Analyzing ambient air, indoor air, and sub-slab vapor samples for VOCs; and
- Preparing this report summarizing the VI Study procedures and findings.

Stantec compared the ambient air, indoor air, and sub-slab vapor analytical data to the following screening criteria:

- United States Environmental Protection Agency, Region 9, Regional Screening Levels (RSLs) for Indoor Air for Target Cancer Risk (TR) = 1E-06, Target Hazard Quotient (THQ) = 1.0, and industrial land use (November 2020); and
- California Environmental Protection Agency, Department of Toxic Substances Control Human and Ecological Risk Office (HERO), Human Health Risk Assessment Note Number 3, Modified Screening Levels (SLs) for Indoor Air (June 2020) for commercial/industrial land use.

Twelve (12) VOCs were reported above laboratory reporting limits in sub-slab samples. Of these, only three VOCs (chloroform, tetrachloroethene [PCE], and trichloroethene [TCE] were reported above sub-

i

slab screening levels using a conservative attenuation factor of 0.03. Eighteen (18) VOCs were reported in at least one indoor air sample. Of these, only benzene, chloroform, and ethylbenzene were reported above the commercial industrial screening level. Based on the data collected by Stantec, the following conclusions are made with respect to the five analytes detected in indoor air and/or sub-slab vapor samples at concentrations in excess of their respective RSLs and/or SLs:

- Benzene is present in indoor and outdoor ambient air at similar concentrations. A comparison of
 indoor air data to ambient air data suggests the benzene concentrations observed in indoor air
 are not originating subsurface vapors, or from the indoor building space, but rather are reflective
 of background ambient air conditions in the vicinity of the Subject Property.
- Ethylbenzene is present in one indoor air sample (IA-7) at a concentration exceeding the RSL; however, ethylbenzene was not detected in any of the sub-slab samples above the laboratory reporting limit (<4.4 µg/m³). The ethylbenzene concentrations in indoor air do not appear to be originating from sub-slab vapor.
- Chloroform is present in four indoor air samples (IA-6, IA-7, IA-8, and IA-10) above the RSLs. However, the collocated sub-slab samples did not report chloroform above the laboratory reporting limit (<4.9 μg/m³). Chloroform was reported above the RSL (using an attenuation factor of 0.03) at two of the sub-slab vapor samples (VP-3 and VP-4); however, chloroform was not reported above the laboratory reporting limit in either of the corresponding indoor air samples. Chloroform does not appear to be originating from vapor intrusion but likely from other sources.
- PCE was reported above the SL at all 10 sub-slab vapor sample locations; however, PCE was
 not detected in any of the indoor samples at concentrations exceeding the SL. Further, PCE was
 not detected above the laboratory reporting limit at 7 of the 10 indoor air sample locations. Of the
 sample locations in which PCE was detected in the collected indoor samples, the ratio of indoor
 air to sub-slab PCE concentrations ranged from 0.0008 to 0.0203, with a mean ratio of 0.0077.
- TCE was reported above the RSL in 7 of the 10 sub-slab sample locations; however, TCE was
 not detected in any of the indoor samples at concentrations exceeding the RSL. Further, TCE
 was not detected above the laboratory reporting limit at 8 of the 10 indoor air sample locations.
 Of the sample locations in which TCE was detected in the collected indoor samples (IA-7 and IA10), the ratio of indoor air to sub-slab TCE concentrations were 0.0042 and 0.0022, respectively.

Based on evaluation of the data, this study did not find evidence of a significant vapor intrusion pathway of concern. The primary constituents of potential concern (COPCs) for vapor intrusion are PCE and TCE; however, neither of these was reported above the chronic SL or RSL. Stantec opines that vapor intrusion is not a pathway of exposure of concern for other COPCs detected in indoor air, and that most of these COPCs are likely the result of sources other than intrusion from the subsurface.

ii

Abbreviations

AA Ambient air

bgs Below ground surface

Cal-EPA California Environmental Protection Agency

COC Chain-of-custody

COPCs Constituents of potential concern

Dasco Dasco Engineering Corporation

DCE Dichloroethene

DTSC California Department of Toxic Substances Control EA Properties East-Adjacent Properties of Hi-Shear Corporation

ESA Environmental Site Assessment

ft Feet

FREY Frey Environmental Inc.

GER Genesis Engineering & Redevelopment

HASP Health and safety plan
H&P Mobile Geochemistry

HERO DTSC Human and Ecological Risk Office

HHRA Human health risk assessment

Hi-Shear Corporation

HVAC Heating, ventilation and air conditioning

IA Indoor air in Inch

LARWQCB Los Angeles Regional Water Quality Control Board

LRL Laboratory Reporting Limit

Middletown Magellan Aerospace, Middletown, Inc.

mL Milliliter

msl Mean seal level

μg/m³ Micrograms per cubic meter

PCE Tetrachloroethene

RSLs USEPA Region 9 Regional Screening Levels

Robinson Helicopter Company

SCP Site Cleanup Program

Stantec Stantec Consulting Services, Inc.

SLs Cal-EPA, DTSC, HERO, HHRA Note Number 3, Screening Levels

(June 2020)

TCE Trichloroethylene

USEPA United States Environmental Protection Agency

VOCs Volatile organic compounds

VI Vapor intrusion

VP Sub-slab vapor probe μg/L Micrograms per liter

μg/m³ Micrograms per cubic meter

Introduction

1.0 INTRODUCTION

This report documents vapor intrusion study ("VI Study") activities performed at a property addressed as 24701, 24707, and 24747 Crenshaw Boulevard (the Subject Property) which is also referred to as "Property 2" in the Los Angeles Regional Water Quality Control Board's (LARWQCB's) Investigative Order No. R4-2020-0035, dated May 12, 2020 (included in Appendix A). The completed scope of work was originally proposed in Stantec's *Vapor Intrusion Investigation Workplan*, dated August 25, 2020 (Stantec, 2020), which was approved, with modifications, in a LARWQCB letter dated October 6, 2020 (Appendix A). An extension to the original January 20, 2021 reporting deadline was subsequently approved in a LARWQCB letter dated February 24, 2021 (Appendix A).

The LARWQCB has been overseeing environmental investigations at the Hi-Shear Corporation's (Hi-Shear's) facility located at 2600 Skypark Drive in Torrance, California (Site Cleanup Program [SCP] No. 0218) and at properties adjacent to the Hi-Shear facility which are identified as the East Adjacent Properties of Hi-Shear Corporation (EA Properties [SCP No. 1481]). Property 2, or the Subject Property, is one of the EA Properties. Based on previous environmental investigations at both the Hi-Shear and EA Properties, it has been determined that volatile organic compounds (VOCs) are widely found in subsurface media. To further evaluate VOCs in the subsurface, LARWQCB issued an investigative order to multiple parties near the Hi-Shear facility, including the Subject Property.

1.1 PURPOSE AND OBJECTIVE

The VI Study was conducted to evaluate the vapor intrusion exposure pathway, as it relates to the migration of vapor-phase VOCs through the soil and into the indoor air environment at the Subject Property.

The objectives of the VI Study of the Site Investigation were to provide sufficient data to 1) evaluate the contribution of VOCs from VI to indoor air, and 2) provide information to assess the risk to Site workers' health from VI.

1.2 SCOPE OF WORK

The VI Study scope of work included:

- Collecting three outdoor ambient air samples;
- Collecting ten indoor air samples (plus a replicate);
- Installing and sampling ten sub-slab vapor probes (plus a replicate sample);
- Collecting pressure/vacuum measurements from the installed sub-slab vapor probes;
- Analyzing ambient air, indoor air, and sub-slab vapor samples for VOCs; and
- Preparing this report summarizing the VI Study procedures and findings.

Background

2.0 BACKGROUND

The following sections provide a brief description of the Subject Property, physical conditions (topography, geology, and hydrogeology), a summary of the environmental history, and a description of the VI Study area.

2.1 SITE DESCRIPTION AND LAND USE

The Subject Property (herein referred to as Property 2) consists of interconnected buildings located at 24701, 24707, and 24747 Crenshaw Boulevard in Torrance, California. Property 2 is part of a larger 27-acre parcel (Assessor Identification Number 7377-006-906) owned by the City of Torrance, which includes the Hi-Shear facility, the EA Properties, and the Torrance Airport. The Subject Property is located in a predominantly commercial and light industrial area.

Frey Environmental Inc. (Frey) reportedly prepared a *Phase I Environmental Site Assessment* (ESA) report, dated September 14, 2015 for the 24701 and 24747 Crenshaw Boulevard (both part of Property 2) and 2530 and 2540 Skypark Drive (Property 3) addresses. While the complete Phase I ESA was not available to Stantec for review, a summary of findings was presented in Frey's *Evaluation of Subsurface VOCs*, dated February 23, 2018 (Frey, 2018). The Phase I ESA noted that aerospace and manufacturing industries had occupied the building addresses since the 1960s, and that VOCs were potentially utilized during the various manufacturing processes and generated heavy metal products, byproducts, and wastes. The Phase I ESA also documented the use of petroleum-based products by current building occupants and visible staining of concrete in the 24747 Crenshaw Boulevard (Property 2) building and exterior yard space.

2.2 PHYSICAL SETTING

2.2.1 Topography

The Subject Property is situated at an elevation of approximately 81 to 83 feet (ft) above mean sea level (msl). The topography slopes gently towards the north. The Subject Property is bounded by Crenshaw Boulevard to the east and Skypark Drive to the north. The Subject Property is bounded to the south by a car dealership facility (Property 1 of the EA Properties), and to the west by a commercial/industrial manufacturing facility (Property 3 of the EA Properties).

2.2.2 Site Geology

A more detailed discussion of regional and local geology is presented in Sections 2.2 and 2.3 of Genesis Engineering & Redevelopment's (GER's) *Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report*, dated July 3, 2020 (GER, 2020). GER described soils beneath the project area in four units as follows:

Background

- Unit 1: Silt and clay are predominant in the upper 15 to 25 feet of sediment with interbedded lenses of fat clay. This unit is generally uniform in thickness throughout the area; however, it thickens to 35 feet in the southwest part of the investigation area.
- Unit 2: This unit consists of primarily silty sand which grades to sand to the north along Crenshaw Boulevard. This unit extends to a depth of 40 to 50 feet below the ground surface ("bgs") and has a corresponding thickness between 20 feet and 30 feet.
- Unit 3: This unit consists generally of silt, clay, and fat clay that varies in thickness between 5 feet and 15 feet. Unit 3 is interbedded with clayey sand, silty sand, and/or sand layers that range in thickness between 1 foot and 3 feet. In the borings adjacent to Crenshaw Boulevard perched groundwater has occasionally been observed on top of Unit 3 or within the unit's interbeds. This unit is not as laterally continuous as are Units 1, 2, and 4 and tends to pinch out in areas resulting in windows that interconnect Unit 2 with Unit 4.
- Unit 4: Unit 4 is dominated by poorly graded to well graded sands and silty sand with interbedded 1 to 2-foot-thick layers of clayey sand. This unit is first encountered at a depth of 55 feet to 65 feet bgs and extends below the water table to at least 265 feet bgs. Occasional 1 to 3 foot thick discontinuous layers of silty sand and clayey sand occur throughout the unit. Heaving sands are encountered below the water table throughout the unit starting at approximately 110 feet bgs.

2.2.3 Site Hydrogeology

As presented in Sections 2.2 and 2.3 of GER's report (GER, 2020), the Gage Aquifer is present at a depth of approximately 90 feet bgs with a thickness of approximately 100 feet in the vicinity of Property 2 and is comprised primarily of sand. A perched water layer was reported by GER at a depth of approximately 60 feet bgs in the vicinity of the EA Properties, with the static water table being encountered at a depth of approximately 90 feet bgs. Groundwater generally flows to the southeast beneath Property 2. As presented in GER's Second Semi-Annual 2020 Groundwater Monitoring Report, dated February 18, 2021 (GER, 2021), groundwater elevations observed in the Hi-Shear groundwater monitoring well network have been steadily increasing since at least 2007, with average groundwater elevations increasing by approximately one foot per year since 2014.

2.3 HISTORICAL SITE ASSESSMENT SUMMARY

Stantec understands that multiple rounds of soil, groundwater, and soil vapor assessment have been performed on the Hi-Shear and EA Properties (including Property 2) by Hi-Shear's consultants. Reports documenting these assessment activities are available on the State Water Resources Control Board's online GeoTracker database page for SCP No. 0218 (https://geotracker.waterboards.ca.gov/profile_report.asp?global_id=SL204231523). The most recent report documenting environmental assessment activities at Property 2 and the surrounding parcels is GER's *Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report* (GER, 2020). A copy of a figure depicting the sample locations, as well as tables summarizing the collected analytical data are attached in Appendix B. The

Background

following summarizes key findings of GER as they relate to Property 2 (determined to be vapor probe locations VP-31, VP-105, and VP-133):

- To date, no investigations have identified VOCs in soil samples beneath Property 2 that indicate an on-site VOC source. As identified in GER's Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III - Interim Report (GER, 2020) - the highest concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) in on-site soil are 0.010 milligrams per kilogram (mg/kg) and 0.013 mg/kg, respectively (both of which are below applicable commercial/industrial screening criteria). In contrast, PCE and TCE concentrations in soil beneath the adjacent upgradient Hi-Shear property have been detected at concentrations as high as 1,600 mg/kg and 5,500 mg/kg, respectively (in HS3 at 50 feet bgs), as documented in Camp Dresser & McKee Inc.'s Report of Subsurface Soil Investigation at Hi-Shear Torrance Facility, dated May 15, 1991. Overall, the observed increasing concentration trend in soil vapor with depth, a general absence of VOCs in shallow soil beneath Property 2 and known sources/releases of PCE (and other VOCs) at the adjacent/upgradient Hi-Shear property suggest that VOC impacts beneath Property 2 (and the EA Properties, more generally) are the result of releases that have occurred at off-site locations. Potential off-site sources include not just the adjacent Hi-Shear property, but also the Torrance Airport. No significant detections of PCE, TCE, or other chlorinated solvents were identified in collected soil samples that would suggest a release on Property 2.
- Based on data presented in GER's Second Semi-Annual 2020 Groundwater Monitoring Report (GER, 2021), one groundwater monitoring well (MW-12) is located on the western corner of Property 2. During a December 26, 2019 groundwater sampling event, the sample collected from MW-12 contained PCE and TCE at concentrations of 100 micrograms per liter (μg/L) and 10,000 μg/L, respectively. It should be noted that well MW-12 is screened from approximately 88 to 113 feet bgs. During the December 26, 2019 groundwater sampling event, GER observed the groundwater gradient to be towards the southeast (away from the Hi-Shear property and towards Properties 1, 2 and 3, which would be directly downgradient of GER's reported groundwater gradient and flow direction).
- When reviewing data collected from Property 2, the highest detected concentrations of PCE and TCE in soil vapor were observed by GER in VP-133 at concentrations of 250,000 micrograms per cubic meter (µg/m³ [at a depth of 65 feet bgs]) and 280,000 µg/m³ (at a depth of 85 feet bgs), respectively. A review of data presented in GER's report indicates that most of the collected soil vapor data on the EA Properties (including Property 2) exhibits increasing concentrations with depth suggests that the observed impacts are volatilizing from groundwater and/or the deep smear-zone as a result of fluctuations in groundwater levels over time.

In summary, based on the available data, the elevated vapor-phase concentrations of VOCs historically detected beneath Property 2 appear to represent volatilization of contaminants in groundwater, or in smear-zone soils resulting from impacted groundwater (adsorption to soils), rather than from a release at Property 2.

Background

2.4 STUDY AREA DESCRIPTION

Property 2 is improved with a large slab-on-grade building occupying a footprint of approximately 50,000 square feet. The building was reportedly constructed in the 1950s and is currently configured primarily for manufacturing. Adjoining the manufacturing space is a two-story building space comprised of office suites. There is an additional external office suite along the north side of the Subject Property adjacent to Skypark Drive that was observed by Stantec to be undergoing remodeling (new paint, flooring, etc.). The building is constructed over a slab-on-grade foundation and is bordered by asphalt or concrete pavement on all sides.

Vapor Intrusion Study

3.0 VAPOR INTRUSION STUDY

Based on previous work performed by others, the primary constituents of potential concern (COPCs) for this investigation, as defined and determined by GER's *Soil, Soil Vapor, and Groundwater Evaluation Delineation Module III – Interim Report* (GER, 2020) are PCE, TCE cis-1,2 dichloroethene (DCE), trans-1,2 DCE, 1,1-DCE, and vinyl chloride.

As presented in Table 2 of GER's 2020 report, vapor phase COPC concentrations increase with depth to groundwater, with the highest observed concentrations being detected in soil vapor samples collected directly above groundwater; suggesting COPCs are partitioning from groundwater and/or smear-zone soils (interval of groundwater fluctuations within the lower vadose zone). Similarly, soil analytical data presented in Table 3 of GER's 2020 report (presented in Appendix B) suggests that the bulk of COPCs adsorbed to soil beneath Property 2 are constrained to smear-zone soils. Accordingly, the secondary source mass of the COPCs detected in groundwater and/or smear-zone soils are likely to be the primary source of COPCs in vapor phase below the Subject Property building.

Of the identified COPCs, PCE and TCE are the primary risk-driver based on prevalence, concentration, and toxicity. While Stantec's Work Plan (Stantec, 2020) proposed limiting the analysis of the collected samples to the identified COPCs, in the LARWQCB's October 6, 2020 response letter, the LARWQCB requested that the collected samples be analyzed for the full suite of VOCs.

The following sub-sections describe the general methodology implemented for the VI Study along with a summary of deviations from the approved scope of work.

3.1 PRE-FIELD ACTIVITIES

3.1.1 Site Access & Notification

Access agreements were requested from Robinson and DASCO Engineering Corporation (DASCO [as a Subject Property tenant]) to perform the proposed scope of work. Advanced scheduling and notification of sampling in and on private property was provided to the owners and occupants of buildings. Advanced work notice was provided to the LARWQCB on February 2, 2021 prior to commencing with the sampling activities.

3.1.2 Health and Safety Plan

A Site-specific Health and Safety Plan (HASP) was prepared as required by the State of California General Industry Safety Order 5192 and Title 29 of the Code of Federal Regulations, Section 1910.120. The HASP outlined potential hazards to Stantec personnel and subcontractors during planned field activities. The HASP also included required personal protective equipment to be worn by field personnel for each task. A copy of the HASP was available on-site during all field activities.

Vapor Intrusion Study

3.1.3 Utility Locating

A private utility locating subcontractor was contracted to evaluate each of the proposed sub-slab sampling locations for subsurface features that may potentially interfere with the proposed sampling activities.

3.2 VISUAL BUILDING SURVEY

A building inspection was conducted on January 27, 2021 to assess building construction characteristics, heating, ventilation, and air conditioning system characteristics, building use and occupancy, chemical use and storage areas, and floor penetrations and other preferential pathways for vapor intrusion. A copy of the completed inspection survey is included in Appendix C. The building survey was utilized to facilitate the final selection of co-located indoor air and sub-slab sampling locations, as depicted on Figure 3.

3.3 VAPOR INTRUSION SAMPLING

Ambient air, indoor air, and sub-slab vapor samples were collected to assess indoor air concentrations and evaluate whether VOCs appear to be intruding into the Subject Property building from the subsurface. Three outdoor ambient air (AA-1 through AA-3) samples, and ten co-located indoor air and sub-slab vapor sampling points (IA-1/VP-1 through IA-10/VP-10) were collected at the locations depicted on Figure 3. The ambient air and indoor air samples were collected on February 5, 2021, while the sub-slab vapor samples were collected on February 11, 2021.

3.3.1 General Techniques and Methods

3.3.1.1 Sample Collection Documentation

Field Forms

Several forms and the daily field log/report comprise the field record for the VI Study. Examples of various types of field forms include:

- Daily field notes;
- HASP tailgate safety meeting;
- · Chain-of-custody forms; and
- Sample collections logs.

Field Notes

Field notes were collected during the field work and contains pertinent information regarding the Subject Property conditions and sampling procedures implemented during the field VI Study. Information contained in the field notes included the date, time, location, and unique sample identifier, media sampled and description, analyses to be performed, observations, and any identified deviations from the Work Plan and the rationale for the deviation.

Vapor Intrusion Study

Chain-of-Custody

Chain-of-custody (COC) procedures were used to document the custody, control, transfer, and requested analysis of the samples collected as part of the VI Study. The COC included sample identifiers, media sampled, container type and volume, and analyses to be performed. Signatures (relinquished by, received by) on the COC forms were made in ink and included the date and time of signature. COCs accompanied samples from the time of collection to delivery to the laboratory. Copies of the COC forms are included with the laboratory reports in Appendix D.

Sample Identification

Samples were labeled, with the unique sample identifier, sample time and sample date recorded on the label. Samples were generally identified with the following sample ID nomenclature:

- The sample media or type is indicated by the first two letters as follows:
 - o AA: Ambient Air
 - o IA: Indoor Air
 - o VP: Sub-slab vapor
- The "####" represents a sequential numerical identifier for the Subject Property location number, based on the sample locations.

Photographic Documentation

As permitted, sampling locations were documented with photographs. The photographic record of the sampling event allows positive identification of the sampling point and shows existing conditions of the area before drilling activities and following the installation of the sub-slab vapor probes.

3.3.1.2 Equipment Decontamination

Single-use, disposable vapor sample tubing was used at each sampling point to avoid cross contamination. All sample containers and additional sampling apparatus were provided by the laboratory subcontractor and certified clean for the COPCs of this VI Study, and not reused between sampling point or mobilization prior to returning to the laboratory for cleaning.

3.3.2 Ambient Air Sampling

To understand ambient conditions, and for comparative purposes, Stantec's subcontractor (H&P Mobile Geochemistry [H&P]) collected three outdoor ambient air samples during this VI Study (Figure 3) to ensure samples were collected both upwind and downwind of the Subject Property building. To maintain quality assurance, the ambient air samples were collected at the same time as the indoor air samples and were outfitted with flow-controllers set at the same flow rate as the corresponding indoor air samples (8-hours for commercial sampling). The ambient air sampling containers' inlet tubing were located within the typical breathing zone height for adults, approximately 4 to 5 ft above the ground. The initial vacuum of each canister was checked to assure that the canister had not leaked during transport from the laboratory

Vapor Intrusion Study

to the sampling location. Throughout the sampling period, Stantec staff, or Stantec's air sampling subcontractor, periodically checked the vacuum gauges on the canisters to ensure that the canisters were sampling at the appropriate rate and operating properly. At the end of sample collection, the canister valve was closed before the vacuum reached zero vacuum. All samples were subsequently analyzed by H&P at their laboratory.

3.3.3 Indoor Air Sampling

Indoor air samples were collected from 10 locations within the Subject Property building to evaluate the VI exposure pathway. Due to the Subject Property being an active manufacturing facility, it was not possible to remove the chemicals utilized as part of the Subject Property's ongoing manufacturing and general business activities from the building prior to sampling.

In addition to the 10 indoor air samples, one replicate sample was also collected. The sample locations are shown as the locations depicted on Figure 3. Indoor air samples were collected over an 8-hour sampling period utilizing laboratory provided, individually certified 6-liter Summa[®] canisters. Indoor air sampling container inlets were located within the typical breathing zone, approximately 4 ft above the ground level flooring. The initial vacuum of each canister was checked to assure that the canister had not leaked during transport from the laboratory to the sampling location. During the sampling period, Stantec staff periodically checked, as allowed by the tenant, the vacuum readings of the canisters to ensure that the canisters were operating properly and sampling at the appropriate rate. Upon arrival at H&P's laboratory, H&P staff confirmed that the canisters still exhibited a vacuum. Since none of the sample canisters had final vacuum readings that had reached zero, all submitted samples were subsequently analyzed by H&P.

3.3.4 Sub-Slab Vapor Probe Installation and Sampling

Ten (10) semi-permanent sub-slab vapor probes were installed on the ground level of the Subject Property building by H&P. The locations of the probes were selected based on building features, flooring material, and observations and input from facility personnel during a Site walk with the property owner and building tenant representatives in advance of the installation. Initial soil vapor probe installation and subsequent sample collection activities were performed after the indoor air sampling had been completed to avoid the potential for introducing subsurface vapors into indoor air samples.

3.3.4.1 Probe Installation

Sub-slab vapor probes were installed at 10 locations using the following process:

• An approximate 1.5-inch (in) diameter hole was advanced approximately two inches into the building concrete slab. A smaller-diameter hole (approximately 5/8-in diameter) was advanced in the center of the 1.5-in hole and through the building concrete slab, and approximately three inches into underlying soils using a rotary hammer drill. Dust and loose cuttings generated during drilling were collected with a portable vacuum, and care was taken to avoid applying suction directly to the hole.

Vapor Intrusion Study

• Sub-slab vapor probes were constructed using Vapor Pins® manufactured by Cox-Colvin. The probe assembly was fitted with the manufacturer-supplied silicon sleeve to ensure an air-tight fit and then driven into the 5/8-in diameter hole in the concrete slab and inset into the 1.5-in-diameter hole. After installation and following sampling, a silicone cap was placed on the sub-slab sampling port to keep sub-slab vapors from migrating into the indoor air, and a plastic cover cap was placed over the sample port to protect from foot traffic, where applicable.

3.3.4.2 Leak Testing

A shut-in test was conducted on the purge syringe by closing all the sampling valves and applying a vacuum of 100 inches-of-water-column using a 60-milliliter (mL) gas-tight syringe to verify that no leaks in the sample train were present. Shut-in tests were also conducted on the 450 mL sample canisters to assure that there were not leaks in the sampling train connections.

During sampling leak checks were performed by placing a helium shroud around the sampling setup to test for leaks in the sampling train. A helium tracer gas was contained in the shroud placed over the subslab vapor probe location and the entire sample train. The sampling shroud was equipped with a port to facilitate the purging of the sub-slab vapor probe and the use of an in-line helium detector, a tracer gas injection port, and a switch to facilitate actuating the sampling train's three-way valve located inside the sampling shroud. Inside the sampling shroud was the sub-slab vapor probe, the sampling train (including the Summa® canister) and a helium detector. Helium was then injected into the sampling shroud and the measured concentration on the in-shroud helium detector was recorded.

3.3.4.3 Purging

After the sampling equipment passed the shut-in test, the probe was purged to remove internal air from the sample train (tubing and sub-slab implant only). Three internal volumes were purged from each sampling probe using a 60-mL gas-tight syringe. The flow rate during purging was approximately equivalent to the flow rate during sampling at not more than 200 mL/minute (approximately 20 seconds to fill a 60-mL syringe), which is set by the flow controller provided by the laboratory. Each probe was sampled immediately following purging.

3.3.4.4 Sample Collection

Initial sub-slab vapor sampling was performed following a minimum equilibration period of 2 hours. A total of 10 sub-slab vapor samples (plus one replicate) were collected during this VI Study. The sub-slab vapor samples were collected using batch-certified 450-mL Summa® canisters, which were obtained from the project laboratory with the proper vacuum of approximately 30 inches-of-mercury. Teflon® or nylon tubing was used to connect the sub-slab sampling port to the sample containers fitted with flow regulators restricting flow to less than 200 mL/minute and an in-line particulate filter. The canister valve was closed when the laboratory-supplied analog vacuum gauge registered zero.

Vapor Intrusion Study

3.4 LABORATORY TESTING AND DATA VALIDATION

VI Study ambient air, indoor air, and sub-slab vapor samples were submitted to H&P under COC for analysis of full-scan VOCs by United States Environmental Protection Agency (USEPA) Test Method TO-15. Collected sub-slab vapor samples were also analyzed for helium by ASTM International (ASTM) Test Method D1945M. H&P reviewed the reported sample collection details, reported analytical results, and reported quality control results (including equipment blanks and laboratory control samples); the results of which indicate that no data were rejected, and the data are suitable for their intended purpose. Refer to Appendix D for additional data validation information.

3.5 DEVIATIONS FROM THE WORK PLAN

The following is a summary of Work Plan deviations and modifications related to the VI Study:

- Sample Location Addendum: Due to difficulties in securing access, and the desire to complete the work as soon as possible, the results of the building survey and chemical use inventory, along with selected indoor and outdoor air sample locations were not presented in an addendum submitted to the LARWQCB prior to collecting the indoor air and sub-slab vapor samples. Stantec staff involved in the project's management met with the field staff to discuss the findings of the visual building survey, and considered ongoing business operations when selecting the sampling locations. Accordingly, the deviation is not expected to have a significant impact on the findings from the completed scope of work.
- Differential Pressure Monitoring: The Work Plan proposed the collection of differential
 pressures during the completion of the indoor air sampling activities. Due to the desire to avoid
 the potential for introducing subsurface vapors into indoor air samples, the sub-slab vapor pins
 were not installed until after the indoor air sampling work was completed. It should be noted that
 none of the sub-slab vapor pins exhibited differing vapor probe pressures.
- Sub-Slab Vapor Sampling: The Work Plan proposed the use of a water dam at each sub-slab vapor sampling location as an additional measure to seal and isolate the sub-slab environment from the indoor air environment. In some instances, the water dam would have interfered with sampling. Therefore, all samples were collected utilizing a helium shroud without the extra precaution of a water dam.

There were no other significant deviations from the Work Plan.

Discussion of Results

4.0 DISCUSSION OF RESULTS

The following sections summarize the results of the building survey and the subsequent ambient air, indoor air, and sub-slab vapor sampling activities. The Subject Property building is utilized for commercial purposes; accordingly, screening levels established for commercial/industrial land use were utilized in this VI study.

Screening levels are conservative guidelines used as initial screening tools to assess chemical vapor concentrations below and inside buildings. When a chemical is found at a level above its screening level it does not necessarily indicate that VI is occurring or that there is a significant health risk. However, it does suggest further investigation may be beneficial, as the COPCs are also found in many industrial and household products including, cleaners, adhesives, glues, etc.

These screening criteria are derived from the following sources:

- The USEPA, Region 9, Regional Screening Levels (RSLs) for Indoor Air for Target Cancer Risk (TR) = 1E-06, Target Hazard Quotient (THQ) = 1.0, and industrial land use (November 2020); and
- California Environmental Protection Agency (Cal-EPA), Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO), Human Health Risk Assessment Note Number 3, Modified Screening Levels (SLs) for Indoor Air (June 2020) for commercial/industrial land use.

Sub-slab vapor COPC results were compared to the RSLs and SLs referenced above utilizing a conservative attenuation factor of 0.03 (Table 2). In instances in which a COPC has both an RSL and an SL, the COPC concentrations were compared to the more conservative SL. Similarly, in instances in which a COPC had both carcinogenic and non-carcinogenic RSLs and/or SLs, the more conservative value was utilized.

4.1 BUILDING SURVEY

Stantec performed an initial non-invasive visual inspection of the Subject Property building on January 27, 2021. The main building space, with a footprint of approximately 190 feet by 210 feet, is primarily utilized for manufacturing purposes. Stantec staff noted that the area's ventilation was provided by 14 passive roof vents and the flooring consisted of bare concrete that exhibited significant staining. The presumed source of the staining is cutting oils that would be utilized by the drills, lathes, and computer numerical control (CNC) machines occupying the manufacturing space. A smaller manufacturing space located in the northern portion of the Subject Property (see sampling locations IA-9/VP-9 on Figure 3) was observed to have concrete flooring that exhibited less staining than the main manufacturing space.

Adjacent to the manufacturing space is a two-story building space comprised of office suites. There was an additional external single-story office suite along the north side of the Subject Property adjacent to

Discussion of Results

Skypark Drive that was observed to be undergoing remodeling (new paint, flooring, etc.). Stantec subsequently collected indoor air and sub-slab vapor samples from within the ground floor of the two-story building space and adjacent single-story office suite. The office space was the only portion of the building observed to have a forced air heating and cooling system.

During the January 27, 2021 visual building survey, Stantec staff did not have the opportunity to inspect any chemical storage areas. Based on a 2018 Chemical Use and Storage Questionnaire prepared for the Subject Property by DASCO, there is a chemical storage lockup cabinet in the northwest corner of the smaller manufacturing space (to the northwest of IA-9/VP-9), and an outdoor hazardous material and hazardous waste storage area located by the western corner of the Subject Property building (near ambient air sample location AA-2). While no large slab penetrations (those greater than 1-foot across) were identified, a determination could not be made as to whether smaller slab penetrations were present.

A copy of the completed visual building survey form is included in Appendix C.

4.2 AMBIENT AIR

Ambient air samples were collected during the indoor air sampling event for comparative purposes to indoor air quality. As presented on Table 1, 11 COPCs reported above laboratory reporting limits (LRLs) in ambient air: 2-butanone, benzene, carbon tetrachloride, chloromethane, ethylbenzene, methylene chloride, toluene, trichlorofluoromethane, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene. Only benzene was reported in the ambient air samples above the SL (0.42 μ g/m³) at concentrations ranging from 0.65 μ g/m³ to 0.91 μ g/m³. Ambient air sampling locations are presented on Figure 3. A copy of the associated laboratory analytical report and H&P's sample collection field notes are included in Appendix D.

4.3 INDOOR AIR

As presented on Table 1, 18 COPCs were reported above LRLs in indoor air: 2-butanone, benzene, carbon tetrachloride, chloroform, chloromethane, 1,4-dichlorobenzene, ethylbenzene, 4-methyl-2-pentanone, methylene chloride, styrene, PCE, TCE, toluene, trichlorofluoromethane, 1,1,2-trichlorotrifluoroethane, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene. Of these COPCs, only three were detected in one or more indoor air samples at concentrations exceeding their respective RSLs and/or SLs.

- **Benzene** was reported above its SL of 0.42 μg/m³ in all indoor air samples at concentrations ranging from 0.61 μg/m³ to 0.94 μg/m³, but was consistent with outdoor ambient air sample concentrations which ranged from 0.65 μg/m³ to 0.91 μg/m³. None of the concentrations exceed the RSL of 1.6 μg/m³. Stantec concludes that indoor benzene concentrations are reflective of ambient air conditions and not the result of VI.
- Chloroform was reported in indoor air samples IA-6 through IA-8 and IA-10 at concentrations
 (0.59 μg/m³ to 1.7 μg/m³) above the RSL of 0.53 μg/m³ (no SL has been established for
 chloroform); however, the lack of detected chloroform concentrations in the collocated sub-slab

Discussion of Results

samples (VP-6 through VP-8 and VP-10) suggest the observed indoor air concentrations are the result of sources other than VI.

• Ethylbenzene was reported in one sample (IA-7) at a concentration (8.3 μg/m³) that exceeded the respective RSL of 4.9 μg/m³ (no SL has been established for ethylbenzene); however, the absence of detected ethylbenzene concentrations in the collocated sub-slab sample (VP-7) suggest the observed indoor air concentration at this location is due to sources other than VI.

Indoor air data is summarized on Table 1, while a copy of the associated laboratory analytical report and H&P's sample collection field notes are included in Appendix D.

4.4 SUB-SLAB VAPOR

As presented on Table 2, 12 COPCs were reported above LRLs in sub-slab vapor samples: 2-butanone, benzene, chloroform, 1,1-dichloroethene, 4-methyl-2-pentanone, PCE, TCE, toluene, 1,1,1-trichloroethane, trichlorofluoromethane, 1,1,2-trichlorotrifluoroethane, and m,p-xylene. However, only three of the COPCs were reported above their respective RSLs and/or SLs (utilizing an attenuation factor of 0.03).

- Chloroform was reported in sub-slab samples VP-3 and VP-4 at 18 μg/m³ and 200 μg/m³, respectively, equaling or exceeding the RSL of 18 μg/m³. However, chloroform was not detected above the LRL in the collocated indoor air samples (IA-3 and IA-4). Chloroform concentrations observed at VP-3 and VP-4 do not appear to be contributing to indoor air.
- PCE was reported in all of the collected sub-slab vapor samples at concentrations ranging from 69 μg/m³ to 44,000 μg/m³, which are above the SL of 67 μg/m³ in all collected samples; however, PCE was only detected in three indoor air samples (IA-7, IA-8, and IA-10), and the reported indoor air concentrations in all instances were below the established SL of 2.0 μg/m³. Furthermore, the collocated indoor air sample (IA-3) from the location with the highest reported sub-slab vapor PCE concentration (44,000 μg/m³ in VP-3) did not contain PCE at a concentration at or above the LRL of 0.69 μg/m³. Based on the collected data, if VI is occurring, PCE concentrations in indoor air do not exceed the chronic SL.
- TCE was reported in the collected sub-slab vapor samples at concentrations ranging from 16 μg/m³ to 20,000 μg/m³. The reported concentrations exceeded the RSL of 67 μg/m³ in sub-slab vapor samples collected from VP-1 through VP-4, VP-7, and VP-10; however, TCE was not detected above the RSL of 3.0 μg/m³ in any of the samples. Based on the collected data, if VI is occurring TCE concentrations in indoor air do not exceed the chronic RSL.

Sub-slab vapor data is summarized on Table 2, while a copy of the associated laboratory analytical report and H&P's sample collection field notes are included in Appendix D.

The ratio of indoor air to sub-slab PCE concentrations ranged from 0.0008 to 0.0023 with a mean ratio of 0.0077. Similarly, the ratio of indoor air to sub-slab TCE concentrations ranged from 0.0022 to 0.0042.

Discussion of Results

Based on the observed indoor air to sub-slab PCE and TCE ratios, the use of an attenuation factor of 0.03 to assess sub-slab screening levels is extremely conservative.

Based on the collected data, if VI is occurring, PCE and TCE concentrations in indoor air do not exceed the chronic RSLs and/or SLs.

Additionally, as part of the sampling process, H&P staff affixed analog pressure gauges to each of the installed sub-slab vapor probes to evaluate the building space for potential differences in sub-slab vapor pressures; in all instances, the sub-slab vapor probes registered a probe pressure of "zero", suggesting differential pressure conditions in sub-slab vapor beneath the Subject Property building are not present.

Conclusions

5.0 CONCLUSIONS

The VI Study was conducted pursuant to the investigative order and was performed to evaluate whether the presence of subsurface VOCs potentially posed a vapor intrusion risk to Site workers. Based on a review of the collected ambient air, indoor air, and sub-slab vapor samples, Stantec's conclusions regarding the COPCs identified in one or more samples at concentrations exceeding their respective RSLs and/or SLs are as follows:

- Benzene is present in indoor and outdoor ambient air at similar concentrations. A comparison of
 indoor air data to ambient air data suggests the benzene concentrations observed in indoor air
 are not originating subsurface vapors, or from the indoor building space, but rather are reflective
 of background ambient air conditions in the vicinity of the Subject Property.
- Ethylbenzene is present in one indoor air sample (IA-7) at a concentration exceeding the RSL; however, ethylbenzene was not detected in any of the sub-slab samples above the laboratory reporting limit (<4.4 μg/m³). The ethylbenzene concentrations in indoor air do not appear to be originating from sub-slab vapor.
- Chloroform is present in four indoor air samples (IA-6, IA-7, IA-8, and IA-10) above the RSLs. However, the collocated sub-slab samples did not report chloroform above the laboratory reporting limit (<4.9 µg/m³). Chloroform was reported above the RSL at two of the sub-slab vapor samples (VP-3 and VP-4); however, chloroform was not reported above the laboratory reporting limit in either of the collocated indoor air samples. Chloroform does not appear to be originating from vapor intrusion but likely from other sources. Chloroform is known to be an artifact in water treatment and may be associated with treated water sources.
- PCE was reported above the SL at all 10 sub-slab vapor sample locations; however, PCE was
 not detected in any of the indoor samples at concentrations exceeding the SL. Further, PCE was
 not detected above the laboratory reporting limit at 7 of the 10 indoor air sample locations. Of the
 sample locations in which PCE was detected in the collected indoor samples, the ratio of indoor
 air to sub-slab PCE concentrations ranged from 0.0008 to 0.0203, with a mean ratio of 0.0077.
- TCE was reported above the RSL in 7 of the 10 sub-slab sample locations; however, TCE was not detected in any of the indoor samples at concentrations exceeding the RSL. Further, TCE was not detected above the laboratory reporting limit at 8 of the 10 indoor air sample locations. Of the sample locations in which TCE was detected in the collected indoor samples (IA-7 and IA-10), the ratio of indoor air to sub-slab TCE concentrations were 0.0042 and 0.0022, respectively.

Based on evaluation of the data, this study did not find evidence of a significant vapor intrusion pathway of concern. The primary COPCs for vapor intrusion are PCE and TCE. However, neither of these was reported above the chronic SL or RSL. Stantec opines that vapor intrusion is not a pathway of exposure of concern for other COPCs detected in indoor air, and that most of these COPCs are likely the result of sources other than intrusion from the subsurface.

6.0 REFERENCES

- Alta Environmental, 2014. *Additional Soil Gas Survey Report*, Hi-Shear Corporation, 2600 Skypark Drive, Torrance, California. September 4.
- California Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO), 2011. "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" October.
- DTSC HERO, 2014. "Human Health Risk Assessment HERO Note 5 Health-Based Indoor Air Screening Criteria for Trichloroethylene (TCE)," August 23.
- DTSC, 2015, Advisory Active Soil Gas Investigations. July.
- DTSC HERO, 2020. "Human Health Risk Assessment HERO Note 3 DTSC-Modified Screening Levels," June.
- California State Water Resources Control Board, 2021. Geotracker website, http://geotracker.waterboards.ca.gov/, March 11.
- Camp Dresser & McKee Inc., 1991, Report of Subsurface Soil Investigation at the Hi-Shear Torrance Facility, 2600 Skypark Drive, Torrance, California. May 15.
- Frey Environmental, Inc., 2018, *Evaluation of Subsurface VOCs*, 24701-24747 Crenshaw Boulevard & 2530-2540 Skypark Drive, Torrance, California. February 23.
- Genesis Engineering & Redevelopment (GER), 2020. Soil, Soil Vapor, and Groundwater Evaluation

 Delineation Module III Interim Report, Skypark-Crenshaw Environmental Task Force. July 3.
- GER, 2021. Second Semi-Annual 2020 Groundwater Monitoring Report, Hi-Shear Corporation, 2600 Skypark Drive, Torrance, California. February 18.
- Stantec Consulting Services Inc., 2020. *Vapor Intrusion Investigation Work Plan*, East Adjacent Properties Property 2, 24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California, August 25.
- United States Environmental Protection Agency (USEPA), 2020. Regional Screening Levels (RSLs), https://semspub.epa.gov/work/HQ/400431.pdf, November.

(2)

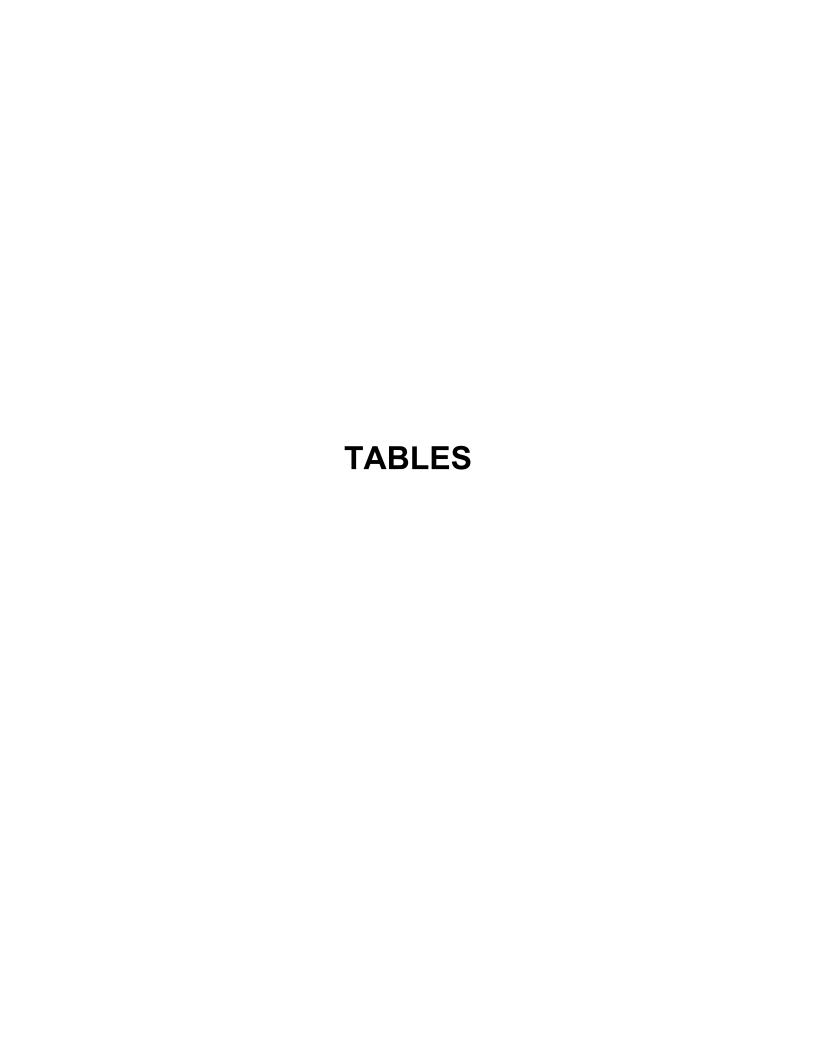


TABLE 1
Summary of Indoor Air & Ambient Air Sample Analytical Results
Property 2
24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

Sample Location	Date Sampled	2-Butanone	Benzene	Carbon tetrachloride	Chloroform	Chloromethane	E 3 3 6 6 6	m, 1,1-Dichloroethene	Ethylbenzene	4-Methyl-2-pentanone	Methylene chloride	Styrene	B PC H	(ug/m³)	Toluene	for 1,1,1-Trichloroethane	final Trichlorofluoromethane	find 1,1,2-Trichlorotrifluoroethane	E 1,2,4-Trimethylbenzene	ad/m,p-Xylene	o-Xylene	All Other VOCs
EPA Reg.	9 RSL (Industrial) ¹	(ug/m²) 22,000	(ug/m³) 1.6	(ug/m³) 2.0	(ug/m²) 0.53	(ug/m³)	(ug/m²) 1.1	(ug/m ²) 880	(ug/m²) 4.9	(ug/m³) 13,000	(ug/m³) 1,200	(ug/m²) 4,400	(ug/m³) 47	3.0	(ug/m³) 22,000	(ug/m²) 22,000	(ug/m²)	22,000	(ug/m³) 260	(ug/m²) 440	(ug/m³) 440	(ug/m³) various
DTSC SL (Commercial/Industrial) ²			0.42	2.0				310			12	3,900	2.0		1,300	4,400	5,300					various
Indoor Air Samples	· · · · · · · · · · · · · · · · · · ·																					
IA-1	02/05/21	74	0.71	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.8	<0.55	0.96	<0.77	0.85	1.5	0.62	ND
IA-2	02/05/21	86	0.74	0.51	0.30	1.1	<0.61	<0.40	<0.44	<0.83	0.56	< 0.43	<0.69	<0.55	1.3	<0.55	0.96	<0.77	0.55	1.2	0.48	ND
IA-2-DUP	02/05/21	85	0.61	0.51	0.30	1.0	<0.61	<0.40	<0.44	<0.83	0.49	<0.43	<0.69	<0.55	1.3	<0.55	1.1	<0.77	0.65	1.2	0.53	ND
IA-3	02/05/21	32	0.65	0.51	<0.25	1.3	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.4	<0.55	1.2	<0.77	0.70	1.2	0.53	ND
IA-4	02/05/21	52	0.68	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.56	<0.43	<0.69	<0.55	1.4	<0.55	0.90	<0.77	0.65	1.4	0.53	ND
IA-5	02/05/21	45	0.61	0.45	<0.25	0.95	<0.61	<0.40	<0.44	<0.83	0.53	<0.43	<0.69	<0.55	1.2	<0.55	0.85	<0.77	0.55	1.1	0.44	ND
IA-6	02/05/21	120	0.68	0.51	1.7	1.1	<0.61	<0.40	0.57	<0.83	0.56	< 0.43	<0.69	<0.55	1.9	<0.55	0.85	<0.77	0.60	2.2	0.79	ND
IA-7	02/05/21	300	0.81	0.57	0.59	1.2	<0.61	<0.40	8.3	4.1	0.60	< 0.43	1.7	1.3	5.1	<0.55	1.2	0.77	0.65	30	8.2	ND
IA-8	02/05/21	220	0.91	0.64	0.69	1.5	<1.2	<0.80	<0.88	<1.7	0.99	<0.86	1.4	<1.1	3.5	<1.1	1.4	<1.5	<1.0	3.3	1.3	ND
IA-9	02/05/21	390	0.81	0.57	0.44	1.2	<0.61	<0.40	1.5	1.2	0.74	<0.43	<0.69	<0.55	3.5	<0.55	1.2	0.93	1.2	5.7	1.9	ND
IA-10	02/05/21	230	0.94	0.64	0.89	1.5	0.79	<0.40	0.97	0.83	0.95	0.91	1.9	0.71	4.2	<0.55	1.4	1.6	0.95	3.6	1.3	ND
Ambient Air Sampl		200	0.54	0.04	0.03	1.0	0.70	-0.40	0.07	0.00	0.00	0.01	1.0	0.71	7.2	-0.00	1	1.0	0.00	0.0	1.0	I
AA-1	02/05/21	1.2	0.81	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.71	<0.43	<0.69	<0.55	1.6	<0.55	1.2	<0.77	0.50	1.1	0.44	ND
AA-2	02/05/21	3.9	0.65	0.51	<0.25	1.2	<0.61	<0.40	<0.44	<0.83	0.53	<0.43	<0.69	<0.55	1.5	<0.55	0.96	<0.77	0.60	1.1	0.48	ND
AA-3	02/05/21	5.9	0.91	0.51	<0.25	1.2	<0.61	<0.40	0.48	<0.83	0.63	<0.43	<0.69	<0.55	2.1	<0.55	1.2	<0.77	0.70	1.7	0.70	ND

Notes:

Analysis for full-scan VOCs by USEPA Test Method TO-15.

PCE = Tetrachloroethene

TCE = Trichloroethene

VOC = Volatile organic compound

ug/m³ = Micrograms per cubic meter

ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample

< = Analyte not reported at or above the laboratory's reporting limit

-- = Not analyzed or not applicable

Bold concentrations represent detections exceeding established screening level.

^{1 =} US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), November 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.

^{2 =} Department of Toxic Substances Control HERO Note 3, Table 1 - DTSC Recommended Screening Levels for Indoor Air, June 2020; the lower of the carcinogenic and non-carcinogenic values is listed for each analyte.

TABLE 2 Summary of Sub-Slab Vapor Sample Analytical Results Property 2 24701, 24707, and 24747 Crenshaw Boulevard, Torrance, California 90505

Sample Location	Date Sampled	2-Butanone	Benzene	Carbon tetrachloride	Chloroform	Chloromethane	1,4-Dichlorobenzene	1,1-Dichloroethene	Ethylbenzene	4-Methyl-2-pentanone	Methylene chloride	Styrene	PCE	TCE	Toluene	1,1,1-Trichloroethane	Trichlorofluoromethane	1,1,2- Trichlorotrifluoroethane	1,2,4-Trimethylbenzene	m,p-Xylene	o-Xylene	All Other VOCs	Helium (LCC)
		(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)	(ug/m³)		(ug/m³)	(%)
· ·	9 RSL (Industrial) ¹	733,000	53	67 67	18	13,000	37	29,333	163	433,000	40,000 400	146,666 130.000	1,570	100	733,000	733,000	176.667	733,000	8,670	14,700	14,700	various	
VP-1	nercial/Industrial) ² 02/11/21	82	14 <3.2	<6.4	<4.9	<2.1	 <12	10,333	<4.4	 <8.3	<3.5	<4.3	67 2,700	900	43,333 10	146,666 33	176,667 18	450	<5.0	<8.8	<4.4	various ND	<0.10
VP-2 VP-2-DUP	02/11/21 02/11/21	<30 <30	<3.2 <3.2	<6.4 <6.4	8.6 8.7	<2.1 <2.1	<12 <12	140 130	<4.4 <4.4	<8.3 <8.3	<3.5 <3.5	<4.3 <4.3	1,800	910 960	6.0	6.6 6.6	<5.6 <5.6	190 170	<5.0 <5.0	<8.8 <8.8	<4.4 <4.4	ND ND	0.13 <0.10
VP-2-DUP	02/11/21	<30	<3.2	<0.4	0.7	< 2.1	<1Z	130	<4.4	<0.3	<3.5	<4.3	1,900	960	6.3	0.0	<5.0	170	<5.0	<0.0	<4.4	ND	<0.10
VP-3	02/11/21	<30	13	<6.4	18	<2.1	<12	360	<4.4	<8.3	<3.5	<4.3	44,000	20,000	6.8	35	11	290	<5.0	<8.8	<4.4	ND	0.13
VP-4	02/11/21	75	6.8	<6.4	200	<2.1	<12	230	<4.4	<8.3	<3.5	<4.3	7,300	4,600	29	7.8	8.3	560	<5.0	15	<4.4	ND	0.16
VP-5	02/11/21	45	3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	<8.3	<3.5	<4.3	2,400	35	20	43	12	1,000	<5.0	12	<4.4	ND	<0.10
VP-6	02/11/21	42	<3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	<8.3	<3.5	<4.3	900	64	9.5	<5.5	<5.6	250	<5.0	<8.8>	<4.4	ND	<0.10
VP-7	02/11/21	47	<3.2	<6.4	<4.9	<2.1	<12	100	<4.4	<8.3	<3.5	<4.3	2,200	310	10	<5.5	13	920	<5.0	9.5	<4.4	ND	<0.10
VP-8	02/11/21	50	<3.2	<6.4	<4.9	<2.1	<12	<4.1	<4.4	<8.3	<3.5	<4.3	69	16	6.6	<5.5	<5.6	25	<5.0	<8.8	<4.4	ND	<0.10
VP-9	02/11/21	150	<3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	9.0	<3.5	<4.3	1,200	61	16	<5.5	10	1,500	<5.0	12	<4.4	ND	<0.10
VP-10	02/11/21	87	<3.2	<6.4	<4.9	<2.1	<12	<4.0	<4.4	<8.3	<3.5	<4.3	1,000	320	10	<5.5	<5.6	500	<5.0	9.1	<4.4	ND	<0.10

Notes:

Analysis for full-scan VOCs by USEPA Test Method TO-15, and for helium by ASTM Method D1945M.

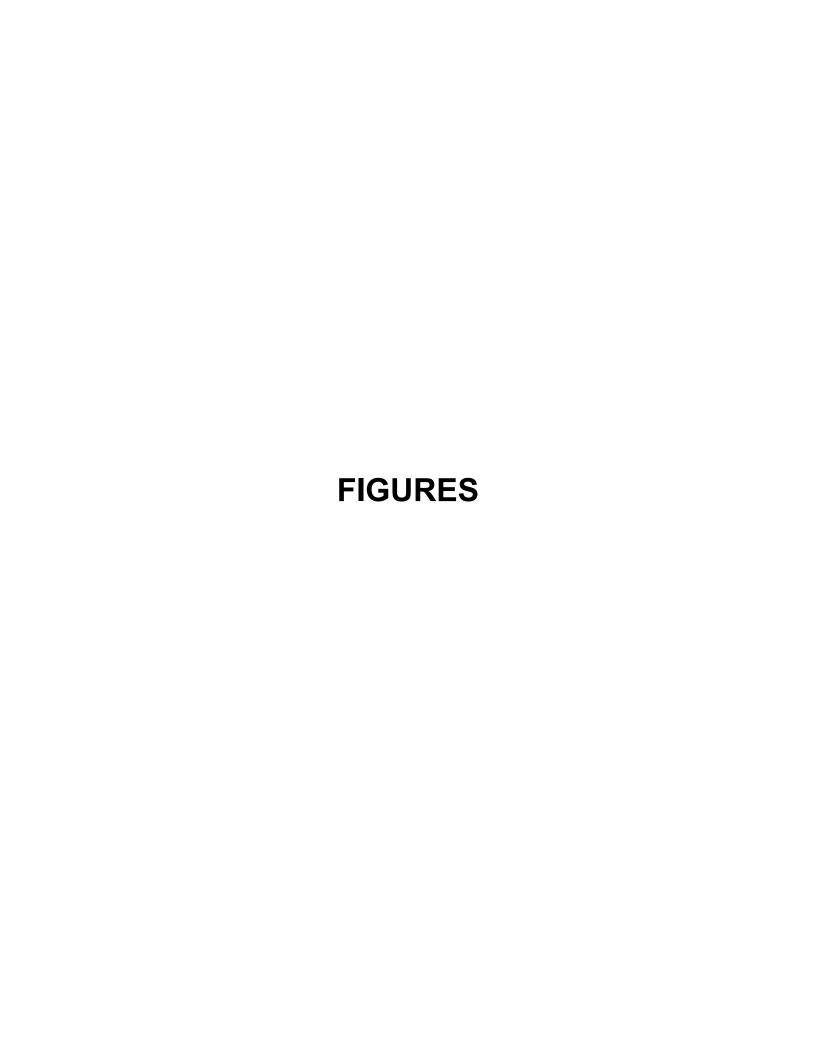
PCE = Tetrachloroethene

TCE = Trichloroethene

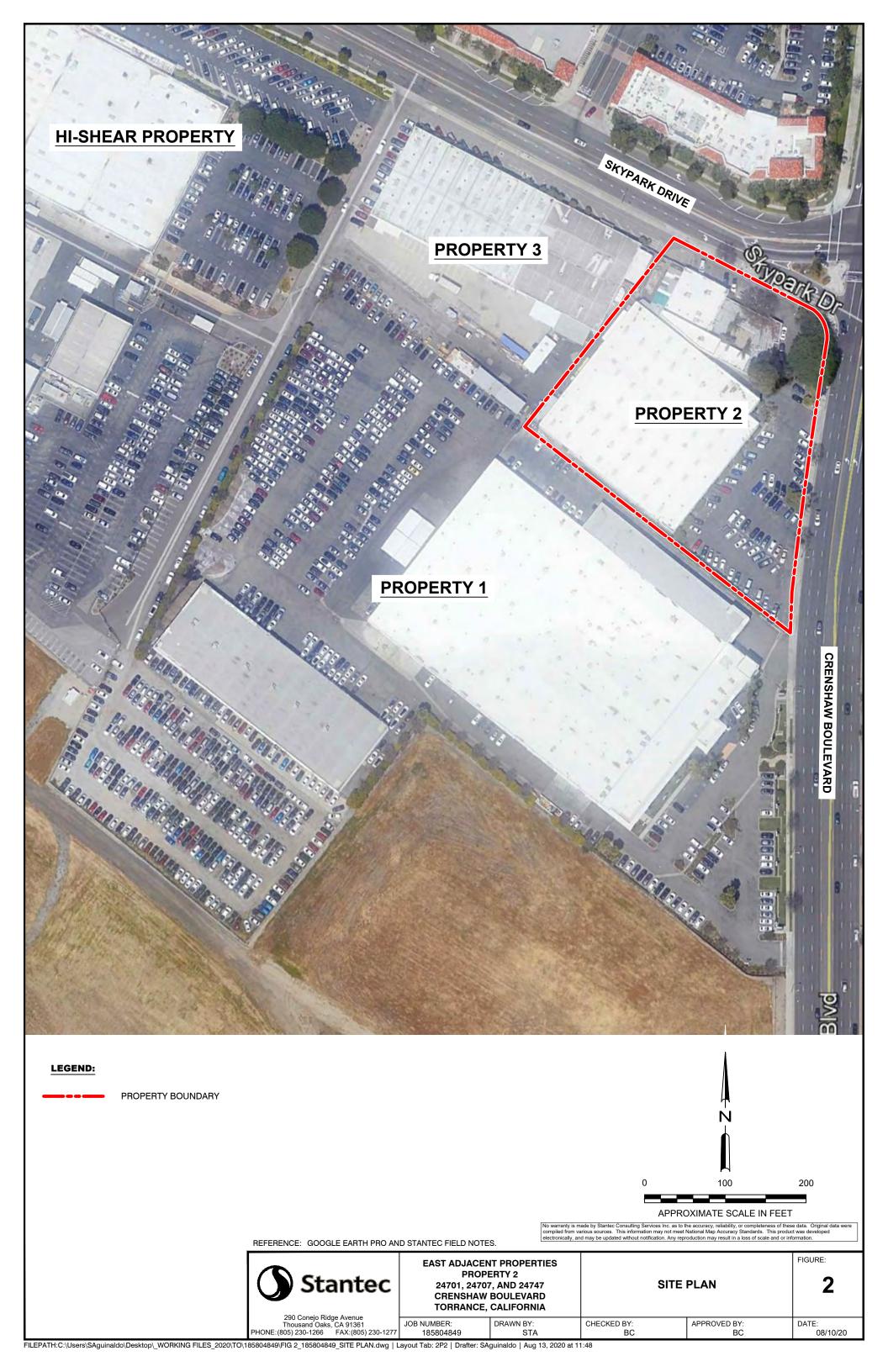
VOC = Volatile organic compound

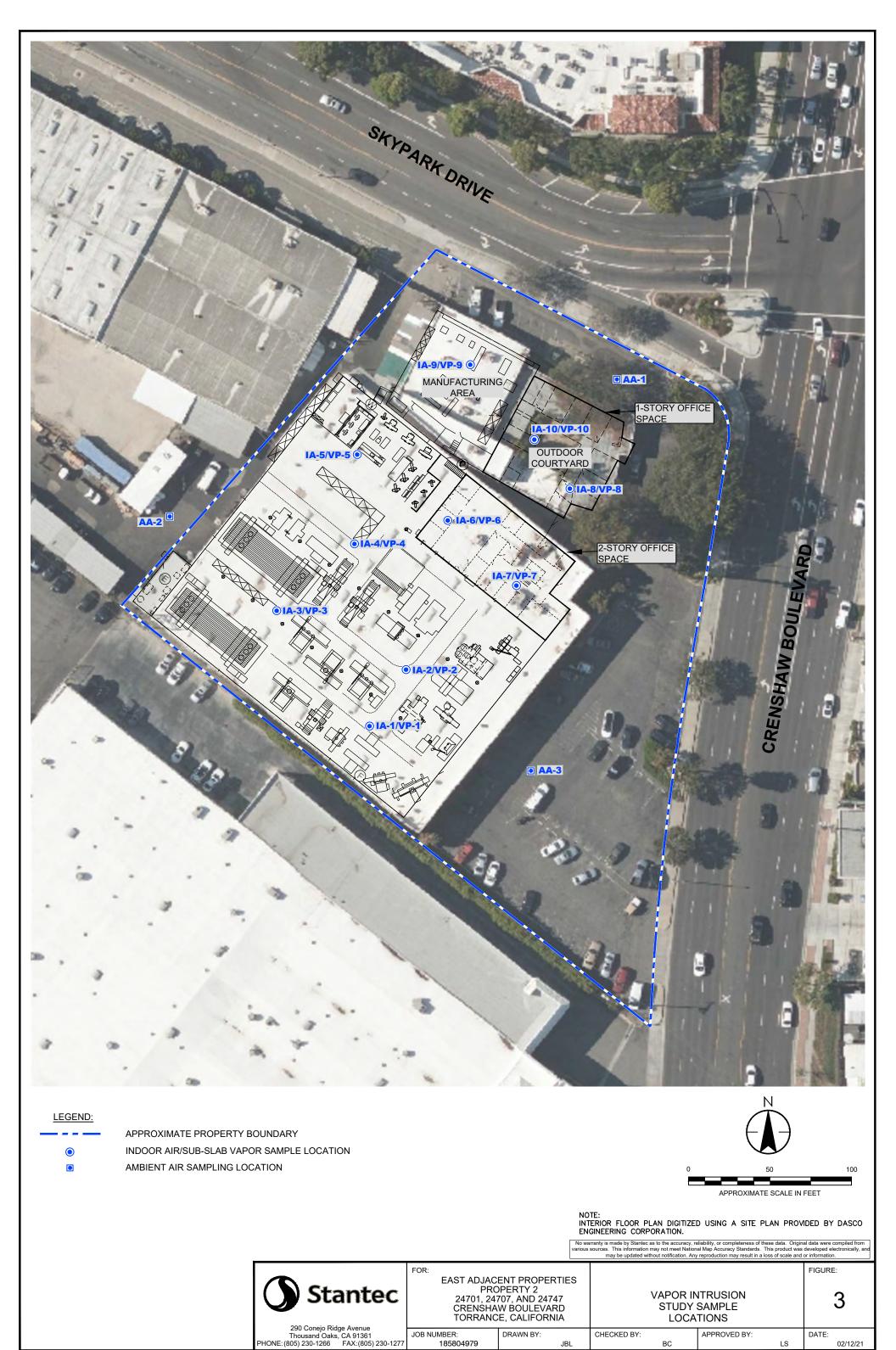
LCC = Leak-check compound

ug/m³ = Micrograms per cubic meter


ND = Not detected at or above the laboratory's reporting limit

DUP = Duplicate sample


- < = Analyte not reported at or above the laboratory's reporting limit
- -- = Not analyzed or not applicable


Bold concentrations represent detections exceeding established screening level.

- 1 = US Environmental Protection Agency Region 9 Regional Screening Levels for Indoor Air (TR=1E-06, HQ=1), November 2020 with an attenuation factor of 0.03 was utilized to calculate the listed values. The lower of the carcinogenic and non-carcinogenic values was utilized for each analyte.
- 2 = Department of Toxic Substances Control HERO Note 3, Table 1 DTSC Recommended Screening Levels for Indoor Air, June 2020 with an attenuation factor of 0.03 was utilized to calculate the listed values. The lower of the carcinogenic and non-carcinogenic values was utilized for each analyte.

APPENDIX A

LARWQCB Correspondences

Los Angeles Regional Water Quality Control Board

INVESTIGATIVE ORDER NO. R4-2020-0035

CALIFORNIA WATER CODE SECTION 13267 ORDER

ORDER TO PROVIDE A TECHNICAL WORK PLAN TO ASSESS VAPOR INTRUSION RISK IN INDOOR AIR AND TO IMPLEMENT A VAPOR INTRUSION RESPONSE PLAN

DIRECTED TO THE CITY OF TORRANCE

MAGELLAN AEROSPACE, MIDDLETOWN, INC. (FORMERLY KNOWN AS AERONCA, INC., FORMERLY KNOWN AS AERONCA MANUFACTURING CORPORATION)

EXCELLON INDUSTRIES, INC. (ALSO KNOWN AS EXCELLON AUTOMATION COMPANY AND NOW KNOWN AS EXCELLON TECHNOLOGIES, LLC)

ESTERLINE TECHNOLOGIES CORPORATION

ROBINSON HELICOPTER COMPANY

DASCO ENGINEERING CORPORATION

HI-SHEAR CORPORATION (ALSO KNOWN AS LISI AEROSPACE)

SKYPARK COMMERCIAL PROPERTIES

NORTHEAST PORTION OF CITY OF TORRANCE PARCEL
ASSESSOR PARCEL NO. 7377-006-906
24751 CRENSHAW BOULEVARD, TORRANCE, CALIFORNIA
24777 CRENSHAW BOULEVARD, TORRANCE, CALIFORNIA
24707 CRENSHAW BOULEVARD, TORRANCE, CALIFORNIA
24747 CRENSHAW BOULEVARD, TORRANCE, CALIFORNIA
24701 CRENSHAW BOULEVARD, TORRANCE, CALIFORNIA
2530 SKYPARK DRIVE, TORRANCE, CALIFORNIA
2540 SKYPARK DRIVE, TORRANCE, CALIFORNIA

(SCP NO. 1499)

ON MAY 12, 2020

IRMA MUÑOZ, CHAIR | RENEE PURDY, EXECUTIVE OFFICER

The California Regional Water Quality Control Board, Los Angeles Region (Regional Board) makes the following findings and issues this Order pursuant to California Water Code (CWC) section 13267 requiring the City of Torrance; Magellan Aerospace, Middletown, Inc. (formerly known as Aeronca, Inc. formerly known as Aeronca Manufacturing Corporation); Excellon Industries, Inc. (also known as Excellon Automation Company and now known as Excellon Technologies, LLC); Esterline Technologies Corporation; Robinson Helicopter Company; Dasco Engineering Corporation; and Hi-Shear Corporation (also known as Lisi Aerospace) (hereinafter collectively referred to as Parties) to assess the vapor intrusion risk to indoor air at the properties located at 24751, 24777, 24707, 24747, and 24701 Crenshaw Boulevard and 2530, 2540, and 2600 Skypark Drive in the City of Torrance (hereinafter collectively referred to as the "Site") and properties off-Site. Volatile organic compounds (VOCs), primarily trichloroethene (TCE) and tetrachloroethene (PCE), are among the chemicals of concern.

- 1. The Site is approximately 27 acres in size and is located on the northeast portion of assessor parcel number (APN) 7377-006-906 in Torrance, California shown in Attachment 1. The Site envelops existing Regional Board cases Hi-Shear Corporation (Hi-Shear; Global ID No. SL204231523; Site ID No. 2042300; File SCP No. 0218) and East Adjacent Properties of Hi-Shear Corporation (EA Properties; Global ID No. T10000013835; File SCP No. 1481). The entire parcel APN 7377-006-906, including the Site, is owned by the City of Torrance and has been primarily leased to aviation or aerospace-related companies since 1954.
- 2. The following is a summary of the current and former occupants and the historical property use for the Hi-Shear Corporation property and the EA Properties.
 - A. Hi-Shear Corporation (Hi-Shear) is located at 2600 Skypark Drive and occupies the western half of the Site. Hi-Shear has been an occupant as early as 1954. Activities performed on the property include the manufacture, production, assembly and cleaning of fasteners for the aerospace industry. Wastes generated as part of the activities contained VOCs, primarily TCE and PCE. Maximum historical soil PCE and TCE concentrations detected beneath the Hi-Shear property are 3,200,000 micrograms per kilogram (μg/kg) and 7,200,000 μg/kg, respectively.
 - B. EA Properties are located at 24751, 24777, 24707, 24747, and 24701 Crenshaw Boulevard, and at 2530 and 2540 Skypark Drive and occupy the eastern half of the Site. EA Properties consist of Property 1 (24751 and 24777 Crenshaw Boulevard), Property 2 (24707, 24747 and 24701 Crenshaw Boulevard), and Property 3 (2530 and 2540 Skypark Drive).
 - i. Property 1 occupants include: Aeronca, Inc. (a manufacturer of aircraft, missiles and their components from 1954 to 1987), Excellon

Industries, Inc., an Esterline Company, also known as Excellon Automation Company (a manufacturer of printed circuit board fabrication equipment from 1979 to 2003), and South Bay Lexus (a vehicle dealership from 2006 to present). Wastes generated as part of the historical occupants' activities contained PCE, 1,1,1-trichloroethane (1,1,1-TCA), trichlorotrifluoroethane, alkaline and solvent mixtures, waste oil mixtures, and organic waste mixtures.

- ii. Property 2 occupants include: Aeronca, Inc. (a manufacturer of aircraft, missiles and their components from 1966 to 1973), Robinson Helicopter Company (a manufacturer of rotorcraft and related components from 1978 to 1996), and Dasco Engineering Corporation (a manufacturer of precision mechanical aircraft and space components from 1995 to present).
- iii. Property 3 has been occupied by Robinson Helicopter from 1978 to present. The occupant has used the property to operate paint spray booths and store solvents.

Maximum historical soil PCE and TCE concentrations detected beneath the EA Properties are 3,390 µg/kg and 223 µg/kg, respectively.

- 3. Under the oversight of this Regional Board, Hi-Shear has been implementing onsite and offsite investigations and interim mitigation measures under a Water Code section 13267 Order dated October 29, 2009. The most recent investigations completed are documented in the technical reports titled, "Soil, Soil Vapor, and Groundwater Delineation Module I" (Module I) dated March 13, 2020 and "Soil, Soil Vapor, and Groundwater Delineation Report Module II" (Module II) dated March 16, 2020, prepared by Genesis Engineering and Redevelopment, Inc. (Genesis) on behalf of Hi-Shear. Additionally, on March 20, 2020, Genesis submitted the "Vapor Intrusion Response Plan" (VIRP), which proposes response actions to assess vapor intrusion risk based on the VOCs detected in soil vapor in the residential and commercial areas located east of Crenshaw Boulevard. A summary of Module I, Module II and the VIRP is provided below.
 - A. Module I documented the results of the soil vapor assessment east of Crenshaw Boulevard (i.e., off-Site into the City of Torrance and City of Lomita neighborhoods). Soil vapor sample results indicated elevated concentrations of VOCs in the area between Crenshaw Boulevard and Pennsylvania Avenue, and the area between Amsler Avenue and in the vicinity of 247th Street. Additional delineation and the implementation of the VIRP are warranted to fully assess and address potential threats to human health and the environment.

- B. Module II documented the results of the soil and soil vapor assessment on the Hi-Shear property. Soil vapor sample results indicated elevated concentrations of VOCs on the eastern and western portions of the Hi-Shear property, converging towards the center of the property. The restart of the soil vapor extraction system and an indoor air assessment are warranted.
- C. The VIRP provides the criteria and sequence for response actions and proposed further soil vapor, sub-slab vapor, and indoor air sampling for VOCs at residential and commercial properties east of Crenshaw Boulevard. The Regional Board is in the process of reviewing the VIRP.
- 4. On January 13, 2020, the Regional Board issued a Water Code section 13267 Order to the City of Torrance; Magellan Aerospace, Middletown, Inc. (formerly known as Aeronca, Inc. formerly known as Aeronca Manufacturing Corporation); Excellon Industries, Inc. (also known as Excellon Automation Company and now known as Excellon Technologies, LLC); Esterline Technologies Corporation; Robinson Helicopter Company; and Dasco Engineering Corporation for the EA Properties to submit a technical work plan for the complete delineation of the vertical and lateral extent of VOCs impacts to soil, soil vapor, and groundwater onsite and offsite. This Order discusses the relationship of each of the parties to the various properties and identifies reasons why each is a suspected discharger. To date, the EA Properties have not submitted the required work plan which was due on April 3, 2020.
- 5. On March 6, 2020, the Regional Board issued an amendment to a Water Code section 13267 Order, requiring Hi-Shear to submit an indoor air sampling and analysis plan to assess the vapor intrusion risk for occupants on the Hi-Shear property. On April 28, 2020, the Regional Board received the "Onsite Indoor Assessment Workplan."
- 6. California Water Code (CWC) section 13267, subdivision (b)(1) states, in part:

"In conducting an investigation specified in subdivision (a), the regional board may require that any person who has discharged, discharges, or is suspected of having discharged or, discharging, or who proposes to discharge waste within its region, or any citizen or domiciliary, or political agency or entity of this state who has discharged, discharges, or is suspected of having discharged or discharging, or who proposes to discharge waste outside of its region that could affect the quality of waters within its region shall furnish, under penalty of perjury, technical or monitoring program reports which the regional board requires. The burden, including costs, of these reports shall bear a reasonable relationship to the need for the reports and the benefits to be obtained from the reports. In requiring those reports, the regional board shall provide the person

with a written explanation with regard to the need for the reports and shall identify the evidence that supports requiring that person to provide the reports."

7. The Regional Board has evidence in the case file for the Site and data collected as part of Hi-Shear's ongoing investigations and interim mitigation measures indicating that there was a discharge of waste at or from the Site that continues to migrate unabated. The discharge of waste poses a potential vapor intrusion risk to on-Site and off-Site occupants that has not been assessed or evaluated. For the purposes of the findings of this Order, pertinent historical report(s) and the most recently available soil vapor data at depths of 5 and 15 feet below ground surface (ft-bgs) from the Module I and Module II reports were reviewed. These depths are consistent with the "Public Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion" (Supplemental Guidance), prepared by Department of Toxic Substances Control (DTSC) and California Water Resources Control Boards dated February 2020. For ease of reference, the soil vapor data is summarized below by the following locations – Hi-Shear, EA Properties, and off-Site in the City of Torrance and City of Lomita neighborhoods.

A. Hi-Shear

- Maximum soil vapor PCE and TCE concentrations at 5 ft-bgs are 2,850,000 micrograms per cubic meter (μg/m³) and 684,000 μg/m³, respectively. Soil vapor samples were collected and analyzed in October and November 2019.
- ii. Maximum soil vapor PCE and TCE concentrations at 15 ft-bgs are 290,000 μg/m³ and 36,100 μg/m³, respectively. Soil vapor samples were collected and analyzed in October and November 2019.
- iii. These soil vapor concentrations exceed the commercial soil vapor screening level of 67 μg/m³ for PCE and 100 μg/m³ for TCE.

B. EA Properties

- i. Maximum soil vapor PCE and TCE, concentrations at 5 ft-bgs are $17,700,000 \, \mu g/m^3$ and $791,000 \, \mu g/m^3$ respectively. Soil vapor samples were collected in August 2014 and June 2016.
- ii. Maximum soil vapor PCE and TCE concentrations at 15 ft-bgs are $27,900,000 \mu g/m^3$ and $899,000 \mu g/m^3$, respectively. Soil vapor samples were collected and analyzed in August 2014 and June 2016.
- iii. These soil vapor concentrations exceed the commercial soil vapor screening level of 67 $\mu g/m^3$ for PCE and 100 $\mu g/m^3$ for TCE.

- C. Off-Site in the City of Torrance and City of Lomita neighborhoods
 - Maximum soil vapor PCE and TCE concentrations at 5 ft-bgs are 6,070 μg/m³ and 30,000 μg/m³, respectively. Soil vapor samples were collected and analyzed in January 2020.
 - Maximum soil vapor PCE and TCE concentrations at 15 ft-bgs are 7,710 ii. μg/m³ and 152,000 μg/m³, respectively. Soil vapor samples were collected and analyzed in January 2020.
- iii. These soil vapor concentrations exceed both the commercial and residential soil vapor screening levels of 67 µg/m³ and 15 µg/m³ for PCE, 100 μg/m³ and 16 μg/m³ for TCE, respectively

Based on the available case files, the recent soil vapor PCE and TCE concentrations summarized above and the soil concentrations detected on the Hi-Shear and EA Properties, the VOC soil vapor plumes beneath the Hi-Shear property and EA Properties are commingled. The recent soil vapor concentrations demonstrate that the plumes have migrated off-Site and east of Crenshaw Boulevard.

- 8. This Order identifies the above suspected dischargers of waste identified in paragraphs one (1) through five (5) and seven (7), because, as described above these entities own(ed) and/or operated the properties on which the waste is or has been discharged and continues to migrate unabated in soil and soil vapor, which is a potential threat to human health.
- 9. This Order requires the Parties to prepare and submit a technical work plan to completely assess the vapor intrusion risk to indoor air on-Site and off-Site and to implement the VIRP or a substantively similar plan that will assess the vapor intrusion threat to human health and the environment in areas impacted above DTSC Human Health Risk Assessment (HHRA) Note No.3 screening levels or USEPA Regional Screening Levels (RSLs). You are expected to submit a complete work plan as required by this Order. The Regional Board may reject the report if it is deemed incomplete and/or require revisions to the report under this Order.
- 10. The burdens, including costs, of these reports bear a reasonable relationship to the need for the reports and the benefits to be obtained from the reports. The information is necessary to adequately determine the extent of discharges of wastes at and from the Site to assure adequate cleanup of the Site, as contaminants at the Site may pose a threat to public health and the environment. The technical reports required by this Order are needed by the Regional Board in order to assess the vapor intrusion risk for occupants on-Site and off-Site resulting

from the discharges of waste, specifically VOCs and identify appropriate on-Site and off-Site interim mitigation measures.

- 11. The issuance of this Order is an enforcement action by a regulatory agency and is categorically exempt from the provisions of the California Environmental Quality Act (CEQA) pursuant to California Code of Regulations, title 14, section 15321, subdivision (a)(2). This Order requires submittal of technical reports, and may require the submittal of including workplans. The scope of activities required to prepare the reports required by this Order are not yet known. It is unlikely that compliance with this Order, including implementation of the work plans, could result in anything more than minor physical changes to the environment. If the implementation of this Order may result in significant impacts on the environment, the appropriate lead agency will address the CEQA requirements prior to approval of any work plan.
- 12. Any person aggrieved by this action of the Regional Water Board may petition the State Water Resources Control Board (State Water Board) to review the action in accordance with California Water Code section 13320 and California Code of Regulations, title 23, sections 2050 and following. The State Water Board must receive the petition by 5:00 p.m., 30 days after the date of this Order, except that if the thirtieth day following the date of this Order falls on a Saturday, Sunday, or state holiday, the petition must be received by the State Water Board by 5:00 p.m. on the next business day. Copies of the law and regulations applicable to filing petitions mav be found the Internet on http://www.waterboards.ca.gov/public notices/petitions/water quality or will be provided upon request.

THEREFORE, IT IS HEREBY ORDERED that the City of Torrance; Magellan Aerospace, Middletown, Inc. (formerly known as Aeronca, Inc. formerly known as Aeronca Manufacturing Corporation); Excellon Industries, Inc. (also known as Excellon Automation Company and now known as Excellon Technologies, LLC); Esterline Technologies Corporation; Robinson Helicopter Company; Dasco Engineering Corporation; and Hi-Shear Corporation (also known as Lisi Aerospace) pursuant to Water Code section 13267, subdivision (b), are required to submit the following:

- 1. By **July 10, 2020**, a technical work plan, acceptable to the Executive Officer, to assess the vapor intrusion risk to indoor air at the EA Properties and off-Site. This shall contain but is not limited to items (A) through (D) listed below.
 - A. The technical work plan shall be developed in accordance with the Supplemental Guidance; DTSC's "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air," dated October 2011; DTSC's "Vapor Intrusion Mitigation Advisory," (VIMA) dated October 2011; and other applicable existing California guidance.

- B. A description of the proposed soil vapor, sub-slab vapor and/or indoor air sampling locations. The soil vapor, sub-slab vapor and/or indoor air sampling locations shall consider the available environmental data collected as part of Hi-Shear's onsite and offsite investigations and interim mitigation measures. The sampling locations shall be presented on an accurately scaled map.
- C. Soil vapor, sub-slab vapor and/or indoor air samples shall be analyzed for VOCs and laboratory reporting limit concentrations shall be sufficiently low to identify risks such that all known or suspected carcinogens are included in the risk assessment. Vapor concentration units shall be reported in µg/m³.
- D. A timeline for implementing the work plan. Completion of all indoor air sampling contemplated by the work plan shall occur no later than October 30, 2020. This Order contemplates one technical work plan for the EA Properties and the soil vapor plume identified east of Crenshaw Boulevard.
- 2. On March 20, 2020, Genesis submitted the VIRP on behalf of Hi-Shear. The Parties must implement the VIRP (with any conditions of approval by the Regional Board) or a substantively similar work plan designed to assess the vapor intrusion threat to human health and the environment for buildings east of Crenshaw Boulevard, in areas exceeding DTSC HHRA Note No. 3 screening levels or USEPA RSLs. The Parties must complete the VIRP (as conditionally approved) or any substantively similar plan (reviewed and approved by the Regional Board) no later than October 15, 2020.
- 3. The Regional Board recommends the Parties work together to implement the work plan in Item 1 and VIRP (or equivalent plan) to avoid duplication of efforts. If the results of the work plan implementation indicate unacceptable risk to building occupants, the Regional Board further recommends that the Parties develop and implement mitigation measures as soon as possible to reduce vapor intrusion. Refer to the DTSC's VIMA for examples of various mitigation measures.
- 4. This Order shall not supersede, rescind, nor amend requirements set forth in the existing Hi-Shear Corporation (Global ID No. SL204231523; Site ID No. 2042300; File SCP No. 0218) and East Adjacent Properties of Hi-Shear Corporation (Global ID No. T10000013835; File SCP No. 1481) orders originally dated October 29, 2009 and January 13, 2020, respectively. All aspects of those orders, and their amendments thereto, remain in full force and effect.
- 5. The above items shall be submitted to:

Kevin Lin, P.E. Los Angeles Regional Water Quality Control Board 320 West 4th Street, Suite 200 Los Angeles, CA 90013 Phone: (213) 576-6781

Email: kevin.lin@waterboards.ca.gov

- 6. Pursuant to Water Code section 13268, subdivision (a), any person who fails to submit reports in accordance with the Order is guilty of a misdemeanor. Pursuant to Water Code section 13268, subdivision (b)(1), failure to submit the required technical report described above by the specified due date(s) may result in the imposition of administrative civil liability by the Regional Board in an amount up to one thousand dollars (\$1,000) per day for each day the technical report is not received after the above due date. These civil liabilities may be assessed by the Regional Board for failure to comply, beginning with the date that the violations first occurred, and without further warning.
- 7. The State Water Resources Control Board adopted regulations (California Code of Regulations, title 23, sections 3891 et seq.) requiring the electronic submittals of information (ESI) for all site cleanup programs, starting January 1, 2005. Currently, all of the information on electronic submittals and GeoTracker contacts can be found on the Internet at the following link: http://www.waterboards.ca.gov/ust/electronic submittal/index.shtml.

To comply with the above referenced regulation, you are required to upload all technical reports, documents, and well data to GeoTracker by the due dates specified in the Regional Board letters and orders issued to you or for the Site. However, the Regional Board may request that you submit hard copies of selected documents and data in addition to electronic submittal of information to GeoTracker. For your convenience, the GeoTracker Global ID for this site is T10000014333.

- 8. The Regional Board, under the authority given by Water Code section 13267, subdivision (b)(1), requires you to include a perjury statement in all reports as required by this Order. The perjury statement shall be signed by senior authorized representatives of the City of Torrance; Magellan Aerospace, Middletown, Inc. (formerly known as Aeronca, Inc. formerly known as Aeronca Manufacturing Corporation); Excellon Industries, Inc. (also known as Excellon Automation Company and now known as Excellon Technologies, LLC); Esterline Technologies Corporation; Robinson Helicopter Company; Dasco Engineering Corporation; and Hi-Shear Corporation [also known as Lisi Aerospace] (not by a consultant). The perjury statement shall be in the following format:
 - "I, [NAME], certify under penalty of law that this document and all attachments were prepared by me, or under my direction or supervision, in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information

submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

SO ORDERED.	
Renee Purdy Executive Officer	<u>May 12, 2020</u> Date

Attachment:

Attachment 1 – Site

ATTACHMENT 1 - SITE

Los Angeles Regional Water Quality Control Board

October 6, 2020

CT Corporation System c/o Esterline Technologies Corporation 500 – 108th Avenue NE, Suite 1500 Bellevue, Washington 98004

Mr. Richard Doyle Magellan Aerospace, Middletown, Inc. 2320 Wedekind Drive Middletown, Ohio 45042-2390

Mr. Tim A. Goetz Robinson Helicopter Company 2901 Airport Drive Torrance, California 90505

Mr. Ward Olson
Dasco Engineering Corporation
24747 Crenshaw Boulevard
Torrance, California 90505

Mr. Bailey Su Excellon Technologies, LLC 20001 S. Rancho Way Rancho Dominguez, California 90220

Mr. Christian Darville Lisi Aerospace/Hi-Shear Corporation 2600 Skypark Drive Torrance, California 90509-2975 Certified Mail Return Receipt Requested Claim No. 7018 2290 0001 8504 0511

Certified Mail
Return Receipt Requested
Claim No. 7018 2290 0001 8504 0528

Certified Mail
Return Receipt Requested
Claim No. 7018 2290 0001 8504 0535

Certified Mail
Return Receipt Requested
Claim No. 7018 2290 0001 8504 0542

Certified Mail
Return Receipt Requested
Claim No. 7018 2290 0001 8504 0559

Certified Mail
Return Receipt Requested
Claim No. 7018 2290 0001 8504 0566

Mr. Leroy Jackson City of Torrance 3031 Torrance Boulevard Torrance, California 90503 Certified Mail
Return Receipt Requested
Claim No. 7018 2290 0001 8504 0573

SUBJECT: REVIEW OF TECHNICAL WORK PLANS PURSUANT TO CALIFORNIA

WATER CODE SECTION 13267

SITE: SKYPARK COMMERCIAL PROPERTIES (ASSESSOR PARCEL NO.

7377-006-906), 24701 - 24777 CRENSHAW BOULEVARD AND 2530, 2540, AND 2600 SKYPARK DRIVE, TORRANCE, CALIFORNIA (SCP

NO. 1499)

Dear Mr. Doyle, Goetz, Olson, Darville, Su, Jackson, and Representative of Esterline Technologies Corporation:

The California Regional Water Quality Control Board, Los Angeles Region (Regional Board) staff have reviewed the following work plans:

- "Indoor Air Sampling Work Plan 24751/24777 Crenshaw Boulevard, Torrance, California," dated August 25, 2020, prepared by Ramboll US Corporation (Ramboll) on behalf of Esterline Technologies Corporation (Esterline) for Property 1.
- "Indoor Air Sampling Workplan 24751-24777 Crenshaw Boulevard, Torrance, California," dated August 25, 2020, prepared by MK Environmental Consulting, Inc. (MK) on behalf of Magellan, Middletown, Inc. (Middletown) for Property 1
- "Vapor Intrusion Investigation Workplan East Adjacent Properties Property 2," dated August 25, 2020, prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Middletown and Robinson Helicopter (RHC) for Property 2 (Property 2 Work Plan).
- "Vapor Intrusion Investigation Workplan East Adjacent Properties Property 3," dated August 25, 2020, prepared by Stantec on behalf of RHC for Property 3 (Property 3 Work Plan).

The two work plans prepared by Ramboll and MK for Property 1 are nearly identical; therefore, for the purposes of this letter those two work plans will discussed as one (Property 1 Work Plan).

Each work plan was accompanied with cover letters prepared by Cermak & Inglin, LLP (C&I; for Property 1), Lamb and Kawakami, LLP (L&K; for Property 1), and Gordon Rees Scully Mansukhani, LLP (GRSM; for Property 2 and Property 3). C&I and L&K noted that

in submitting the work plans, Esterline and Middletown are not agreeing to implement the

Brief summaries of the work plans followed by Regional Board comments and requirements are included below.

SUMMARY OF PROPERTY 1 WORK PLAN

The Property 1 Work Plan proposed the following:

- 1. Collect up to six indoor air samples in six-liter Summa canisters over an 8-hour period with 1 duplicate sample
- 2. Collect three outdoor ambient air samples in six-liter Summa canisters over an 8hour period
- 3. Install up to six semi-permanent sub-slab soil vapor probes using Cox-Colvin Vapor Pin. Sub-slab soil vapor samples will be collected in Summa canisters collocated with each of the indoor air sample locations
- 4. Analyze soil vapor samples using USEPA Method TO-15 for volatile organic compounds – tetrachloroethylene (PCE); trichloroethene dichloroethene (1,1 DCE); and 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113)

SUMMARY OF PROPERTY 2 WORK PLAN

The Property 2 Work Plan proposed the following:

- 1. Collect up to 10 indoor air samples (approximately one for every 5,000 square feet of occupied interior building space) in 6-liter Summa cannisters over an 8- or 10-hour period with 1 duplicate sample.
- 2. Collect 3 outdoor air samples around the exterior of the buildings with 1 duplicate sample.
- 3. Install sub-slab vapor monitoring probes using Vapor Pin (or equivalent) with sampling ports collocated with each of the indoor air sample locations. Sub-slab soil vapor samples will be collected in Summa cannisters.
- 4. Monitor the sampling period with differential pressure meters to assess the role of HVAC operations and building stack effect on vapor migration potential.
- 5. Analyze samples using USEPA Method TO-15 for the compounds of concern (COCs) – PCE: TCE; and their degradation products cis-1,2 dichloroethene (cis-1,2 DCE); trans-1,2 dichloroethene (trans-1,2 DCE); 1,1 DCE; and vinyl chloride.

6. Compare indoor air, outdoor air, and sub-slab vapor concentrations to the June 2020 update to Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note 3.

SUMMARY OF PROPERTY 3 WORK PLAN

The Property 3 Work Plan proposed the following:

- 1. Collect up to 8 indoor air samples (approximately one for every 5,000 square feet of occupied interior building space) in 6-liter Summa cannisters over an 8- or 10hour period with 1 duplicate sample.
- 2. Collect 3 outdoor air samples around the exterior of the building with 1 duplicate sample.
- 3. Install sub-slab vapor monitoring probes using Vapor Pin (or equivalent) with sampling ports collocated with each of the indoor air sample locations. Sub-slab soil vapor samples will be collected in Summa cannisters.
- 4. Monitor the sampling period with differential pressure meters to assess the role of HVAC operations and building stack effect on vapor migration potential.
- 5. Analyze samples using USEPA Method TO-15 for the COCs PCE; TCE; and their degradation products cis-1,2 DCE; trans-1,2 DCE; 1,1 DCE; and vinyl chloride.
- 6. Compare indoor air, outdoor air, and sub-slab vapor concentrations to the June 2020 update to HERO HHRA Note 3.

REGIONAL BOARD COMMENTS AND REQUIREMENTS

The work plans are approved with the following comments and requirements:

1. The work plans must be conducted in accordance with the methodology outlined in the Department of Toxic Substances Control (DTSC) Vapor Intrusion Guidance titled "Final - Guidance for the Evaluation and Mitigation of subsurface Vapor Intrusion to Indoor Air" (DTSC October 2011), and the "Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion", prepared by DTSC and California Water Resources Control Boards, dated February 14, 2020.

2. Property 1 Work Plan

a. The footprint of the showroom is approximately 40,000 square feet. Consistent with the Property 2 Work Plan and Property 3 Work Plan, eight indoor air samples (approximately one for every 5,000 square feet of occupied interior building space) paired and collocated with sub-slab soil vapor samples, with one duplicate, should be collected within the footprint of the showroom.

- b. The footprint of the existing service portion of the building is approximately 65,000 square feet. Consistent with the Property 2 Work Plan and Property 3 Work Plan, 13 indoor air samples (approximately one for every 5,000 square feet of occupied interior building space) paired and collocated with sub-slab soil vapor samples, with one duplicate, should be collected within the footprint of the existing service portion of the building.
- c. Although currently unoccupied, the second smaller building shall be sampled to assess and evaluate potential future occupants' risks. The footprint of the second smaller building, located southwest of the larger building on Property 1, is approximately 28,000 square feet. Consistent with the Property 2 Work Plan and Property 3 Work Plan, six indoor air samples (approximately one for every 5,000 square feet of occupied interior building space) paired and collocated with sub-slab soil vapor samples, with one duplicate, should be collected.

3. Property 2 Work Plan

- a. Consistent with the proposed criteria (one sample for every 5,000 square feet), one indoor air and a collocated sub-slab soil vapor sample located within the footprint of trapezoidal modular building along the northeast facing portion of the main building shall be collected.
- 4. All indoor air, ambient outdoor air, and sub-slab vapor samples shall be analyzed using USEPA Method TO-15 for the full suite of VOCs. Laboratory reporting limits for each analyte shall be sufficiently low to adequately evaluate and assess risk.
- 5. Indoor air, ambient outdoor air, and sub-slab vapor samples shall be evaluated in accordance with the June 2020 update to HERO HHRA Note 3 and/or the 2019 San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels.
- 6. Indoor air data should also be evaluated in accordance with the DTSC HERO HHRA Note 5, which identifies the EPA Region 9 Interim Indoor Air Response Action Levels for indoor air concentrations of TCE under differing exposure scenarios. If necessary, any interim measures and/or response actions should adhere to the DTSC HERO HHRA Note 5.
- 7. Notify the Regional Board case manager at least ten (10) working days in advance of field work.
- 8. Submit technical reports for the implementation of the Property 1 Work Plan, Property 2 Work Plan, and Property 3 Work Plan by January 20, 2021. The technical reports shall include detailed descriptions of current uses and detailed floor plans and schematics of site buildings. All indoor air, ambient outdoor air, and sub-slab vapor sample concentrations shall be reported in units of microgram per cubic meter.

The above requirement for submittal of technical reports constitutes an amendment to the requirements of the California Water Code section 13267 Order originally dated May 12, 2020. All other aspects of the Order originally dated May 12, 2020, and the amendments thereto, remain in full force and effect. The required technical reports are necessary to investigate the characteristics of and extent of the discharges of waste at the site and to evaluate cleanup alternatives. Therefore, the burden, including costs, of the reports bears a reasonable relationship to the need for the report and benefits to be obtained. Pursuant to section 13268 of the California Water Code, failure to submit the required technical report by the specified due date may result in civil liability administratively imposed by the Regional Board in an amount up to one thousand dollars (\$1000) for each day each technical report is not received.

If you have any questions regarding this letter, please contact Mr. Kevin Lin at (213) 576-6781 or via email at kevin.lin@waterboards.ca.gov, or contact Ms. Jillian Ly, Unit IV Chief, at (213) 576-6664 or via email at jillian.ly@waterboards.ca.gov.

Sincerely,

Renee Purdy Executive Officer

CC:

Aram Chaparyan, City of Torrance
Travis Van Ligten, Rutan & Tucker, LLP
Richard Montevideo, Rutan & Tucker, LLP
Sonja A. Inglin, Cermak & Inglin, LLC
Patrick L. Rendon, Lamb and Kawakami, LLP
William J. Beverly, Law Offices of William J. Beverly
Brian M. Ledger, Gordon Rees Scully Mansukhani, LLP
Thomas Schmidt, Hamrick & Evans, LLP
David L. Evans, Hamrick & Evans, LLP

Los Angeles Regional Water Quality Control Board

February 24, 2021

Mr. Aram Chaparyan
City Manager
City of Torrance
3031 Torrance Boulevard
Torrance, California 90503

Mr. Christian Darville Lisi Aerospace/Hi-Shear Corporation 2600 Skypark Drive Torrance, California 90509-2975

Mr. Richard Doyle Magellan Aerospace, Middletown, Inc. 2320 Wedekind Drive Middletown, Ohio 45042-2390

Mr. Bailey Su Excellon Technologies, LLC 20001 S. Rancho Way Rancho Dominguez, California 90220

CT Corporation System c/o Esterline Technologies Corporation 500 – 108th Avenue NE, Suite 1500 Bellevue, Washington 98004

Mr. Tim A. Goetz Robinson Helicopter Company 2901 Airport Drive Torrance, California 90505

Mr. Ward Olson
Dasco Engineering Corporation
24747 Crenshaw Boulevard
Torrance. California 90505

Certified Mail Return Receipt Requested

Claim No. 7020 1290 0001 8571 7190

Certified Mail
Return Receipt Requested
Claim No. 7020 1290 0001 8571 7206

Certified Mail Return Receipt Requested Claim No. 7020 1290 0001 8571 7213

Certified Mail Return Receipt Requested Claim No. 7020 1290 0001 8571 7220

Certified Mail Return Receipt Requested Claim No. 7020 1290 0001 8571 7237

Certified Mail

Return Receipt Requested

Certified Mail
Return Receipt Requested
Claim No. 7020 1290 0001 8571 7251

Claim No. 7020 1290 0001 8571 7244

LAWRENCE YEE, CHAIR | RENEE PURDY, EXECUTIVE OFFICER

SUBJECT: RESPONSE TO TIME EXTENSION REQUESTS FOR SUBMITTAL OF TECHNICAL REPORTS PURSUANT TO CALIFORNIA WATER CODE SECTION 13267

SITE: SKYPARK COMMERCIAL PROPERTIES (ASSESSOR PARCEL NO. 7377-006-906), 24701 – 24777 CRENSHAW BOULEVARD AND 2530, 2540, AND 2600 SKYPARK DRIVE, TORRANCE, CALIFORNIA (SCP NO. 1499)

Dear Mr. Chaparyan, et al.:

The California Regional Water Quality Control Board, Los Angeles Region (Regional Water Board) staff have reviewed the following letters dated January 19, 2021:

- "Investigative Order No R4-2020-0035/California Water Code Section 13267 Order ("Order") - Request for Extension of Deadline to Submit Technical Report for Property 1," prepared by Cermak & Inglin, LLP on behalf of Esterline Technologies Corporation for Property 1 of the referenced site (Site).
- "Request for Extension for Vapor Intrusion Investigation Report Submittal: East Adjacent Properties – Property 2, 24701, 24707, and 24747 Crenshaw Boulevard, Torrance, CA 90505 (Investigative Order No. R4-2020-0035)," prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Magellan Aerospace, Middletown, Inc. and Robinson Helicopter Company (Robinson) for Property 2 of the Site.
- 3. "Request for Extension for Vapor Intrusion Investigation Report Submittal: East Adjacent Properties Property 3, 2530 and 2540 Skypark Dr., Torrance, CA 90505 (Investigative Order No. R4-2020-0035)," prepared by Stantec on behalf of Robinson for Property 3 of the Site.

The letters request an extension to submit the indoor air sampling and/or vapor intrusion investigation reports for Property 1, Property 2, and Property 3. The initial due date for the technical reports was January 20, 2021 as required in the Regional Water Board's California Water Code (CWC) Section 13267 Order amended on October 6, 2020.

The letters provide the following reasons for the extension request:

- To allow for receipt and analysis of the analytical results of the sampling completed in early January, additional time is needed to submit the indoor air sampling report for Property 1.
- 2. Due to delays in negotiating and securing an access agreement and non-disclosure agreement between Robinson and DASCO (one of the Property 2 building tenants) and coordination efforts to conduct investigation at Property 2 and Property 3 concurrently, additional time is needed to submit the vapor intrusion report for Property 2 and Property 3.

February 24, 2021 SCP No. 1499

After reviewing your request, additional information and file documents for this Site, the Regional Water Board has made the following determinations:

- 1. The Regional Water Board approves the extension request for submitting the indoor air sampling report for Property 1 from January 20, 2021 to **February 12, 2021**.
- 2. The Regional Water Board approves the extension request for the submittal of vapor intrusion reports for Property 2 and Property 3 from January 20, 2021 to **March 31, 2021**.

The above due date extensions for submittal of technical reports constitute an amendment to the requirements of the California Water Code section 13267 Order originally dated May 12, 2020. All other aspects of the Order originally dated May 12, 2020, and the amendments thereto, remain in full force and effect. Pursuant to section 13268 of the California Water Code, failure to submit the required technical report by the specified due date may result in civil liability administratively imposed by the Regional Water Board in an amount up to one thousand dollars (\$1,000) for each day each technical report is not received.

If you have any questions regarding this letter, please contact Mr. Kevin Lin at (213) 576-6781 or via email at kevin.lin@waterboards.ca.gov, or contact Ms. Jillian Ly, Unit IV Chief, at (213) 576-6664 or via email at jillian.ly@waterboards.ca.gov.

Sincerely,

R Purdy Digitally signed by R Purdy Date: 2021.02.24 06:58:00 -08'00'

Renee Purdy Executive Officer

CC:

Dmitriy Ginzburg, State Water Board Division of Drinking Water

Joseph Liles, Water Replenishment District

Carla Dillon, City of Lomita

Ryan Smoot, City of Lomita

Travis Van Ligten, Rutan & Tucker, LLP

Richard Montevideo, Rutan & Tucker, LLP

Sonja A. Inglin, Cermak & Inglin, LLC

Patrick L. Rendon, Lamb and Kawakami, LLP

William J. Beverly, Law Offices of William J. Beverly

Brian M. Ledger, Gordon Rees Scully Mansukhani, LLP

Thomas Schmidt, Hamrick & Evans, LLP

David L. Evans, Hamrick & Evans, LLP

Steve Van der Hoven, Genesis Engineering & Redevelopment

APPENDIX B

Historical Data

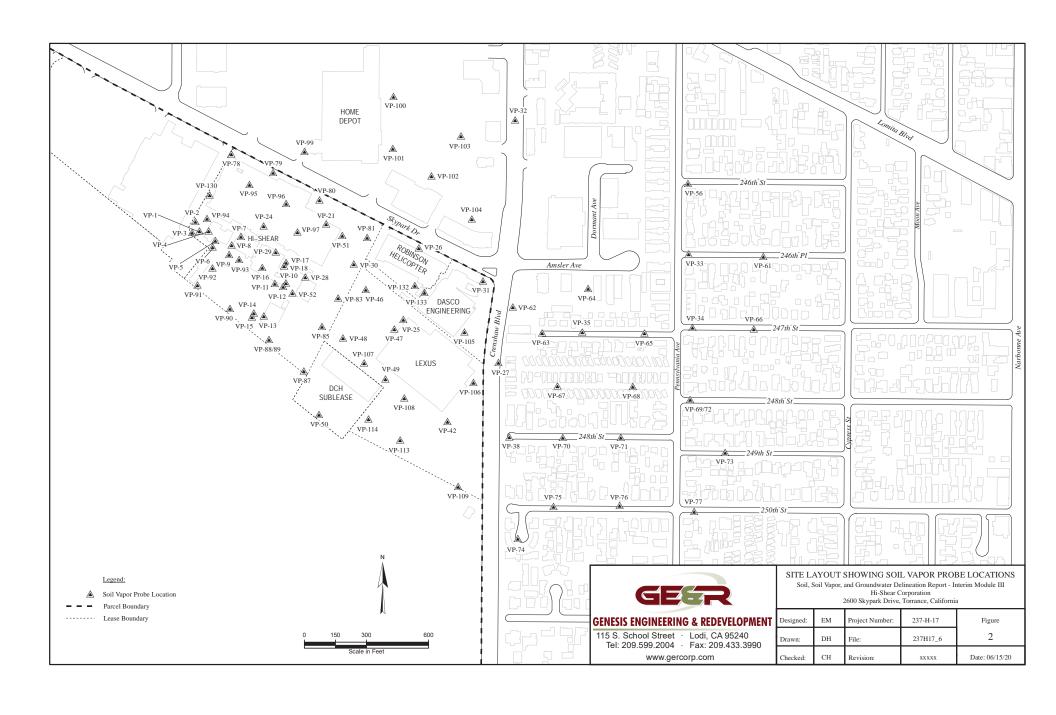


Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling				ation (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
		8/9/14	26,200	7,930	<20	<20	472	<20
	5	3/3/20	34,200	1,560	<20	<20	199	<20
	45	8/9/14	18,600	16,000	1,020	<20	<20	<20
	15	3/5/20	89,400	11,400	225	<20	169	<20
								1
		8/9/14	980,000	403,000	29,200	199	40,300	<20
	25	3/3/20	NA	132,000	6,850	176	24,200	<20
		Summa	720,000	140,000	4,400	<330	15,000	<330
VP-25	45	8/9/14 DUP	1,500,000 1,540,000	784,000 768,000	40,900 40,600	31 <20	59,000 57,200	144 144
	45	3/5/20	543,000	238,000	16,200	286	57,300 44,300	36
		0/0/20	040,000	200,000	10,200	200	44,000	
		8/9/14	995,000	677,000	28,600	709	90,000	<20
	55	3/5/20	685,000	377,000	20,400	351	7,180	48
	65	8/9/14	1,270,000	874,000	34,900	115	124,000	208
	65	3/5/20	548,000	341,000	19,600	347	7,420	47
								1
	85	8/9/14	1,140,000	853,000	21,800	577	113,000	<20
		3/5/20	475,000	321,000	19,000	344	7,600	49
		0/0/4.4	2.222	4.000	.00	.00	-0.000	-00
	5	8/9/14 5/7/20	2,620 2,700	1,000 60	<20 <31	<20 <31	<0.020 <78	<20 <31
		OTTEO	2,700	- 00	751	101	10	
		8/9/14	13,200	2,880	<20	<20	<0.020	<20
	15	5/7/20	8,900	490	<34	<34	<84	<34
	25	8/9/14	24,600	14,700	43	<20	1,180	<20
	23	5/7/20	37,000	30,000	<3,100	<3,100	<7,800	<3,100
VP-26								
	45	8/9/14	19,900	14,100	<20	<20	935	<20
		5/7/20	67,000	100,000	230	20	1,400	<33
		0/0/44	20.005	101.005	.00		0.000	
	65	8/9/14 5/7/20	66,600 97,000	134,000 190,000	<20 <3,300	<20 <3,300	2,020 1,600	<20 <3,300
		OTTEO	57,000	100,000	-0,000	-0,000	1,000	-0,000
		8/9/14	112,000	173,000	260	<20	2,380	<20
	85	5/7/20	87,000	330,000	<3,600	<3,600	1,700	<3,600
		DUP	120,000	450,000	<3,200	<3,200	2,200	<8,000
Comme	rcial Scree		67	100	NA	NA	10,333	5.3
		(α=0.03)	01	100	NA	NA	10,333	5.3

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling			Concentra	ation (µg/m³)			
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride	
	_	8/9/14	3,760	16,000	<20	<20	<0.020	<20	
	5	1/31/20	38	<20	<20	<20	<20	<20	
		Summa	<5.2	<5.8	<3.5	<3.1	<3.1	<4.4	
		8/9/14	2.350	1,660	<20	<20	<0.020	<20	
	15	1/31/20	1,500	1,440	<20	<20	186	<20	
		8/9/14	3.910	40.000	<20	<20	1.270	<20	
	25	1/31/20	3,560	10,900 6,260	<20	<20	918	<20	
VP-31		1/31/20	3,560	6,260	\ 20	\2 0	910	\2 0	
	45	8/9/14	10,900	43,600	<20	<20	3,780	<20	
	45	1/31/20	14,600	66,400	216	<20	5,270	<20	
		8/9/14	49 200	E0 700	95	<20	6 720	-20	
	65	1/31/20	18,200 25,800	50,700	268	15	6,730 7,290	<20 <20	
		1/31/20	25,800	119,000	208	15	7,290	<20	
	85	8/9/14	22,200	76,900	<20	<20	5,680	<20	
	00	1/31/20	33,300	183,000	393	94	7,220	<20	
		6/7/16	53,100	1,510	<8	<8	6,030	<8	
	5	1/22/19	33,100	1,310	-	Sampled	0,030	1 ~	
	15	6/7/16	8,180	1,110	<8	<8	31,900	<8	
		1/22/19			Not S	Sampled			
		6/7/16	13,700	583	<8	<8	71,900	<8	
VP-42	25	1/22/19	,		Not S	ampled		1	
					_				
	45	6/7/16	13,000	1,510	<8 N=+ 0	<8	85,800	<8	
	45	1/22/19 1/23/20	10,200	377	<20	sampled <20	98,101	<21	
			-,	-			,		
		6/7/16	3,480	261	<8	<8	97,100	<8	
	55	1/22/19	,		Not S	ampled	,		
Commer	rcial Screei	ning Level	67	100	NA	NA NA	40.222	5.3	
		(α=0.03)	67	100	NA	NA	10,333	5.3	

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling			Concentr	ation (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
	_	6/9/16	18,500	29,600	12,300	3,950	8,670	413
	5	1/27/20	22,900	42,300	13,100	1,920	854	142
		DUP	23,700	41,900	13,000	2,000	912	131
		6/9/16	27,900	45,600	11,000	5,480	7,380	197
	15	1/27/20	24,200	18,600	5,650	1,040	671	23
		5/31/16	775,000	192,000	15,300	2,530	12,000	46
	25	1/27/20	94,300	24,900	5,060	1,370	1,681	31
VP-46		1/2//20	54,300	24,900	3,000	1,370	1,001	31
	45	5/31/16	781,000	170,000	14,100	2,260	11,400	30
	45	1/27/20	222,000	71,300	8,320	1,090	7,470	31
		5/31/16	1,400,000	348,000	17,200	1,800	13,900	41
	65	1/27/20	483,000	170,000	15,800	826	13,500	29
	85	5/31/16	1,430,000	417,000	13,800	1,790	6,990	44
	05	1/27/20	494,000	129,000	11,300	701	8,190	<20
		6/8/16	6,420	4,920	94	<8	6,450	<8
	5	3/3/20	3,910	1,420	<20	<20	3,400	<20
	15	6/8/16	4,780	5,070	<8	<8	9,720	<8
		3/3/20	47,000	21,000	152	22	63,700	<20
	0.5	6/8/16	242,000	241,000	8,440	154	258,000	19
	25	3/3/20	593,000	234,000	6,570	194	229,000	32
VP-47		6/8/16	886,000	786,000	19,600	827	293,000	95
	45	DUP	884,000	773,000	17,900	773	276,000	95
		3/4/20	946,000	584,000	21,500	432	247,000	80
		0/0// 2	1 100 000	005.000	05.000	2.5	0.00.000	
	65	6/8/16 3/4/20	1,180,000	907,000	25,900 3,180	847 61	358,000	113 24
		3/4/20	86,500	64,600	3,180	01	45,500	24
	85	6/8/16	1,350,000	1,040,000	29,000	857	400,000	114
	69	3/4/20	995,000	642,000	26,600	510	391,000	97
Comme	rcial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling			Concentr	ation (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
		6/1/16	115,000	38.200	88	<8	204,000	<8
	5	1/22/20	8,230	,	<20	<8 <20	12,300	<20
	5	DUP		5,840	<20	22	14,700	<20
		DUP	7,250	6,000	<20	22	14,700	<20
		6/1/16	665,000	203,000	3.000	726	453,000	<8
	15	1/22/20	18,200	3,820	136	84	58,100	57
		6/1/16	927,000	418,000	7,470	3.200	1,470,000	80
	25	1/22/20	65,000	49,300	2,000	433	515,000	<20
VP-48	20	Summa	520,000	600,000	2,900	600	2,800,000	25
VP-40								
	45	6/3/16	2,170,000	1,080,000	6,960	2,930	2,360,000	111
		1/22/20	321,000	203,000	4,710	1,150	802,000	56
		6/3/16	8,770,000	1,150,000	6,890	1,370	3,610,000	120
	65	1/24/20	11,300,000	846,000	6,960	1,010	3,480,000	104
		DUP	16,000,000	1,160,000	6,430	837	3,880,000	95
		6/3/16	25,300,000	1,650,000	8,630	1.260	4,130,000	125
	85	1/24/20	23,300,000	1,770,000	7,170	940	5,350,000	112
		0/0//0						
	5	6/3/16	17,700,000	79	957	130	5,070,000	49
		1/22/20	593,000	21,700	79	40	1,470,000	70
	15	6/7/16	27,900,000	899,000	1,400	<8	6,990,000	88
	15	1/22/20	1,860,000	89,400	753	137	3,800,000	112
		6/7/16	11,500,000	729,000	2,980	<8	13,600,000	157
	25	1/22/20	5,470,000	237,000	3,760	273	9,560,000	171
VP-49		0.77110						
	45	6/7/16	5,880,000	588,000	4,380	<8	13,300,000	146
	45	1/22/20 Summa	3,450,000 300,000	63,600 200,000	9,880 6,900	<20 <390	1,300,000 1,600,000	189 <570
		oumma	300,000	200,000	0,900	<390	1,000,000	<570
		6/7/16	27,700,000	1,010,000	2,950	<8	9,180,000	175
	65	DUP	22,000,000	818,000	2,840	<8	7,430,000	168
		1/22/20	6,440,000	53,400	618	147	453,000	58
	0.5	6/7/16	35,900,000	1,100,000	1,800	293	6,100,000	108
	85	1/22/20	8,040,000	212,000	1,630	278	2,520,000	146
Commer	cial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling			Concentra	ation (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
		6/8/16	36,100	7,140	<0.008	<8	278,000	<8
	5	1/24/20	5,900	10,100	<20	<20	578,000	<20
	3	Summa	7,700	<630	<380	<330	100,000	<480
		Oumma	7,700	1030	1300	4000	100,000	1400
		6/8/16	201,000	60,700	156	<8	4,160,000	35
	15	1/24/20	724,000	86,200	22	46	3,000,000	28
		172-1720	724,000	00,200		40	0,000,000	20
		6/8/16	834,000	239,000	146	<8	17,500,000	34
VP-50	25	1/24/20	3,950,000	338,000	81	92	6,650,000	41
		172 1720		000,000	0.	02	0,000,000	
		6/9/16	1,970,000	322,000	358	<8	12,500,000	61
	45	1/24/20	5,140,000	444,000	597	246	13,700,000	97
		172-1720	0,140,000	444,000	001	240	10,100,000	Ŭ,
		6/9/16	4,940,000	893,000	3,380	<8	20,600,000	76
	53	DUP	6,060,000	976,000	3,480	<8	22,600,000	113
		1/24/20	71,500,000	4,100,000	3,590	618	86,700,000	301
						+		
	5	4/22/20	<20	<20	<20	<20	<20	<20
	15	4/22/20	125	<20	<20	<20	<20	<20
	15	4/22/20	125	\2 0	\2 0	\2 0	\2 0	\2 0
	30	4/22/20	296	<20	<20	<20	<20	<20
VP-99		1722/20	200	-20	-20	-20	-20	120
	45	4/22/20	256	<20	<20	<20	<20	<20
	65	4/22/20	486	<20	<20	<20	<20	<20
	80	4/22/20	471	<20	<20	<20	<20	<20
	5	4/21/20	<20	<20	<20	<20	<20	<20
	15	4/21/20	<20	<20	<20	<20	<20	<20
	30	4/21/20	<20	<20	<20	<20	<20	<20
VP-100		1721720	-20	-20	-20	-20	-20	-20
	45	4/21/20	<20	<20	<20	<20	<20	<20
		-1/21/20	-20	720	-20	~20	-20	~20
	65	4/21/20	<20	<20	<20	<20	<20	<20
	00	4/21/20	^20	\ 20	\ 20	\20		\2 0
	90	4/04/00	-00	-00	-00	.00	-00	-00
	80	4/21/20	<20	<20	<20	<20	<20	<20
Commer	cial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling				ation (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
	5	4/22/20	<20	<20	<20	<20	<20	<20
	15	4/22/20	<20	<20	<20	<20	<20	<20
	30	4/22/20	36	<20	<20	<20	<20	<20
VP-101	45	4/22/20 REP	250 262	317 305	<20 <20	<20 <20	<20 <20	<20 <20
	65	4/22/20	290	315	<20	<20	<20	<20
	80	4/22/20	290	308	<20	<20	<20	<20
		4/21/20			No	Flow		1
	5	5/7/20	32	<34	<34	<34	<85	<34
	15	4/21/20	25	<20	<20	<20	<20	<20
VP-102	30	4/21/20	1,250	2,370	<20	<20	<20	<20
	45	4/21/20	1,460	2,850	<20	<20	<20	<20
	65	4/21/20	1,770	3,260	<20	<20	<20	<20
	80	4/21/20	1,490	2,670	<20	<20	<20	<20
Comme	rcial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling	Concentration (μg/m³)										
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride					
	5	4/21/20	<20	<20	<20	<20	<20	<20					
	15	4/21/20	<20	<20	<20	<20	<20	<20					
	30	4/21/20	<20	<20	<20	<20	<20	<20					
VP-103	45	4/21/20		-			-						
	45	4/21/20	<20	<20	<20	<20	<20	<20					
		4/21/20	<20	<20	<20	<20	<20	<20					
	65	REP	98	<20	<20	<20	<20	<20					
	80	4/21/20	38	<20	<20	<20	<20	<20					
	5	4/22/20				in Probe		1					
		5/7/20	79	290	<32	<32	<80	<32					
	15	4/22/20	649	8,110	<20	<20	<20	<20					
	13	4/22/20	043	0,110	\20	-20	\2 0	\20					
	30	4/22/20	2,550	15,400	<20	<20	<20	<20					
VP-104		1722720	2,000	10,100			20						
	45	4/22/20	5,160	32,600	<20	<20	<20	<20					
	65	4/22/20	6,720	58,400	<20	21	<20	<20					
	80	4/22/20	6,350	65,600	25	<20	<20	<20					
	5	12/26/19	320	470	7	<2.0	28	<1.3					
	15	12/26/19	<3.4	<2.7	<2.0	<2.0	<2.0	<1.3					
VP-105													
	30	12/26/19	2,500	3,700	22	<20	6,600	<13					
	45	12/26/19 REP	13 3,200	19 3,600	<2.0 <9.9	<2.0 <9.9	21 3,300	<1.3 <6.4					
			,										
	5	3/3/20	201	<20	<20	<20	102	<20					
	15	3/3/20	582	119	<20	<20	1,100	<20					
	30	3/3/20	1,540	89	<20	<20	16,900	<20					
VP-106	00	REP	1550	111	<20	<20	18,800	<20					
			_										
	45	3/5/20 REP	2,310 3050	654 582	30.0 <20	<20 <20	11,100 15,100	<20 <20					
		1 11	3030	302	720	-20	10,100	~20					
	_	3/5/20	1,260	293	<20	<20	674	<20					
	53	REP	9200	1200	<320	<320	13,000	<320					
Commer	cial Scree	ning Level											
20.7111101	J.u. 501061	(α=0.03)	67	100	NA	NA	10,333	5.3					

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling			Concentr	ation (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
	5	1/28/20 DUP	46,700 49,500	11,000 11,400	<20 <20	<20 <20	53,600 56,200	<20 <20
	15	1/28/20	46,300	22,000	108	32	29,600	<20
VP-107	25	1/28/20	2,310,000	305,000	2,270	425	5,030,000	153
	30	1/28/20	1,820,000	325,000	2,170	459	5,440,000	143
	45	1/28/20	727,000	38,000	1,880	456	469,000	125
	65	1/28/20	5,490,000	235,000	1,850	451	2,890,000	138
	5	1/27/20 Summa	25,400 6,400	1,580 <590	60 <360	<20 <310	134,000 140,000	<20 <450
	15	1/27/20	267,000	21,000	531	41	1,880,000	28
VP-108	30	1/27/20	10,500,000	120,000	5,450	291	9,790,000	258
	40	1/27/20	1,770,000	22,900	1,440	61	5,710,000	22
	54	1/27/20	83,500	2,770	81	<20	86,200	<20
	5	1/31/20	5,590	591	<20	<20	46	<20
	15	3/2/20	2,330	47	<20	<20	<20	<20
VP-109	25	3/2/20	159	23	72	<20	72	<20
	45	3/2/20 Summa	1,260 1,500	34 <320	5,860 <320	<20 <320	5,860 4,200	<20 <320
Comme	rcial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3

Table 2

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil Vapor

	Sample	Sampling	npling Concentration (µg/m³)												
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride							
	5	3/2/20 REP	13,700 14,500	237 251	<20 <20	<20 <20	6,120 9,090	<20 <20							
	15	3/2/20	12,800	1,400	<20	<20	125,000	<20							
VP-113	30	3/2/20	300,000	20,600	<20	<20	780,000	<20							
	45	3/2/20	1,640,000	55,700	179	<20	2,110,000	<20							
	60	3/2/20	7,690,000	150,000	1,440	363	4,630,000	<20							
	5	3/3/20	19,800	877	<20	<20	79,000	<20							
VP-114	15	3/3/20 REP	658,000 25,800,000	16,400 15,800	110 103	<20 <20	3,170,000 26,100,000	<20 40							
	30	3/3/20	14,000,000	126,000	2,000	320	16,800,000	84							
	45	3/3/20	26,800,000	231,000	5,260	737	22,800,000	256							
	5	4/23/20	2,200	596	30	<20	<20	<20							
	15	4/23/20	18,800	1,630	125	<20	80	<20							
VP-132	30	4/23/20 REP	484,000 456,000	35,800 33,900	9,160 8,790	230 223	1,200 1,450	<20 <20							
	45	4/23/20	31,200	8,850	2,310	49	1,560	<20							
	65	4/23/20	865,000	375,000	10,600	396	16,400	<20							
	80	4/23/20	881,000	424,000	11,200	419	19,500	<20							
Comme	cial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3							

Table 2 Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report **COPC Concentrations in Soil Vapor**

	Sample	Sampling			Concentra	tion (µg/m³)		
Boring	Depth	Date	PCE	TCE	cis-1,2- DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
	5	12/26/19	10	18	<2.0	<2.0	<2.0	<1.3
	15	12/26/19	470	300	30	<2.0	26	<1.3
	30	12/26/19	98,000	22,000	13,000	320	1,800	<51
VP-133	45	12/26/19	150,000	85,000	12,000	430	7,500	<51
	65	12/26/19	250,000	260,000	7,100	280	19,000	<51
	85	12/26/19 DUP-1	130,000 180,000	160,000 280,000	4,000 5,700	180 240	12,000 19,000	<20 21
Commer	rcial Scree	ning Level (α=0.03)	67	100	NA	NA	10,333	5.3

NOTES:

- "Teel bgs" - feet below ground surface
- "PCE" - tetrachloroethene
- "TCE" - trichloroethene
- "cis-1,2-DCE" - cis-1,2-dichloroethene
- "cis-1,2-DCE" - cis-1,2-dichloroethene
- "tans-1,2-DCE" - trans-1,2-dichloroethene
- "1,1-DCE" - 1,1-dichloroethene

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	MC	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	восм	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	8/9/14 3/3/20	<20 <20	187 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	408 <20	<20 <20	584 <20	<20 <40	<20 <20	<20 <20	<20 <20	<100 106	<20 <60	<20 <20	<20 <40	<20 <40	<20 <40
	15	8/9/14 3/3/20	<20 <20	215 36	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	104 <20	<20 <20	66 <20	<20 <40	<20 <20	<20 <20	<20 <20	<100 187	<20 <60	<20 <20	<20 <40	<20 <40	<20 <40
	25	8/9/14 3/3/20 Summa	<20 <20 <820	763 326 220	<20 <20 <1600	<20 43 <820	<20 <20 <820	<20 <20 <820	<20 605 390	<20 <20 <820	<20 <20 <820	<20 <20 <820	<20 <40 <820	<20 <20 <820	<20 <20 <820	<20 <20 <820	1,690 2,430 1,700	<20 <60 <1600	<20 <20 	<20 <40 <820	<20 <40 <1600	<20 72 <820
VP-25	45	8/9/14 DUP 3/5/20	<20 <20 22	931 907 536	<20 <20 <20	<20 <20 1,260	133 146 62	690 690 <20	<20 <20 1,010	78 <20 <20	<20 <20 <20	<20 <20 <20	<20 <20 <40	<20 <20 <20	<20 <20 <20	<20 <20 <20	3,370 3,200 5,090	<20 <20 <60	153 151 103	<20 <20 <40	<20 <20 <40	<20 <20 177
	55	8/9/14 3/5/20	<20 37	1,020 580	<20 <20	8,160 1,040	518 126	28,600 <20	87 1,050	<20 <20	<20 <20	<20 <20	<20 <40	2,320 <20	<20 <20	<20 <20	<100 6,380	<20 <60	140 127	<20 <40	<20 <40	<20 228
	65	8/9/14 3/5/20	141 43	884 575	<20 <20	<20 1,430	909 148	<20 <20	589 1,010	77 <20	<20 <20	<20 <20	<20 <40	<20 <20	<20 <20	<20 <20	11,100 6,320	<20 <60	185 117	<20 <40	<20 <40	235 234
	85	8/9/14 3/5/20	<20 43	924 564	<20 <20	<20 1,060	754 186	<20 <20	81 992	<20 <20	<20 <20	<20 <20	<20 <40	2,410 <20	<20 <20	<20 <20	9,550 7,260	<20 <60	108 114	<20 <40	<20 <40	28 241
Comn	nercial Scre Level (o		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	МС	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	5/16/11 5/7/20	<20 <78	329 <78	<20 <160	<20 <78	<20 <78	<20 <78	2,530 <78	<20 <78	<20 <78	<20 <78	<20 <78	<20 <78	<20 <78	<20 <78	389 620	<20 <160	<20 	<20 	<20 <160	<20 <78
	15	5/16/11 5/7/20	<20 <84	6,020 <84	<20 <170	<20 <84	16,800 <84	<20 <84	27,800 <84	<20 <84	<20 <84	<20 <84	<20 <84	<20 <84	<20 <84	<20 <84	9,800 860	<20 <170	<20	<20 	<20 <170	<20 <84
	30	5/16/11 5/7/20	<20 <7,800	2,270 <7,800	<20 <10,0	<20 <7,800	16,600 <7,800	<20 <7,800	4,200 <7,800	<20 ~1,00	<20 ~1,00	<20 <1,00	<20 <7,800	<20 <1,00	<20 ~1,00	<20 ~1,00	219 3,900	<20 ~10,00	<20 	<20 	<20 <10,00	<20 <7,800
VP-26	45	5/16/11 5/7/20	<20 <82	<20 2,400	<20 <160	<20 <82	12,900 <82	<20 <82	<20 <82	<20 <82	<20 <82	<20 <82	<20 <82	<20 <82	<20 <82	<20 <82	<20 7,400	<20 <160	<20	<20 	<20 <160	<20 33
	65	5/16/11 5/7/20	<20 <8,400	112 2,800	<20 >17,0	<20 <8,400	3,340 <8,400	<20 <8,400	108 <8,400	<20 >0,40	<20 ~o,4u	<20 >0,40	<20 <8,400	<20 `o,40	<20 \0,40	<20 >0,40	106 11,000	<20 ~17,00	<20	<20 	<20	<20 <8,400
	85	5/16/11 5/7/20 DUP	<9,000 <8,000	2,100 3,000	~10,0 ~10,0	<9,000 <8,000	<9,000 <8,000	<9,000 <8,000	<9,000 <8,000	~=,00 ~o,00	~9,00 ~0,00	~8,00 ~0,00	<9,000 <8,000	~9,00 ~0,00	~8,00 ~0,00	~=,UU ~0,UÛ	8,400 11,000	~10,00 ~10,00			~10,00 ~10,00	<9,000 <8,000
Comr	mercial Scre Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	8/9/14 1/31/20 Summa	<20 <20 <5.8	167 <20 <3.8	<20 <20 <3.7	<20 <20 <4.3	<20 <20 <4.3	<20 <20 <3.2	<20 <20 <4.3	132 <20 <6.1	<20 <20 <5	104 <20 <6.6	<20 <20 <5.8	<20 <20 <4.6	<20 <20 <3.5	<20 <20 <4.6	14,800 569 180	<20 <60 <38	<20 <20 NS	<20 <40 <17	<20 <40 <8.9	<20 <40 <4.6
	15	8/9/14 1/31/20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	1,770 6,930	<20 <60	<20 <20	<20 <40	<20 <40	<20 21
VP-31	25	8/9/14 1/31/20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	12,600 11,400	<20 <60	<20 <20	<20 <40	<20 <40	<20 60
	45	8/9/14 1/31/20	<20 <20	<20 82	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	15,000 28,800	<20 <60	<20 <20	<20 <40	<20 <40	<20 134
	65	8/9/14 1/31/20	<20 <20	188 141	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	29,500 37,100	<20 <60	<20 <20	<20 <40	<20 <40	<20 202
	85	8/9/14 1/31/20	<20 <20	270 157	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	29,400 48,300	<20 <60	<20 <20	<20 <40	<20 <40	<20 194
Comi	mercial Scro Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concer	ntration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	МС	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	6/7/16	71	<8	<8	<8	577	<8	<8	<8	<8	<8	<8	<8	<8	<8	892	<8	<8	<8	<8	<8
	15	6/7/16	<8	<8	<8	<8	186	<8	<8	<8	<8	<8	<8	<8	<8	<8	3,920	<8	<8	<8	<8	324
VP-42	25	6/7/16	<8	<8	<8	<8	229	<8	<8	<8	<8	<8	<8	<8	<8	<8	6,090	<8	<8	<8	<8	709
	45	6/7/16 1/22/20	<8 <20	195 33	<8 <20	<8 <20	459 <20	<8 <20	<8 <20	92 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	2,630 5,910	<8 <60	<8 <20	<8 <40	<8 <40	233 687
	55	6/7/16	<8	<8	<8	<8	44	<8	<8	<8	<8	<8	<8	<8	<8	<8	3,640	<8	<8	<8	<8	311
Comn	nercial Scro Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	6/9/16 1/27/20 DUP	<8 <20 <20	156 <20 <20	<8 <20 <20	<8 <20 <20	116 <20 <20	<8 <20 <20	<8 <20 <20	32 <20 <20	<8 <20 <20	86 <20 <20	<8 <40 <40	<8 <20 <20	<8 <20 <20	<8 <20 <20	<40 <40 <40	<8 <60 <60	<8 <20 <20	<8 <40 <40	<8 <40 <40	<8 <40 <40
	15	6/9/16 1/27/20	<8 <20	203 <20	<8 <20	<8 <20	81 <20	<8 <20	<8 <20	38 <20	<8 <20	88 <20	<8 <40	<8 <20	<8 <20	<8 <20	<40 89	<8 <60	<8 <20	<8 <40	<8 <40	<8 <40
VP-46	25	5/31/16 1/27/20	<8 <20	366 <20	<8 <20	<8 <20	49 <20	<8 <20	<8 <20	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	2,250 548	<8 <60	100 <20	<8 <40	<8 <40	<8 <40
	45	5/31/16 1/27/20	<8 <20	351 <20	<8 <20	<8 <20	<8 <20	<8 <20	<8 41	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	2,050 2,390	<8 <60	104 <20	<8 <40	<8 <40	<8 30
	65	5/31/16 1/27/20	<8 <20	673 370	<8 <20	<8 <20	105 30	<8 <20	<8 156	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	6,400 3,300	<8 <60	181 174	<8 <40	<8 <40	<8 42
	80	5/31/16 1/27/20	<8 <20	774 298	<8 <20	<8 <20	121 <20	<8 <20	<8 <20	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	7,230 1,600	<8 <60	220 141	<8 <40	<8 <40	<8 24
Com	mercial Scr Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	itration (μg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	6/8/16 3/3/20	<8 <20	128 <20	<8 <20	<8 <20	56 <20	<8 <20	<8 <20	23 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	<40 <40	<8 <60	<8 <20	<8 <40	<8 <40	<8 <40
	15	6/8/16 3/3/20	<8 <20	43 25	<8 <20	<8 <20	20 <20	<8 <20	<8 <20	18 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	<40 1,480	<8 <60	<8 <20	<8 <40	<8 <40	<8 121
	25	6/8/16 3/3/20	26 26	458 276	<8 23	<8 <20	94 27	<8 <20	10 225	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	3,920 3,660	<8 <60	22 <20	<8 <40	<8 <40	275 260
VP-47	45	6/8/16 DUP 3/4/20	140 137 46	988 932 698	<8 <8 56	<8 <8 32	1,600 1,590 167	43 40 <20	66 66 442	<8 <8 <20	<8 <8 <20	<8 <8 <20	<8 <8 <40	<8 <8 <20	<8 <8 <20	<8 <8 <20	6,810 6,450 7,430	<8 <8 <60	97 95 186	<8 <8 <40	<8 <8 <40	316 28 296
	65	6/8/16 3/4/20	209 <20	900 81	<8 <20	51 <20	3,110 52	<8 <20	71 37	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	7,680 383	<8 <60	171 <20	<8 <40	<8 <40	341 42
	85	6/8/16 3/4/20	227 158	908 801	<8 45	68 78	3,510 468	<8 <20	76 671	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	8,020 6,590	<8 <60	187 <20	<8 <40	<8 <40	351 400
Comn	nercial Scre Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (μg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	6/1/16 1/22/20 DUP	41 <20 <20	<8 23 26	<8 <20 <20	<8 <20 <20	3,070 35 46	<8 <20 <20	<8 <20 <20	26 <20 <20	<8 <20 <20	<8 <20 <20	<8 <40 <40	<8 <20 <20	<8 <20 <20	<8 <20 <20	2,610 114 66	<8 <60 <60	<8 <20 <20	<8 <40 <40	<8 <40 <40	<8 <40 <40
	15	6/1/16 1/22/20	172 <20	<8 32	<8 <20	<8 <20	14,700 299	<8 <20	15 <20	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	2,190 <40	<8 <60	24 <20	<8 <40	<8 <40	<8 <40
VP-48	25	6/1/16 1/22/20 DUP	316 38 46	<8 116 160	<8 25 <4.9	579 <20 330	11,400 208 610	<8 <20 <4.3	78 112 170	15 <20 <8.2	<8 <20 <6.7	81 <20 <8.8	<8 <40 <7.8	<8 <20 <6.1	<8 <20 <4.7	<8 <20 <6.1	1,380 23 510	<8 <60 <51	62 <20 NS	<8 <40 <22	<8 <40 <12	11 <40 43
VF-46	45	6/3/16 1/22/20	654 138	<8 397	<8 55	1,910 1,410	33,700 1,310	15 <20	107 396	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	1,410 2,640	<8 <60	211 123	<8 <40	<8 <40	299 97
	65	6/3/16 1/24/20 DUP	119 1,320 1,240	<8 927 833	152 375 295	294 <20 <20	119,000 93,700 92,100	<8 110 97	244 2,670 2,500	<8 <20 <20	<8 38 46	<8 <20 <20	<8 <40 <40	<8 <20 <20	<8 <20 <20	<8 <20 <20	3,920 6,210 5,210	<8 <60 <60	237 404 419	<8 <40 <40	<8 <40 <40	708 847 833
	85	6/3/16 1/24/20	114 1,350	<8 963	<8 311	125 <20	149,000 211,000	<8 102	1,770 2,970	<8 22	<8 31	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	5,170 7,390	<8 <60	295 441	<8 <40	<8 <40	856 982
Comn	nercial Scro Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	6/3/16 1/22/20	1,140 65	<8 291	<8 <20	595 <20	764,000 510	1,350 <20	718 896	<8 <20	118 <20	70 <20	<8 <40	<8 <20	<8 <20	<8 <20	1,090 5,920	<8 <60	1,540 <20	<8 <40	<8 <40	1,150 870
	15	6/7/16 1/22/20	1,970 716	<8 1,410	<8 40	813 <20	751,000 4,360	1,260 <20	740 4,770	<8 <20	162 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	2,810 5,140	<8 <60	1,820 29	<8 <40	<8 <40	2,870 1,460
	25	6/7/16 1/22/20	3,410 2,650	<8 2,010	<8 46	971 <20	593,000 75,700	1,290 <20	867 6,920	<8 <20	122 30	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	<40 2,480	<8 <60	1,550 77	<8 <40	<8 <40	5,890 3,570
VP-49	45	6/7/16 1/22/20 Summa	2,970 4,740 3,200	<8 4,930 3,800	<8 <20 <470	193 <20 <550	655,000 38,900 400,000	769 586 <410	1,000 13,500 9,700	<8 <20 <780	<20 98 <640	<8 <20 <840	<8 <40 <740	<8 <20 <580	<8 <20 <450	<8 <20 <580	1,960 3,180 56,000	<8 <60 <4,900	512 242 NS	<8 <40 <2,100	<8 <40 <1,100	3,440 5,270 4,500
	65	6/7/16 DUP 1/22/20	1,660 2,570 22	<8 <8 164	<8 <8 90	1,220 1,200 <20	985,000 812,000 2,160	4,070 3,990 582	830 195 433	<8 <8 <20	196 194 25	<8 <8 <20	<8 <8 <40	<8 <8 <20	<8 <8 <20	<8 <8 <20	412 1,260 362	<8 <8 <60	1,950 2,060 <20	<8 <8 <40	<8 <8 <40	1,920 1,950 131
	85	6/7/16 1/22/20	2,560 1,460	<8 1,090	<8 255	1,570 1,150	1,200,000 36,500	2,860 3,500	419 2,290	<8 <20	338 207	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	1,660 2,890	<8 <60	3,490 2,900	<8 <40	<8 <40	1,420 645
Comr	nercial Scre Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	itration (μg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	6/8/16 1/24/20 Summa	16 45 <630	<8 74 <420	<8 <20 <400	<8 <20 <460	992 137 <460	22 <20 <350	<8 <20 <460	<8 <20 <660	<8 <20 <550	<8 <20 <710	<8 <40 <630	<8 <20 <500	<8 <20 <380	<8 <20 <500	4,020 6,850 <650	<8 <60 <4,200	<8 <20 NS	<8 <40 <1,800	<8 <40 <960	<8 617 <500
	15	6/8/16 1/24/20	2,210 628	<8 330	<8 <20	110 <20	29,400 1,300	717 <20	213 157	<8 <20	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	1,660 13,500	<8 <60	<8 <20	<8 <40	<8 <40	4,580 2,770
VP-50	25	6/8/16 1/24/20	2,100 910	<8 417	<8 44	108 <20	49,200 2,890	672 35	210 366	<8 25	<8 <20	<8 <20	<8 <40	<8 <20	<8 <20	<8 <20	1,710 11,600	<8 <60	<8 <20	<8 <40	<8 <40	4,420 3,220
	45	6/9/16 1/24/20	3,060 2,420	<8 873	<8 190	148 <20	84,200 68,200	312 186	361 2,690	<8 24	<8 <20	59 <20	<8 <40	<8 <20	<8 <20	<8 <20	706 6,830	<8 <60	49 71	<8 <40	<8 <40	7,430 4,960
	53	6/9/16 DUP 1/24/20	3,220 3,100 2,750	<8 <8 6,460	<8 <8 1,170	4,210 4,110 <20	804,000 901,000 2,590,000	12,700 12,800 7,380	3,980 3,770 19,500	<8 <8 <20	<8 <8 29	<8 <8 <20	<8 <8 <40	<8 <8 <20	<8 <8 <20	<8 <8 <20	<40 <40 1,760	<8 <8 <60	528 534 487	<8 <8 <40	<8 <8 <40	11,400 11,900 16,600
Comn	nercial Scro Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	восм	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<40	<40	<40	<60	<20	<40	<40	<40
	15	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<40	<40	<40	<60	<20	<40	<40	<40
VP-99	30	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<40	<40	<40	<60	<20	<40	<40	<40
VP-99	45	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<40	<40	<40	<60	<20	<40	<40	<40
	65	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<40	<40	<40	<60	<20	<40	<40	<40
	80	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<40	<40	<40	<60	<20	<40	<40	<40
Comn	nercial Scre Level (d		67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	восм	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
	15	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
VP-100	30	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
VP-100	45	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
	65	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
	80	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	No Flow
	15	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	74	<60	<20	<40	<40	<40
	30	4/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	260	<60	<20	<40	<40	<40
VP-101	45	4/22/20 DUP	<20 <20	59 61	<20 <20	<20 <20	<20 <20	<20 <20	1,350 1,290	<60 <60	<20 <20	<40 <40	<40 <40	<40 <40								
	65	4/22/20	<20	42	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	896	<60	<20	<40	<40	<40
	80	4/22/20	<20	51	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	1,180	<60	<20	<40	<40	<40
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concer	ntration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
		4/04/00										l	No Flow									
	5	4/21/20 5/7/20	<85	<85	<20	<85	<85	<85	<85	<85	<85	<85	<85	<85	<85	<85	<85	<170	-		<170	<85
	15	4/21/20	<20	47	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	124	<60	<20	<40	<40	<40
VP-102	30	4/21/20	<20	361	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	6,440	<60	<20	<40	<40	<40
	45	4/21/20	<20	469	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	7,020	<60	<20	<40	<40	<40
	65	4/21/20	<20	557	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	7,970	<60	<20	<40	<40	<40
	80	4/21/20	<20	444	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	6,750	<60	<20	<40	<40	<40
Co	mmercial S Leve	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
	15	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
	30	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	658.0	<60	<20	<40	<40	<40
VP-103	45	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	710.0	<60	<20	<40	<40	<40
	65	4/21/20 REP	<20 <20	<20 <20	<20 <20	<20 <20	810.0 792.0	<60 <60	<20 <20	<40 <40	<40 <40	<40 <40										
	80	4/21/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	694.0	<60	<20	<40	<40	<40
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concer	ntration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	восм	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	ТСҒМ
		4/22/20										Tro	er in Probe									
	5	5/7/20	<80	<80	<20	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	<80	38	<160			<160	<80
		0/1/20	-00	100	- 20	-00	-00	100	-00	-00	100	-00	-00	100	100	-00	00	-100			1100	
	15	4/22/20	<20	69	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	22,400	<60	<20	<40	<40	<40
VP-104	30	4/22/20	<20	113	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	24,500	<60	<20	<40	<40	<40
	45	4/22/20	<20	205	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	23,300	<60	<20	<40	<40	<40
	65	4/22/20	<20	379	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	30,700	<60	<20	<40	<40	<40
	80	4/22/20	<20	396	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	23,500	<60	<20	<40	<40	<40
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	12/26/19	<3.1	<2.4	<17	<2.7	<2.7	<2.0	<2.0	<3.4	<2.3	<4.3	<2.5	<2.3	<2.3	<4.5	17.0	<16	<6.9	<6.9	<15	<5.6
	15	12/26/19	<3.1	<2.4	<17	<2.7	<2.7	<2.0	<2.0	<3.4	<2.3	<4.3	2.6	<2.3	<2.3	<4.5	<11	<16	<6.9	<6.9	<15	<5.6
VP-105	30	12/26/19	<31	<24	<170	<27	<27	<20	<20	<34	<23	<43	<25	<23	<23	<45	1,900	<160	<69	<69	<150	240
	45	12/26/19 DUP	<3.1 <16	<2.4 <12	<17 <87	<2.7 <14	<2.7 <14	<2.0 <10	<2.0 <10	<3.4 <17	<2.3 <12	<4.3 <21	2.5 <12	<2.3 <12	<2.3 <11	<4.5 <23	<11 550	<16 <80	<6.9 <34	<6.9 <34	<15 <74	<5.6 67
Co	mmercial \$ Leve	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	tration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	3/3/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20	<20	<20	48.0	<60	<20	<40	<40	<20
	15	3/3/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20	<20	<20	98.0	<60	<20	<40	<40	44.0
VP-106	30	3/3/20 REP	<20 <20	20.0 26.0	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<40 <40	<20 <20	<20 <20	<20 <20	1,760.0 1,840.0	<60 <60	<20 <20	<40 <40	<40 <40	319.0 372.0
	45	3/5/20 REP	<20 <20	27.0 27.0	<20 <20	64 56	<20 22	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	1,510.0 1,920.0	<60 <60	<20 <20	<40 <40	<40 <40	441.0 505.0
	53	3/5/20 Summa	<20 <800	<20 <800	<20 <1600	<20 <800	<20 <800	<20 <800	<20 <800	322.0 1,700.0	<60 <1600	<20	<40 <800	<40 <1600	68.0 <800							
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concer	ntration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	1/28/20 DUP	<20 <20	95 99	<20 <20	<20 <20	292 307	<20 <20	20 21	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	929 1,010	<60 <60	<20 <20	<40 <40	<40 <40	54 54
	15	1/28/20	72	254	162	<20	1,690	<20	359	<20	<20	<20	<20	<20	<20	<20	1,550	<60	<20	<40	<40	120
VP-107	25	1/28/20	22,000	2,810	5,370	<20	29,700	629	8,170	31.0	30	<20	<20	<20	<20	<20	7,330	<60	194	<40	<40	897
	30	1/28/20	1,890	1,350	1,280	<20	23,800	1,120	4,680	<20	133	<20	<20	<20	<20	<20	2,670	<60	1,110	<40	<40	1,160
	45	1/28/20	1,890	1,200	1,170	<20	16,200	963	4,600	<20	109	<20	<20	<20	<20	<20	2,520	<60	921	<40	<40	1,190
	65	1/28/20	1,770	1,030	864	<20	27,200	975	4,060	<20	122	<20	<20	<20	<20	<20	2,990	<60	1,130	<40	<40	1,140
Со	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	itration (μg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	1/27/20 DUP	<20 <590	52 <390	60 <370	<20 <440	180 <440	<20 <330	124 <440	<20 <620	<20 <510	<20 <670	<40 <590	<20 <470	<20 <360	<20 <470	1,150.0 <610	<60 <3,900	<20 NS	<40 <1,700	<40 <900	218 <470
	15	1/27/20	218	374	60	<20	1,930	<20	1,380	<20	<20	<20	<40	<20	<20	<20	7,860.0	<60	<20	<40	<40	2,980
VP-108	30	1/27/20	2,370	1,080	60	<20	58,400	30	18,700	28	26	<20	<40	<20	<20	<20	5,290.0	<60	<20	<40	<40	10,800
	45	1/27/20	285	265	27	<20	7,500	27	3,140	<20	<20	<20	<40	<20	<20	<20	5,440.0	<60	<20	<40	<40	1,340
	54	1/27/20	<20	52	<20	<20	<20	35	36	<20	<20	<20	<40	<20	<20	<20	<40	<60	<20	<40	<40	<40
	5	1/31/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	59	<60	<20	<40	<40	<40
	15	3/2/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	115	<60	<20	<40	<40	<40
VP-109	30	3/2/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	122	<60	<20	<40	<40	<40
	45	3/2/20 DUP	<20 <800	<20 <800	<20 <1600	<20 <800	<20 <800	<20 <800	<20 <800	163 280	<60 <1600	<20	<40 <800	<40 <800	<40 <800							
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	itration (μg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	МС	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	3/2/20 REP	<20 <20	<20 <20	<20 <20	<20 <20	24 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	894 1,160	<60 <60	<20 <20	<40 <40	<40 <40	51 82
	15	3/2/20	<20	62	<20	<20	20	<20	<20	<20	<20	<20	<20	<20	<20	<20	1,020	<60	<20	<40	<40	129
VP-113	30	3/2/20	401	148	<20	<20	599	<20	91	<20	<20	<20	<20	<20	<20	<20	8,740	<60	<20	<40	<40	1,310
	45	3/2/20	1,070	298	<20	<20	2,880	<20	509	<20	<20	<20	<20	<20	<20	<20	5,060	<60	<20	<40	<40	2,090
	60	3/2/20	648	1,320	59	<20	1,830	414	5,030	<20	<20	<20	<20	<20	<20	<20	4,070	<60	<20	<40	<40	3,690
	5	3/3/20	<20	34	<20	<20	282	<20	33	<20	<20	<20	<40	<20	<20	<20	<60	<20	<20	<40	<40	<40
VP-114	15	3/3/20 REP	169 207	275 292	<20 <20	<20 <20	4,470 4,590	<20 <20	717 773	<20 <20	<20 <20	<20 <20	<40 <40	<20 <20	<20 <20	<20 <20	<60 <60	<20 <20	<20 <20	<40 <40	<40 <40	489 469
	30	3/3/20	1,950	1,500	132	<20	106,000	<20	7,170	<20	<20	<20	<40	<20	<20	<20	<60	132	<20	<40	<40	1,100
	45	3/3/20	8,290	4,730	1,550	<20	1,210,000	308	18,600	<20	49	<20	<40	<20	<20	<20	<60	1,550	167	<40	<40	2,850
Co	mmercial S Leve	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concer	ntration (µg/	/m³)								
Boring	Sample Depth	Sampling Date	СТ	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	BDCM	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	4/23/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<60	<20	<40	<40	<40
	15	4/23/20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	43	<60	<20	<40	<40	<40
VP-132	30	4/23/20 REP	<20 <20	218 208	<20 <20	<20 <20	<20 <20	<20 <20	962 898	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	893 919	<60 <60	216 213	<40 <40	<40 <40	<40 <40
	45	4/23/20	<20	81	<20	<20	<20	<20	171	<20	<20	<20	<20	<20	<20	<20	1,260	<60	31	<40	<40	<40
	65	4/23/20	<20	480	<20	<20	<20	<20	996	<20	<20	<20	<20	<20	<20	<20	12,000	<60	108	<40	<40	<40
	80	4/23/20	<20	579	<20	<20	<20	<20	1,110	<20	<20	<20	<20	<20	<20	<20	12,000	<60	145	<40	<40	99
Co	mmercial S Level	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

												Concen	itration (μg/	/m³)								
Boring	Sample Depth	Sampling Date	ст	CF	мс	1,1,2-TCA	1,1,1-TCA	1,2-DCA	1,1-DCA	восм	СВ	DBCM	DCDFM	1,2-DCP	cis-1,3- DCP	trans-1,3- DCP	Freon 113 (aka 1,1,2-TC- 1,2,2-TFA)	нсв	1,1,1,2- PCA	1,1,2,2- PCA	1,2,4-TCB	TCFM
	5	12/26/19	<3.1	<2.4	<17	<2.7	<2.7	<2.0	<2.0	<3.4	<2.3	<4.3	<2.5	<2.3	<2.3	<4.5	<11	<16	<6.9	<6.9	<15	<5.6
	15	12/26/19	<3.1	3	<17	<2.7	<2.7	<2.0	13	<3.4	<2.3	<4.3	2.9	<2.3	<2.3	<4.5	<11	<16	<6.9	<6.9	<15	<5.6
	30	12/26/19	<130	160	<690	<110	<110	<81	2,400	<130	<92	<170	<99	<92	<91	<180	1,000	<640	<270	<270	<590	<220
VP-133	45	12/26/19	<130	260	<690	<110	<110	<81	2,900	830	<92	<170	<99	<92	<91	<180	6,400	<640	<270	<270	<590	<220
	65	12/26/19	<130	410	<690	<110	<110	<81	1,200	<130	<92	<170	<99	<92	<91	<180	14,000	<640	<270	<270	<590	<220
	85	12/26/19 DUP	<50 <50	270 390	<280 <280	<44 <44	<44 <44	<32 <32	750 990	<54 <54	<37 <37	<68 <68	<40 <40	<37 <37	<36 <36	<73 <73	9,500 12,000	<260 <260	<110 <110	<110 <110	<240 <240	94 130
Co	mmercial S Leve	Screening I (α=0.03)	67	18	400	26	146,667	16	257	11	7,333	NA	14,667	110	103	103	733,333	19	57	7	57	176,667

- "feet bgs" feet below ground surface
 "Bold"- concentration exceeds the commercial screening level
- "ND" Non-detect
- "*" Screening levels obtained from HHRA Note No. 3 (April 2019) or EPA Region 9 RSL (April 2019) with attenuation factor of 0.03
- "DBCM" Dibromochloromethane
- "BDCM" Bromodichloromethane
- "CT" Carbon tetrachloride
- "CB" Chlorobenzene

- "CF" Chloroform
- "1,2-DCP" 1,2-dichloropropane
- "cis-1,3-DCP" cis-1,3-dichloropropane
- "trans -1,3-DCP" trans-1,3-dichloropropane
- "HCB" Hexachlorobutadiene
- "MC" Methylene chloride
- "1,1,1,2-PCA" 1,1,1,2-tetrachloroethane
- "1,1,2,2-PCA" 1,1,2,2-tetrachloroethane
- "1,1,1-TCA" 1,1,1-trichloroethane
- "1,1,2-TCA" 1,1,2-trichloroethane
- "TCFM" Trichlorofluoromethane
- "1,2,4-TCB" 1,2,3-trichlorobenzene "1,1-DCA" 1,1-dichloroethane "1,2-TCA" 1,2-dichloroethane

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
		3/3/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
		0/0/44										
	15	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
		3/5/20	27	<20	<20	<20	<20	<20	<20	<20	<40	<20
		0/0/4.4	100	100	<20	100	100	100	100	100		*00
	25	8/9/14	<20	<20		<20	<20	<20	<20	<20	 <40	<20
	25	3/3/20 Summa	143 390	<20 <1600	<20 <820	<20 <820	<20 <820	<20 180	<20 <820	<20 <820	<40 <820	<20 <820
		Sullilla	390	<1000	<820	<020	<020	160	<02U	<u> </u>	<020	<020
		8/9/14	404	<20	<20	<20	<20	<20	<20	<20		<20
VP-25	45	DUP	390	<20	<20	<20	<20	<20	<20	<20		<20
		3/5/20	242	<20	<20	<20	<20	<20	<20	<20	<40	<20
	55	8/9/14	604	<20	<20	<20	<20	<20	<20	<20		<20
	55	3/5/20	275	<20	<20	<20	<20	<20	<20	<20	<40	<20
	65	8/9/14	440	<20	<20	<20	<20	<20	<20	<20		<20
	05	3/5/20	269	<20	<20	<20	<20	<20	<20	<20	<40	<20
	85	8/9/14	584	<20	<20	<20	<20	<20	<20	<20		<20
		3/5/20	270	<20	<20	<20	<20	<20	<20	<20	<40	<20
Commer	cial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

						Co	ncentration	(μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	5	5/7/20	<31	<160	<78	<78	<78	20	<78	<78	23	<78
		8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	15	5/7/20	<34	<170	<20 <84	<84	<84	18.0	<84	<84	22	<84
	30	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	00	5/7/20	<3,100	<16,000	<7,800	<7,800	<7,800	<3,100	<7,800	<7,800	<7,800	<7,800
VP-26												
	45	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	45	5/7/20	<33	<160	<82	<82	<82	<33	<82	<82	<82	<82
		0/0/44	<20	<20	<20	*00	<20	100	*00	<20		<20
	65	8/9/14 5/7/20	<3,300	<17,000	<20 <8,400	<20 <8,400	<8,400	<20 <3,300	<20 <8,400	<8,400	<8,400	<8,400
		8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	80	5/7/20	<3,600	<18,000	<9,000	<9,000	<9.000	<3,600	<9,000	<9.000	<9,000	<9,000
		DUP	<3,200	<16,000	<8,000	<8,000	<8,000	<3,200	<8,000	<8,000	<8,000	<8,000
Comme	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
		8/9/14	<20	1,100	<20	<20	<20	<20	<20	<20		<20
	5	1/31/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
		Summa	<2.4	<11	<6.3	<5.5	<5.8	17.0	<9.8	<23	14	<8.1
	15	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
		1/31/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
	25	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
VP-31	20	1/31/20	<20	21	<20	<20	<20	<20	<20	<20	<40	<20
VI -51												
	45	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	45	1/31/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
	65	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	65	1/31/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
	85	8/9/14	<20	<20	<20	<20	<20	<20	<20	<20		<20
	65	1/31/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
Commer	rcial Screei	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

55

Commercial Screening Level

6/7/16

 $(\alpha = 0.03)$

<8

14

<8

367

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Other VOC Concentrations in Soil Vapor

Concentration (µg/m³) Samplin Sample Boring 1,2g Date Depth 1,2,4-TMB 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene Toluene o-Xylene Dibromoethane 5 6/7/16 <8 <8 <8 <8 <8 70 <8 <8 <8 6/7/16 15 <8 <8 <8 <8 <8 60 42 <8 <8 25 6/7/16 47 <8 <8 <8 58 <8 VP-42 6/7/16 <8 <8 <8 <8 <8 25 30 <8 <8 33 1/22/20 <20 <20 <20 <20 <20 <20 <20 <20

<8

163

<8

130,000

38

43,333

38

8,667

<8

14,667

8,667

<8

14,667

<8

0.67

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Concentration (µg/m³) Sample Samplin Boring 1,2-Depth g Date 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene 1,2,4-TMB o-Xylene Toluene Dibromoethane 6/9/16 <8 <8 56 135 <8 51 <8 <8 <8 5 1/27/20 124 <20 <20 <20 <20 <20 <20 <20 <40 <20 DUP 129 <20 <20 <20 <20 <20 <20 <20 <40 <20 6/9/16 38 <8 <8 <8 <8 43 134 <8 <8 15 1/27/20 <20 <20 <20 <20 <20 <20 <20 <20 <40 <20 5/31/16 <8 <8 <8 <8 <8 32 <8 <8 <8 25 <20 <20 <20 <20 <20 <20 <20 <20 <40 1/27/20 <20 VP-46 5/31/16 <8 <8 <8 <8 <8 22 <8 <8 <8 45 33 <20 1/27/20 80 <20 <20 <20 <20 <20 <40 <20 5/31/16 <8 <8 <8 <8 <8 32 <8 <8 <8 65 1/27/20 120 <20 <20 <20 <20 <20 <20 <20 <40 <20 5/31/16 <8 <8 <8 <8 30 <8 <8 <8 <8 85 1/27/20 111 <20 <20 160 <20 38 75 43 353 51 **Commercial Screening Level** 14 43,333 8,667 367 0.67 163 130,000 8,667 14,667 14,667 $(\alpha = 0.03)$

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

						Co	ncentration	(μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	6/8/16	<8	<8	<8	<8	<8	38	38	<8		<8
	5	3/3/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
			_							_		
	15	6/8/16	<8	<8	<8	<8	<8	26	32	<8		<8
		3/3/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
		6/8/16	<8	<8	<8	<8	<8	66	51	<8		<8
	25	3/3/20	166	<20	<20	<20	<20	<20	<20	<20	<40	<20
VP-47												
		6/8/16	331	<8	<8	52	<8	295	61	<8		115
	45	DUP	290	<8	<8	51	<8	294	56	<8		98
		3/4/20	384	<20	<20	<20	<20	29	<20	<20	<40	<20
		0/0/40										
	65	6/8/16	343	<8	<8	<8	<8	141	50	<8		<8
		3/4/20	47	<20	<20	<20	<20	<20	<20	<20	<40	<20
		0/0/40	054	.0		.0	.0	407	44	.0		
	85	6/8/16	351	<8	<8	<8	<8	127	44	<8		<8
		3/4/20	398	<20	<20	<20	<20	23	<20	<20	<40	<20
Commer	rcial Screei	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

	0	0				Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
		6/1/16	<8	<8	<8	<8	<8	61	60	<8		<8
	5	1/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
		DUP	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
		6/1/16	<8	<8	<8	45	<8	147	95	<8		174
	15	1/22/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
		6/1/16	<8	<8	<8	46	<8	207	82	<8		123
	25	1/22/20	23	<20	<20	<20	<20	<20	<20	<20	<40	<20
VP-48		Summa	29	<14	<8.4	<7.3	<7.8	<3.9	<13	<31	<17	<11
VI -40												
	45	6/3/16	<8	<8	<8	<8	<8	202	56	<8		<8
		1/22/20	55	<20	<20	<20	<20	45	<20	<20	<40	<20
		6/3/16	<8	<8	<8	<8	<8	644	43	<8		<8
	65	1/24/20	130	<20	<20	<20	<20	998	<20	<20	 <40	<20
	03	DUP	121	<20	<20	<20	<20	955	<20	<20	<40	<20
		DOP	121	\ 20	<20	<20	<20	955	<20	<20	<40	<20
		6/3/16	<8	<8	<8	<8	<8	786	40	<8		<8
	85	1/24/20	145	<20	<20	<20	<20	916	<20	<20	<40	<20
Commer	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	6/3/16	<8	<8	<8	11	<8	1,140	39	<8		<8
		1/22/20	111	<20	<20	<20	<20	<20	<20	<20	<40	<20
		6/7/16	<8	<8	<8	46	<8	1,540	61	<8		<8
	15	1/22/20	133	<20	<20	<20	<20	102	<20	<20	<40	<20
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
		6/7/16	<8	<8	<8	37	<8	1,280	46	<8		14
	25	1/22/20	227	<20	<20	<20	<20	107	<20	<20	<40	<20
		1,22,20		-20	-20	-20	,20	107	-20	120	-10	-20
VP-49		6/7/16	101	<8	<8	12	<8	658	34	<8		<8
	45	1/22/20	443	<20	<20	30	<20	82	<20	<20	<40	<20
	40	Summa	<310	<780	<800	<700	<740	<370	<1,200	<2,900	<1,600	<1,000
		Garrina	1010	4700	4000	1700	1140	3070	11,200	-2,500	11,000	11,000
		6/7/16	<8	<8	<8	54	<8	2,730	58	<8		<8
	65	DUP	<8	<8	<8	53	<8	2,730	58	<8		<8
		1/22/20	26	<20	<20	<20	<20	618	<20	<20	<40	<20
		1/22/20	20	120	-,20	120	720	010	120	120	140	120
		0/7/40	-0	.0	-0	15	-0	0.000				
	85	6/7/16	<8	<8	<8	15	<8	2,000	30	<8		<8
		1/22/20	91	<20	<20	<20	<20	734	<20	<20	<40	<20
Comme	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Concentration (µg/m³) Sample Samplin Boring 1,2-Depth g Date 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene 1,2,4-TMB o-Xylene Toluene Dibromoethane 6/8/16 <8 <8 16 <8 <8 <8 <8 <8 <8 5 1/24/20 24 <20 <20 <20 <20 <20 <20 <20 <40 <20 <270 <1,200 <680 <600 <630 <320 <1,100 <2,500 <1,400 <880 Summa 6/8/16 <8 <8 <8 <8 <8 258 30 <8 <8 15 1/24/20 <20 <20 <20 <20 <20 30 <20 <20 <40 <20 6/8/16 <8 <8 <8 <8 <8 253 30 <8 <8 VP-50 25 1/24/20 <20 <20 <20 <20 <20 22 <20 <20 <40 <20 6/9/16 <8 <8 <8 <8 <8 212 131 <8 <8 45 1/24/20 21 <20 <20 <20 <20 26 <20 <20 <40 <20 6/9/16 <8 <8 <8 62 <8 709 129 <8 <8 62 53 DUP <8 <8 <8 <8 660 129 <8 <8 232 <20 75 37 1/24/20 164 <20 <20 103 302 53 Commercial Screening Level 14 367 0.67 163 130,000 43,333 8,667 8,667 14,667 14,667 $(\alpha = 0.03)$

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	4/22/20	<20	<20	<20	<20	<20	112	<20	<20	<40	<20
	15	4/22/20	26	<20	<20	<20	<20	1,830	<20	<20	62	22
VP-99	30	4/22/20	<20	<20	<20	<20	<20	1,790	<20	<20	<40	<20
VP-99	45	4/22/20	<20	<20	<20	<20	<20	3,250	<20	<20	<40	<20
	65	4/22/20	<20	<20	<20	<20	<20	1,160	<20	<20	<40	<20
	80	4/22/20	<20	<20	<20	<20	<20	2,220	<20	<20	<40	<20
Commer	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Concentration (µg/m³) Samplin Sample Boring 1,2-Depth g Date 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene Toluene 1,2,4-TMB o-Xylene Dibromoethane 5 4/21/20 <20 <20 <20 <20 <20 <20 <20 <40 <20 <20 4/21/20 15 <20 <20 <20 <20 <20 379 <20 <20 <40 <20 4/21/20 144 <20 42 <20 116 <20 6,330 142 310 174 VP-100 45 4/21/20 <20 <20 <20 <20 <20 360 <20 <20 <40 <20 4/21/20 <20 <20 <40 <20 <20 <20 251 <20 <20 <20 80 4/21/20 <20 <20 <20 <20 <20 230 <20 <20 <40 <20 Commercial Screening Level 14 367 0.67 163 130,000 43,333 8,667 8,667 14,667 14,667 $(\alpha = 0.03)$

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	4/22/20	47	<20	<20	<20	<20	218	<20	<20	<40	<20
	15	4/22/20	183	<20	<20	<20	<20	411	149	<20	<40	<20
	30	4/22/20	76	<20	<20	<20	<20	211	<20	<20	<40	<20
VP-101	45	4/22/20 REP	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	346 335	<20 <20	<20 <20	<40 <40	<20 <20
	65	4/22/20	<20	<20	<20	<20	<20	2,450	<20	<20	<40	<20
	80	4/22/20	<20	<20	<20	<20	<20	84	<20	<20	<40	<20
Comme	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	4/21/20 5/7/20	<34	<170	<8,000	<85	No Flow <20	1,140	30	<85	140	57
	15	4/21/20	<20	<20	<20	<20	<20	1,140	<20	<20	<40	<20
VP-102	30	4/21/20	144	<20	<20	<20	<20	850	28	<20	41	<20
	45	4/21/20	<20	<20	<20	<20	<20	167	<20	<20	<40	<20
	65	4/21/20	<20	<20	<20	<20	<20	178	<20	<20	<40	<20
	80	4/21/20	<20	<20	<20	<20	<20	33	<20	<20	<40	<20
Commer	cial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Concentration (µg/m³) Samplin Sample Boring 1,2g Date Depth 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene Toluene 1,2,4-TMB o-Xylene Dibromoethane 5 4/21/20 <20 <20 <20 <20 <20 79 <20 <20 <40 <20 4/21/20 <20 <20 <20 <20 <20 653 <20 <20 <40 <20 30 4/21/20 <20 <20 <20 <20 <20 529 <20 <20 <40 <20 VP-103 4/21/20 <20 <20 <20 <20 <20 578 <20 <20 <40 <20 4/21/20 <20 <20 <20 <20 <20 2,410 <20 <20 <40 <20 65 REP <20 <20 <20 <20 <20 4,750 <20 <20 <40 <20 80 4/21/20 <20 <20 <20 <20 <20 407 <20 <20 <40 <20 Commercial Screening Level

163

130,000

43,333

8,667

8,667

14,667

14,667

 $(\alpha = 0.03)$

14

367

0.67

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

						Co	ncentration (/μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	4/22/20					Tracer in Pro	bbe				
	5		<32	<160	<80	<80	<80	41	31	<80	83	31
	15	4/22/20	31	<20	<20	<20	<20	4,050	<20	<20	72	<20
VP-104	30	4/22/20	<20	<20	<20	<20	<20	2,250	<20	<20	25	<20
	45	4/22/20	<20	<20	<20	<20	<20	1,960	<20	<20	<40	<20
	65	4/22/20	<20	<20	<20	<20	<20	887	<20	<20	<40	<20
	80	4/22/20	<20	<20	<20	<20	<20	1,100	<20	<20	<40	<20
Commer	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

		Samplin g Date				Co	ncentration (/μg/m³)				
Boring	Sample Depth		Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	12/26/19	<1.6	<5.2	<3.8	<2.2	<6.4	<1.9	<7.4	<2.5	<8.7	<2.2
	15	12/26/19	<1.6	<5.2	<3.8	<2.2	<6.4	3.4	<7.4	<2.5	<8.7	<2.2
VP-105	30	12/26/19	<16	<52	<38	<22	<64	<19	<74	<25	<87	<22
	45	12/26/19 DUP	<1.6 <8.0	<5.2 <26	<3.8 <19	<2.2 <11	<6.4 <32	3.3 73	<7.4 <37	<2.5 <12	<8.7 <43	<2.2 <41
Commercial Screening Level (α=0.03)		14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667	

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Concentration (µg/m³) Samplin Sample Boring 1,2-Depth g Date 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene Toluene 1,2,4-TMB o-Xylene Dibromoethane 5 3/3/20 190 <20 <20 <20 <40 <20 <20 39.0 <20 <20 3/3/20 15 62 <20 <20 <20 <20 91.0 <20 <20 <40 <20 3/3/20 <20 <20 <20 <20 <20 <20 <20 <20 <40 <20 30 REP <20 <20 <20 <20 <20 83 <20 <20 <40 <20 VP-106 25 <20 <20 55 <20 <20 <40 3/5/20 <20 <20 <20 45 220 REP 33 <20 <20 <20 <20 <20 <20 <40 <20 3/5/20 116 <20 <20 <20 <20 <20 <20 <20 <40 <20 53 <320 <1600 Summa <800 <800 <800 200 <800 <800 <800 <800 **Commercial Screening Level** 14 367 0.67 163 130,000 43,333 8,667 8,667 14,667 14,667 $(\alpha = 0.03)$

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	1/28/20 DUP	158 153	<20 <20	<20 <20	<20 <20	<20 <20	128 133	23 23	<20 <20	71 74	27 24
	15	1/28/20	197	<20	<20	31	<20	248	36	<20	112	35
VP-107	25	1/28/20	207	<20	<20	25	<20	456	<20	<20	22	<20
	30	1/28/20	122	<20	<20	27	<20	1,660	<20	<20	32	<20
	45	1/28/20	114	<20	<20	25	<20	1,570	<20	37	<40	<20
	65	1/28/20	120	<20	<20	29	<20	3,440	<20	<20	<40	<20
Commer	cial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report
Other VOC Concentrations in Soil Vapor

			Concentration (µg/m³)											
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene		
	5	1/27/20	194	<20	<20	34	<20	223	35	<20	<40	<20		
	3	Summa	<250	<1,100	<640	<560	<590	<300	<1,000	<2,300	<1,300	<830		
	15	1/27/20	121	<20	<20	<20	<20	162	<20	<20	<40	<20		
VP-108	30	1/27/20	328	<20	<20	<20	<20	165	<20	<20	<40	<20		
	40	1/27/20	81	<20	<20	28	<20	285	<20	<20	86	<20		
	54	1/27/20	<20	<20	<20	<20	<20	207	<20	<20	<40	<20		
Commercial Screening Level (α=0.03)		14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667			

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

		Samplin g Date				Co	ncentration (/μg/m³)				
Boring	Sample Depth		Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	1/31/20	<20	<20	<20	43.0	<20	92.0	34.0	214	<40	180
	15	3/2/20	<20	<20	<20	<20	<20	<20	<20	<20	<40	<20
VP-109	30	3/2/20	<20	<20	<20	<20	<20	20.0	<20	<20	<40	<20
	45	3/2/20 Summa	<20 <320	<20 <1600	<20 <800	<20 <800	<20 <800	32.0 140	<20 <800	<20 <800	<40 <800	<20 <800
Commercial Screening Level (α=0.03)		14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667	

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

						Co	ncentration ((μg/m³)				
Boring	Sample Depth	Samplin g Date	Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	3/2/20 REP	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<20 <20	<40 <40	<20 <20
	15	3/2/20	155	<20	<20	<20	<20	54	<20	<20	<40	<20
VP-113	30	3/2/20	108	<20	<20	<20	<20	63	<20	<20	<40	<20
	45	3/2/20	59	<20	<20	<20	<20	41	<20	<20	<40	<20
	60	3/2/20	148	<20	<20	37	<20	761	<20	<20	<40	<20
Commer	Commercial Screening Level (α=0.03)		14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

Table 2C Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Concentration (µg/m³) Samplin Sample Boring 1,2g Date Depth 1,2,4-TMB 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene Toluene o-Xylene Dibromoethane 5 3/3/20 63 <20 <20 <20 <20 283 <20 <20 <40 <20 3/3/20 293 <20 <20 <20 <20 294 <20 <20 <40 <20 15 REP 290 <20 <20 246 <20 <40 <20 <20 <20 <20 VP-114 30 3/3/20 333 <20 <20 100 <20 2,450 <20 41 <40 74 45 3/3/20 188 <20 <20 108 <20 321 <20 <20 <40 27 Commercial Screening Level 14 367 0.67 163 130,000 43,333 8,667 8,667 14,667 14,667

 $(\alpha = 0.03)$

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Other VOC Concentrations in Soil Vapor

Concentration (µg/m³) Samplin Sample Boring 1,2-Depth g Date 1,3,5-TMB m,p-Xylene Benzene Bromoform Ethylbenzene Styrene Toluene 1,2,4-TMB o-Xylene Dibromoethane 5 4/23/20 44 <20 <20 <20 434 <20 <20 <40 <20 <20 4/23/20 15 <20 <20 <20 <20 <20 573 <20 <20 <40 <20 4/23/20 50 <20 <20 <20 <20 131 36 <20 <40 <20 30 REP 46 <20 <20 <20 <20 125 41 <20 <40 <20 VP-132 45 4/23/20 <20 <20 <20 <20 <20 336 <20 <20 <40 <20 65 4/23/20 61 <20 <20 <20 <20 86 <20 <20 <40 <20 4/23/20 <20 70 <20 <20 <20 288 <20 <20 <40 <20 **Commercial Screening Level** 14 367 0.67 163 130,000 43,333 8,667 8,667 14,667 14,667 $(\alpha = 0.03)$

Table 2C
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Other VOC Concentrations in Soil Vapor

						Co	ncentration ((μg/m³)				
Boring	Sample Depth		Benzene	Bromoform	1,2- Dibromoethane	Ethylbenzene	Styrene	Toluene	1,2,4-TMB	1,3,5-TMB	m,p-Xylene	o-Xylene
	5	12/26/19	2	<5.2	<3.8	2	<6.4	12	<7.4	<2.5	9	3
	15	12/26/19	13	<5.2	<3.8	18	<6.4	41	<7.4	4	19	22
	30	12/26/19	<64	<210	<150	<87	<260	130	<290	<98	<350	<87
VP-133	45	12/26/19	67	<210	<150	140	<260	190	<290	<98	<350	<87
	65	12/26/19	<64	<210	<150	<87	<260	<75	<290	<98	<350	<87
	85	12/26/19 DUP	43 56	<83 <83	<61 <61	<35 <35	<100 <100	<30 <30	<120 <120	<39 <39	<140 <140	<35 <35
Commer	rcial Scree	ning Level (α=0.03)	14	367	0.67	163	130,000	43,333	8,667	8,667	14,667	14,667

NOTES:

- "feet bgs" feet below ground surface
- "Bold"- concentration exceeds the residential screening level
- "ND" Non-detect
- "*" Screening levels obtained from HHRA Note No. 3 (April 2019) or EPA Region 9 RSL (April 2019) with attenuation factor of 0.03

Table 3A Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

COPC Concentrations in Soil

	D	0			Concentrat	tion (mg/kg)		
Sample ID	Depth (ft bgs)	Sampling Date	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	27	1/15/20	0.0099	<0.0022	<0.0018	<0.0019	0.0032	<0.0018
VP-107	39	1/16/20	0.11	0.021	<0.0018	<0.0019	0.026	<0.0019
	45.5	1/16/20	0.15	0.047	<0.0018	<0.0019	0.076	<0.0019
	26	1/8/20	0.0035	<0.0022	<0.0018	<0.0019	<0.0021	<0.0019
VP-108	33	1/8/20	<0.0022	<0.0022	<0.0018	<0.0019	<0.0021	<0.0019
	40	1/8/20	0.079	0.0028	<0.0018	<0.0019	<0.0021	<0.0019
	50	1/8/20	0.003	<0.0022	<0.0018	<0.0019	<0.0021	<0.0019
VP-114	60	1/8/20	0.02	<0.0022	<0.0018	<0.0019	<0.0021	<0.0019
		40/7/40	-0.0000	-0.0000	-0.0040	.0.0040	-0.0004	-0.0040
	5	12/7/19	<0.0022	<0.0022	<0.0018	<0.0019	<0.0021	<0.0019
	15	12/7/19	<0.0015	<0.0015	<0.0012	<0.0013	<0.0014	<0.0013
\ /D	15	DUP-1	<0.0015	<0.0015	<0.0013	<0.0013	<0.0015	<0.0013
VP-133	30	12/7/19	0.002	0.0035	<0.0015	<0.0015	<0.0017	<0.0015
	45	12/7/19	0.0029	<0.0016	<0.0013	<0.0014	<0.0015	<0.0014
	65	12/7/19	0.0074	0.0073	<0.0016	<0.0017	<0.0019	<0.0017
	85	12/7/19	0.01	0.013	<0.0018	<0.0019	<0.0021	<0.0019
Commerci	al Screen	ina Level*	2.7	6.0	84	600	1,000	0.15

Notes:

- "PCE" - tetrachloroethene

- "TCE" - trichloroethene

- "1,1-DCE" - 1,1-dichloroethene

- "cis-1,2-DCE" - cis-1,2-dichloroethene

- "trans-1,2-DCE" - trans-1,2-dichloroethene

- "feet bgs" - feet below the ground surface

- "mg/kg" - milligrams per kilogram - "ND" - Not Detected - "*" - Screening levels obtained from HHRA Note No. 3 (April 2019), EPA Region 9 RSL (April 2019)

Table 3B

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Historical COPC Concentrations in Soil

	Depth (ft bgs)	Sampling		Cond	centration (m	g/kg)	
Sample ID		Date	PCE	TCE	cis-1,2- DCE	1,1-DCE	Vinyl Chloride
	5	4/26/16	<0.002	<0.001	<0.005	<0.005	<0.005
VP-35	35	4/28/16	<0.002	<0.001	<0.005	<0.005	<0.005
	75	4/28/16	<0.002	<0.001	<0.005	<0.005	<0.005
	5	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	10	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	15	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	20	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	25	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	30	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
VP-42	35	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
V1 -42	40	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	45	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	50	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	55	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005
	60	5/18/16	0.002	<0.001	<0.005	<0.005	<0.005
	65	5/18/16	0.004	0.006	<0.005	0.013	<0.005
	00	0/10/10	0.004	0.000	10.000	0.010	10.000
	5	5/17/16	0.011	0.006	<0.005	<0.005	<0.005
	10	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	15	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	20	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	25	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	30	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	35	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	40	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
VP-46	45	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	50	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	55	5/17/16	0.006	0.002	<0.005	<0.005	<0.005
	60	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	65	5/17/16	0.002	<0.001	<0.005	<0.005	<0.005
	70	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	75	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	80	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005
	85	5/17/16	0.008	0.002	<0.005	<0.005	<0.005
Commercia	al Screen	ing Level*	2.7	6.0	84	1,000	0.15

Table 3B

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Historical COPC Concentrations in Soil

	Donath	Committee	Concentration (mg/kg)						
Sample ID	Depth (ft bgs)	Sampling Date	PCE	TCE	cis-1,2- DCE	1,1-DCE	Vinyl Chloride		
		E/16/16	0.017	0.002	<0.005	<0.005	<0.005		
	5 10	5/16/16		0.002					
	15	5/16/16 5/16/16	0.003 <0.002	<0.001 <0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		
	20	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	25	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	30	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	35	5/16/16	0.020	0.010	<0.005	<0.005	<0.005		
	45	5/16/16	0.024	0.026	<0.005	<0.005	<0.005		
VP-47	50	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	55	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	60	5/16/16	0.027	0.030	<0.005	<0.005	<0.005		
	65	5/16/16	0.010	0.009	<0.005	<0.005	<0.005		
	70	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	75	5/16/16	0.013	0.008	<0.005	<0.005	<0.005		
	80	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	85	5/16/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	5	5/17/16	<0.002	0.003	<0.005	<0.005	< 0.005		
	10	5/17/16	<0.002	<0.001	<0.005	<0.005	< 0.005		
	15	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	20	5/17/16	<0.002	0.002	<0.005	<0.005	<0.005		
	25	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	30	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005		
VP-48	35	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	40	5/17/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	45	5/17/16	<0.002	0.005	<0.005	<0.005	<0.005		
	60	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	70	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	75	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005		
	80	5/18/16	<0.002	<0.001	<0.005	<0.005	<0.005		
		E/40/46	0.005	10.004	40.00E	10.005	40.000		
	5 10	5/12/16 5/12/16	0.025 0.071	<0.001 0.003	<0.005 <0.005	<0.005 0.021	<0.005 <0.005		
	15	5/12/16	0.071	<0.003	<0.005	<0.021	<0.005		
	20	5/12/16	0.017	0.001	<0.005	0.003	<0.005		
	25	5/12/16	<0.025	<0.002	<0.005	<0.005	<0.005		
	30	5/12/16	0.002	<0.001	<0.005	<0.005	<0.005		
	35	5/12/16	0.032	0.003	<0.005	0.041	<0.005		
	40	5/12/16	0.032	0.003	<0.005	0.047	<0.005		
VP-49	45	5/12/16	0.117	0.006	<0.005	0.052	<0.005		
	50	5/12/16	0.635	0.078	0.007	1.170	<0.005		
	55	5/12/16	0.852	0.073	0.006	0.181	<0.005		
	60	5/12/16	0.747	0.067	0.005	0.168	<0.005		
	65	5/12/16	0.441	0.042	<0.005	0.304	<0.005		
	70	5/12/16	0.039	0.002	<0.005	0.009	<0.005		
	75	5/12/16	0.034	0.002	<0.005	<0.005	<0.005		
	80	5/12/16	0.085	0.004	<0.005	0.011	<0.005		
	85	5/12/16	0.047	0.002	<0.005	0.005	<0.005		
Commerci	al Screen	ing Level*	2.7	6.0	84	1,000	0.15		

Table 3B

Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

Historical COPC Concentrations in Soil

	Danth	Campling		Cond	centration (m	g/kg)	
Sample ID	Depth (ft bgs)	Sampling Date	PCE	TCE	cis-1,2- DCE	1,1-DCE	Vinyl Chloride
	5	5/11/16	0.011	0.002	<0.005	<0.005	<0.005
	10	5/11/16	0.027	0.005	<0.005	0.022	<0.005
	15	5/11/16	0.004	<0.001	<0.005	<0.005	<0.005
	20	5/11/16	0.010	0.002	<0.005	<0.005	<0.005
	25	5/11/16	0.014	0.004	<0.005	<0.005	<0.005
VP-50	30	5/11/16	0.113	0.026	<0.005	0.229	<0.005
VF-50	35	5/11/16	0.006	0.002	<0.005	0.008	<0.005
	40	5/11/16	0.005	<0.001	<0.005	0.008	<0.005
	45	5/11/16	0.005	<0.005	<0.005	0.006	<0.005
	50	5/11/16	0.018	0.004	<0.005	0.022	<0.005
	55	5/11/16	3.390	0.083	<0.005	6.320	<0.005
	60	5/11/16	0.450	0.089	<0.005	0.392	<0.005
Commerci	al Screen	ing Level*	2.7	6.0	84	1,000	0.15

Notes:

- "PCE" - tetrachloroethene

- "cis-1,2-DCE" - cis-1,2-dichloroethene

- "mg'kg" - milligrams per kilogram - "feet bgs" - feet below the ground surface

- "TCE" - trichloroethene - "mg'kg" - milligrams per kilogram
- "1,1-DCE" - 1,1-dichloroethene - "feet bgs" - feet below the ground surf
- "" - Screening levels obtained from HHRA Note No. 3 (April 2019), EPA Region 9 RSL (April 2019)

Table 4
Soil, Soil Vapor, and Groundwater Delineation - Interim Module III Report

VOC Concentrations in Perched Groundwater

						Co	oncentration	(µg/L)					
Well ID	Sampling Date	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride	Benzene	СТ	1,2-DCA	MC	1,1,1-TCA	1,1,2-TCA
VP-42-GW	5/19/16	2,550	90	<25	<25	1,680		<25				<25	
VP-50-GW	5/11/16	36,600	2,870	<250	<250	56,000		<250				22,600	
VP-106-GW	1/14/20	<0.13	1.0	<0.085	<0.15	1.0	<0.12	<0.083	<0.18	<0.17	<0.48	<0.11	<0.16
VP-108-GW	1/8/20	1,900	110	10	0.87	2,400	0.2	0.54	0.64	3.5	<0.48	7.2	2.1
VP-109-GW	1/2/20	0.39	<0.085	<0.085	<0.15	0.52	<0.12	0.18	<0.18	<0.17	<0.48	<0.11	<0.16
VP-113-GW	1/6/20	5,200	600	67	4.6	4,800	1.3	1.7	2.9	33	0.84	4.1	9.8
VP-114-GW	1/8/20	15,000	1,000	59	5.9	16,000	0.51	0.96	8.1	30	54	230	9.9
	MCL*	5	5	6	10	6	0.5	1	0.5	5	5	200	5

NOTES:

- "feet bgs" feet below ground surface
- "PCE" tetrachloroethene
- "TCE" trichloroethene
- "cis-1,2-DCE" cis-1,2-dichloroethene
- "trans-1,2-DCE" trans-1,2-dichloroethene
- "CT" carbon tetrachloride
- "MC" methylene chloride

- "1,1-DCA" 1,1-dichloroethane
- "1,1,1-TCA" 1,1,1-trichloroethane
- "1,1,2-TCA" 1,1,2-trichloroethane
- "-" not analyzed
- "Bold"- concentration exceeds the residential screening level
- "*" State Water Resources Control Board Maximum Contaminant Level (Oct. 2019)

APPENDIX CInitial Building Survey

Type in or select answers from drop-down lists in the righthand column.

Upload answers to GeoTracker database for criteria marked with an asterisks (*).

See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building Design Type input choices.

Person Conducting Survey	Input
Name:	
Company:	
Phone Number:	
Email:	
Building Contact Information	Input
Name:	
Contact Title:	
Phone Number:	
Email:	
Building Occupant Interviewed?	
Building Information	Input
Date of Building Survey (dd/mm/yy):	
*Building Name:	
*Building Address (Street, City):	
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	
*Building Location Onsite/Offsite with respect to Site/Facility:	
*Year Built (yyyy; approximate if unsure):	
*Building Occupants:	

Building Dimensions	Input
*Building Footprint Area (within enclosed space; square feet [Ft2]):	
Building Dimensions (at grade; feet by feet):	
*Ceiling Height of Ground Floor (Feet):	
*Number of Floors (excluding the basement):	
Building Design	Input
*Building Design Type:	
Has the design been modified?	
*Foundation Type:	
*Building Vapor Intrusion Mitigation System:	
*Heating, Ventilation, & Air Conditioning (HVAC) System:	
Type of Energy Used in Building?	
Energy Primarily Used For?	
Number of Units for Multi-Unit Buildings:	
Number of Rooms (average per unit for multi-unit buildings):	
Number of Exterior Doors:	
Number of Elevators:	
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	
Chimney or Other Vertical Draft Source?	
Building Slab	Input
Slab Thickness (inches; approximate if unsure):	
Large Slab Penetrations (> 1 Foot Diameter):	
Soil Type 0 to 3 Feet Below Building:	
Evidence of moisture intrusion from Below Slab?	

Manufacturing building as 14 passive vents on roof.
Could not determine if there were slab penetrations

Building Windows	Input
Number of Windows:	
Weather Sealed Windows and Exterior Doors?	
Average Area of Window Open to Outside Air (Feet2):	
Ventilation During Sampling:	

Building Crawl Space	Input
Crawl Space Height (Feet):	
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	

Building Basement	Input
Basement Height (Feet):	
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	
Vents or Windows above-grade in exposed basement?	
Unfinished Basement?	
Evidence of moisture intrusion into Basement from Soil?	

Windows in manufacturing area are on the E side of building. Single pane, sealed. Window are ~5 ft high.

Couldn't determine actual length. Estimate to be ~150 ft long

Factors Potentially Influencing Indoor Air Quality	Input
Is there an attached garage?	
Is there smoking in the building?	
Is there new carpet or furniture?	
Have clothes or drapes been recently dry cleaned?	
Has painting or staining been done within the last six months?	
Has the building been recently remodeled?	
Has the building ever had a fire?	
Is there a hobby or craft area in the building?	
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	
Is there a fuel oil tank on the property?	
Is there a septic tank on the property?	
Has the building been fumigated or sprayed for pests recently?	
Historically the building was primarily used for?	
Do current building occupants use solvents at another location (e.g., work, hobby)?	

Meteorological Conditions	Input
Weather:	
Outdoor Temperature - High (°F):	
Outdoor Temperature - Low (°F):	
Indoor Temperature (°F):	
Barometric Pressure Reading (mmHg):	
Wind Direction:	
Average Wind Speed (mph):	
HVAC Setting for Current Season:	

(End of Form)

Building Survey Form Drop Down Lists

Building Contact Information

Contact Title:

Owner

Manager

Occupant

Other

Building Occupant Interviewed?

Yes

No

Building Information

*Building Location Onsite/Offsite/Offsite with respect to Site/Facility

Onsite

Offsite

*Building Occupants:

Residential

Commercial

Residential Unit over Commercial Unit

Sensitive Use (e.g. Child Care or Medical Facility)

Building Design

*Building Design Type:

Single Unit Residential

Multi-Unit Residential (e.g. duplex, apartments)

Single Unit Commercial

Multi-Unit Commercial (e.g. strip mall)

Multi-Unit Mixed Use

Auditorium (e.g. church, theater)

School

Industrial

Manufacturing Facility

Warehouse

Other

Has the design been modified?

Yes

No

Unknown

*Foundation Type:

Slab-on-Grade

Crawl Space

Partial Crawl Space

Basement

Partial Basement

Podium

Earthen

Secondary Slab Pour

Other

*Building Vapor Intrusion Mitigation System:

Vapor Intrusion Barrier Only

Passive Vented System

Active Vented System

Subslab Depressurization System

Other

None

*Heating Ventilation, & Air Conditioning (HVAC) System:

Heating Only

Cooling Only

Heating & Cooling

None

Type of Energy Used in Building?

Natural Gas

Fuel Oil

Propane

Electricity

Wood

Kerosene

More Than One Type

Other

None

Unknown

Energy Primarily Used For?

Space Heating

Water Heating

Cooking

Drying Laundry (Interior)

Commercial/Industrial Processes

Other

Unknown

Chimney or Other Vertical Draft Source?

Yes

No

Building Slab

Large Slab Penetrations (> 1 Foot Diameter):

Sump

Elevator Shaft

Floor Drain

Other

None

Soil Type 0 to 3 Feet Below Building:

Fine

Coarse

Fine and Coarse

Unknown

Evidence of moisture intrusion from Below Slab?

Yes

No

N/A

Building Windows

Weather Sealed Windows and Exterior Doors?

All Sealed

Some Sealed

None Sealed

Unknown

Ventilation During Sampling:

Open Windows

Closed Windows

Some Windows Open

Building Crawl Space

Evidence of moisture intrusion into Crawl Space from Soil?

Yes

No

N/A

Building Basement

Exposed Basement above grade?

Yes

	No N/A
	Vents or Windows above-grade in exposed basement? Yes No N/A
	Unfinished Basement? Yes No N/A
	Evidence of moisture intrusion into Basement from Soil? Yes No N/A
Fact	ors Potentially Influencing Indoor Air Quality
	Is there an attached garage? Yes No N/A
	Is there smoking in the building? Yes No
	Is there new carpet or furniture? Yes No N/A
	Have clothes or drapes been recently dry cleaned? Yes No N/A
	Has painting or staining been done within the last six months? Yes No N/A
	Has the building been recently remodeled? Yes No N/A

Has the building ever had a fire? Yes No N/A Is there a hobby or craft area in the building? No N/A Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?) Yes No N/A Is there a fuel oil tank on the property? Yes No N/A Is there a septic tank on the property? Yes No N/A Has the building been fumigated or sprayed for pests recently? Yes No N/A Historically the building was primarily used for? Dy Cleaner Industrial Degreasing/Cleaning Laboratory Manufacturing Painting/Finishing Other None Do current building occupants use solvents at another location (e.g., work, hobby)? Dy Cleaner Industrial Degreasing/Cleaning Laboratory Manufacturing

Painting/Finishing

Other

None

Meteorological Conditions

Wind Direction:

Ν

NW

NE

W

S

SW

SE

Ε

HVAC Setting for Current Season?

Heating

Cooling

Off

APPENDIX D

Laboratory Analytical & Data Validation Reports

Lewis Simons Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

H&P Project: ST020821-13

Client Project: 185804980 / Crenshaw Blvd

Dear Lewis Simons:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 05-Feb-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- · Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Project Number: 185804980 / Crenshaw Blvd Reported: Thousand Oaks, CA 91361 Project Manager: Lewis Simons 12-Feb-21 10:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
IA-8	E102029-01	Vapor	05-Feb-21	05-Feb-21
IA-10	E102029-02	Vapor	05-Feb-21	05-Feb-21
IA-9	E102029-03	Vapor	05-Feb-21	05-Feb-21
IA-7	E102029-04	Vapor	05-Feb-21	05-Feb-21
IA-6	E102029-05	Vapor	05-Feb-21	05-Feb-21
IA-5	E102029-06	Vapor	05-Feb-21	05-Feb-21
IA-4	E102029-07	Vapor	05-Feb-21	05-Feb-21
IA-3	E102029-08	Vapor	05-Feb-21	05-Feb-21
AA-2	E102029-09	Vapor	05-Feb-21	05-Feb-21
IA-2	E102029-10	Vapor	05-Feb-21	05-Feb-21
IA-2 DUP	E102029-11	Vapor	05-Feb-21	05-Feb-21
IA-1	E102029-12	Vapor	05-Feb-21	05-Feb-21
AA-3	E102029-13	Vapor	05-Feb-21	05-Feb-21
AA-1	E102029-14	Vapor	05-Feb-21	05-Feb-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

DETECTIONS SUMMARY

Sample ID: IA-8	Laboratory ID: E	2102029-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.5	0.41	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.4	1.1	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.99	0.71	ug/m3	EPA TO-15	
2-Butanone (MEK)	220	1.2	ug/m3	EPA TO-15	Е
Chloroform	0.69	0.49	ug/m3	EPA TO-15	
Benzene	0.91	0.32	ug/m3	EPA TO-15	
Carbon tetrachloride	0.64	0.64	ug/m3	EPA TO-15	
Toluene	3.5	1.5	ug/m3	EPA TO-15	
Tetrachloroethene	1.4	1.4	ug/m3	EPA TO-15	
m,p-Xylene	3.3	0.88	ug/m3	EPA TO-15	
o-Xylene	1.3	0.88	ug/m3	EPA TO-15	
ample ID: IA-10	Laboratory ID: E	2102029-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.5	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.4	0.56	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	1.6	0.77	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.95	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	230	0.60	ug/m3	EPA TO-15	E
Chloroform	0.89	0.25	ug/m3	EPA TO-15	
Benzene	0.94	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.64	0.32	ug/m3	EPA TO-15	
Trichloroethene	0.71	0.55	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	0.83	0.83	ug/m3	EPA TO-15	
Toluene	4.2	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	1.9	0.69	ug/m3	EPA TO-15	
Ethylbenzene	0.97	0.44	ug/m3	EPA TO-15	
m,p-Xylene	3.6	0.44	ug/m3	EPA TO-15	
Styrene	0.91	0.43	ug/m3	EPA TO-15	
o-Xylene	1.3	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.95	0.50	ug/m3	EPA TO-15	
1,4-Dichlorobenzene	0.79	0.61	ug/m3	EPA TO-15	
ample ID: IA-9	Laboratory ID: F	2102029-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes

Analyte

Chloromethane

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks	Project: ST0	20821-13				
290 Conejo Ridge Avenue, Suite 200	Project Number: 185804980 / Crenshaw Blvd Project Manager: Lewis Simons			Reported: 12-Feb-21 10:45		
Thousand Oaks, CA 91361						
Sample ID: IA-9	Laboratory ID:	E102029-03				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Chloromethane	1.2	0.21	ug/m3	EPA TO-15		
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	0.93	0.77	ug/m3	EPA TO-15		
Methylene chloride (Dichloromethane)	0.74	0.35	ug/m3	EPA TO-15		
2-Butanone (MEK)	390	0.60	ug/m3	EPA TO-15	E	
Chloroform	0.44	0.25	ug/m3	EPA TO-15		
Benzene	0.81	0.16	ug/m3	EPA TO-15		
Carbon tetrachloride	0.57	0.32	ug/m3	EPA TO-15		
4-Methyl-2-pentanone (MIBK)	1.2	0.83	ug/m3	EPA TO-15		
Toluene	3.5	0.76	ug/m3	EPA TO-15		
Ethylbenzene	1.5	0.44	ug/m3	EPA TO-15		
m,p-Xylene	5.7	0.44	ug/m3	EPA TO-15		
o-Xylene	1.9	0.44	ug/m3	EPA TO-15		
1,2,4-Trimethylbenzene	1.2	0.50	ug/m3	EPA TO-15		
Sample ID: IA-7	Laboratory ID:	E102029-04				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Chloromethane	1.2	0.21	ug/m3	EPA TO-15		
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	0.77	0.77	ug/m3	EPA TO-15		
Methylene chloride (Dichloromethane)	0.60	0.35	ug/m3	EPA TO-15		
2-Butanone (MEK)	300	0.60	ug/m3	EPA TO-15	E	
Chloroform	0.59	0.25	ug/m3	EPA TO-15		
Benzene	0.81	0.16	ug/m3	EPA TO-15		
Carbon tetrachloride	0.57	0.32	ug/m3	EPA TO-15		
Trichloroethene	1.3	0.55	ug/m3	EPA TO-15		
4-Methyl-2-pentanone (MIBK)	4.1	0.83	ug/m3	EPA TO-15		
Toluene	5.1	0.76	ug/m3	EPA TO-15		
Tetrachloroethene	1.7	0.69	ug/m3	EPA TO-15		
Ethylbenzene	8.3	0.44	ug/m3	EPA TO-15		
m,p-Xylene	30	0.44	ug/m3	EPA TO-15		
o-Xylene	8.2	0.44	ug/m3	EPA TO-15		
1,2,4-Trimethylbenzene	0.65	0.50	ug/m3	EPA TO-15		
Sample ID: IA-6	Laboratory ID:	E102029-05				
		Reporting				
Amalarta	D to	T	** *.	37.4.1	NI. 4	

Result

1.1

Limit

0.21

Units

ug/m3

Method EPA TO-15 Notes

Stantec - Thousand Oaks

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Notes

Project: ST020821-13 290 Conejo Ridge Avenue, Suite 200 Project Number: 185804980 / Crenshaw Blvd Reported: Thousand Oaks, CA 91361 Project Manager: Lewis Simons 12-Feb-21 10:45 Sample ID: IA-6 Laboratory ID: E102029-05 Reporting Analyte Limit Method Notes Result Units Trichlorofluoromethane (F11) 0.85 0.56 EPA TO-15 ug/m3Methylene chloride (Dichloromethane) 0.56 0.35 ug/m3 EPA TO-15 EPA TO-15 E 2-Butanone (MEK) 120 0.60 ug/m3 Chloroform 0.25 EPA TO-15 1.7 ug/m3 0.16ug/m3 EPA TO-15 Benzene 0.68Carbon totrachlarida 0.51 FPA TO-15

Carbon tetrachloride	0.51	0.32	ug/m3	EPA 10-15	
Toluene	1.9	0.76	ug/m3	EPA TO-15	
Ethylbenzene	0.57	0.44	ug/m3	EPA TO-15	
m,p-Xylene	2.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.79	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.60	0.50	ug/m3	EPA TO-15	

Sample ID: IA-5	Laboratory ID:	E102029-06		
		Reporting		
Analyte	Result	Limit	Units	Method

· ·				
Chloromethane	0.95	0.21	ug/m3	EPA TO-15
Trichlorofluoromethane (F11)	0.85	0.56	ug/m3	EPA TO-15
Methylene chloride (Dichloromethane)	0.53	0.35	ug/m3	EPA TO-15
2-Butanone (MEK)	45	0.60	ug/m3	EPA TO-15
Benzene	0.61	0.16	ug/m3	EPA TO-15
Carbon tetrachloride	0.45	0.32	ug/m3	EPA TO-15
Toluene	1.2	0.76	ug/m3	EPA TO-15
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15
o-Xylene	0.44	0.44	ug/m3	EPA TO-15
1,2,4-Trimethylbenzene	0.55	0.50	ug/m3	EPA TO-15

Sample ID:	I A _4	Laboratory ID:	E102029-07

1					
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.90	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	52	0.60	ug/m3	EPA TO-15	
Benzene	0.68	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.4	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.4	0.44	ug/m3	EPA TO-15	
o-Xylene	0.53	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.65	0.50	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks
Project: ST020821-13
290 Conejo Ridge Avenue, Suite 200
Project Number: 185804980 / Crenshaw Blvd
Reported:
Thousand Oaks, CA 91361
Project Manager: Lewis Simons
12-Feb-21 10:45

Sample ID: IA-3	Laboratory ID:	E102029-08			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.3	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	32	0.60	ug/m3	EPA TO-15	
Benzene	0.65	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.4	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.53	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.70	0.50	ug/m3	EPA TO-15	
Sample ID: AA-2	Laboratory ID:	E102029-09			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.96	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.53	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	3.9	0.60	ug/m3	EPA TO-15	
Benzene	0.65	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.5	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15	
o-Xylene	0.48	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.60	0.50	ug/m3	EPA TO-15	
Sample ID: IA-2	Laboratory ID:	E102029-10			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.1	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.96	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	86	0.60	ug/m3	EPA TO-15	E
Chloroform	0.30	0.25	ug/m3	EPA TO-15	
Benzene	0.74	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.3	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.48	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.55	0.50	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks	Project: ST020821-13	
290 Conejo Ridge Avenue, Suite 200	Project Number: 185804980 / Crenshaw Blvd	Reported:
Thousand Oaks, CA 91361	Project Manager: Lewis Simons	12-Feb-21 10:45

Sample ID: IA-2 DUP	Laboratory ID:	E102029-11			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	1.0	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.1	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.49	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	85	0.60	ug/m3	EPA TO-15	E
Chloroform	0.30	0.25	ug/m3	EPA TO-15	
Benzene	0.61	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.3	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.2	0.44	ug/m3	EPA TO-15	
o-Xylene	0.53	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.65	0.50	ug/m3	EPA TO-15	
ample ID: IA-1	Laboratory ID:	E102029-12			
		Reporting			
Analyte	Result		Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.96	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.56	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	74	0.60	ug/m3	EPA TO-15	
Benzene	0.71	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	1.8	0.76	ug/m3	EPA TO-15	
m,p-Xylene	1.5	0.44	ug/m3	EPA TO-15	
o-Xylene	0.62	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.85	0.50	ug/m3	EPA TO-15	
Sample ID: AA-3	Laboratory ID:	E102029-13			
		Reporting			
Analyte	Result		Units	Method	Notes
Chloromethane	1.2	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.63	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	5.9	0.60	ug/m3	EPA TO-15	
Benzene	0.91	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.51	0.32	ug/m3	EPA TO-15	
Toluene	2.1	0.76	ug/m3	EPA TO-15	
Ethylbenzene	0.48	0.44	ug/m3	EPA TO-15	
m,p-Xylene	1.7	0.44	ug/m3	EPA TO-15	
o-Xylene	0.70	0.44	ug/m3	EPA TO-15	

Stantec - Thousand Oaks

2-Butanone (MEK)

Carbon tetrachloride

1,2,4-Trimethylbenzene

Benzene

Toluene

o-Xylene

m,p-Xylene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPA TO-15

EPA TO-15

EPA TO-15

EPA TO-15

EPA TO-15 EPA TO-15

EPA TO-15

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361	, , , , , , , , , , , , , , , , , , ,								
Sample ID: AA-3	Laboratory ID:	E102029-13							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
1,2,4-Trimethylbenzene	0.70	0.50	EPA TO-15						
Sample ID: AA-1	Laboratory ID:	E102029-14							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Chloromethane	1.2	0.21	ug/m3	EPA TO-15					
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15					
Methylene chloride (Dichloromethane)	0.71	0.35	ug/m3	EPA TO-15					

1.2

0.81

0.51

1.6

1.1

0.44

0.50

0.60

0.16

0.32

0.76

0.44

0.44

0.50

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

Project: ST020821-13

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-8 (E102029-01) Vapor Sampled: 05-Feb-21	Received: 05-I	Feb-21							R-02
Dichlorodifluoromethane (F12)	ND	2.0	ug/m3	2	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.5	0.41	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	1.4	"	"	"	"	"	"	
Vinyl chloride	ND	0.26	"	"	"	"	"	"	
Bromomethane	ND	0.79	"	"	"	"	"	"	
Chloroethane	ND	0.54	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	1.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	1.5	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.99	0.71	"	"	"	"	"	"	
Carbon disulfide	ND	0.63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.82	"	"	"	"	"	"	
2-Butanone (MEK)	220	1.2	"	"	"	"	"	"	F
cis-1,2-Dichloroethene	ND	0.80	"	"	"	"	"	"	
Chloroform	0.69	0.49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.1	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.82	"	"	"	"	"	"	
Benzene	0.91	0.32	"	"	"	"	"	"	
Carbon tetrachloride	0.64	0.64	"	"	"	"	"	"	
Trichloroethene	ND	1.1	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.94	"	"	"	"	"	"	
Bromodichloromethane	ND	1.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.92	"	"	"	"	"	"	
Toluene	3.5	1.5	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.1	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1.7	"	"	"	"	"	"	
Dibromochloromethane	ND	3.5	"	"	"	"	"	"	
Tetrachloroethene	1.4	1.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.94	"	"	"	"	"	"	
Ethylbenzene	ND	0.88	"	"	"	"	"	"	
m,p-Xylene	3.3	0.88	"	"	"	"	"	"	
Styrene	ND	0.86	"	"	"	"	"	"	
o-Xylene	1.3	0.88	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyta	Result	Reporting Limit	Units	Dilution	Datah	Dranarad	Analyzad	Method	Notes
Analyte	Kesuit	Limit	Units	Factor	Batch	Prepared	Analyzed	Memod	notes
IA-8 (E102029-01) Vapor Sampled: 05-Feb-21	Received: 05-F	eb-21							R-0
Bromoform	ND	2.1	ug/m3	2	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	1.4	"	"	"	"	"	"	
4-Ethyltoluene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	3.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.4	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		105 %	76	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	77-		"	"	"	"	
IA-10 (E102029-02) Vapor Sampled: 05-Feb-2	1 Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.5	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.4	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	1.6	0.77	"	"	"	"	,,	"	
Methylene chloride (Dichloromethane)	0.95	0.77	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.32	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2-Butanone (MEK)	230	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.89	0.40	,,	"	"	,,	,,	"	
1,1,1-Trichloroethane	0.09 ND	0.25	,,	"	"	,,	,,	"	
1,2-Dichloroethane (EDC)	ND	0.55	,,	"	"	,,	,,	"	
Benzene	0.94	0.41	,,	,,	"	"	,,	"	
Carbon tetrachloride	0.94 0.64	0.16	,,	,,	"	"	"	"	
Trichloroethene			,,	,,	"	,,	,,	"	
	0.71	0.55	,,	,,	"	,,	,,	"	
1,2-Dichloropropane	ND	0.47			"	.,			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804980 / Crenshaw Blvd

Thousand Oaks, CA 91361 Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-10 (E102029-02) Vapor Sampled: 05-Feb-21	Received: 05	-Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	0.83	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	4.2	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.9	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.97	0.44	"	"	"	"	"	"	
m,p-Xylene	3.6	0.44	"	"	"	"	"	"	
Styrene	0.91	0.43	"	"	"	"	"	"	
o-Xylene	1.3	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.95	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	0.79	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
			_						
Surrogate: 1,2-Dichloroethane-d4		103 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		103 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.3 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-9 (E102029-03) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	0.93	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.74	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	390	0.60	"	"	"	"	"	"	I
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.44	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.81	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	1.2	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	3.5	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	1.5	0.44	"	"	"	"	"	"	
m,p-Xylene	5.7	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	1.9	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-9 (E102029-03) Vapor Sampled: 05-Feb-2	1 Received: 05-F	eb-21					-		
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.2	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	77-1		"	"	"	"	
IA-7 (E102029-04) Vapor Sampled: 05-Feb-2	1 Received: 05-F	eb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene									
1.1-Dichioroethene	ND		"	"	"	"	"	"	
,	ND 0.77	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	0.77	0.40 0.77							
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	0.77 0.60	0.40 0.77 0.35	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	0.77 0.60 ND	0.40 0.77 0.35 0.32	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	0.77 0.60 ND ND	0.40 0.77 0.35 0.32 0.40	"	" "	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	0.77 0.60 ND ND ND	0.40 0.77 0.35 0.32 0.40 0.41	" " "	" " "	" " "	" " "	" " "	" " " "	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	0.77 0.60 ND ND ND	0.40 0.77 0.35 0.32 0.40 0.41 0.60	" " "	n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " "	" " " "	:
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	0.77 0.60 ND ND ND ND 300 ND	0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	n n n	" " " "	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	0.77 0.60 ND ND ND 300 ND	0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25	" " " " " "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""		" " " " " " " " " " " " " " " " " " " "	n n n n	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	0.77 0.60 ND ND ND 300 ND 0.59	0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25	n n n n	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n n	" " " " " " " "	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	0.77 0.60 ND ND ND 300 ND 0.59 ND	0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "	n n n n n n n n n n n n n n n n n n n	n n n n	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	0.77 0.60 ND ND ND 300 ND 0.59 ND ND	0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "		"" "" "" "" "" "" "" "" "" "" "" "" ""	n n n n n n n n n n n n n n n n n n n	n n n n	
1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	0.77 0.60 ND ND ND 300 ND 0.59 ND	0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55		" " " " " " " " " " " " " " " " " " " "				n n n n	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-7 (E102029-04) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	4.1	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	5.1	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	1.7	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	8.3	0.44	"	"	"	"	"	"	
m,p-Xylene	30	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	8.2	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
		01.261	.		,,	"		"	
Surrogate: 1,2-Dichloroethane-d4		91.2 %	76-13			"	"		
Surrogate: Toluene-d8		101 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13 Project Number: 185804980 / Crenshaw Blvd

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-6 (E102029-05) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.1	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.85	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	120	0.60	"	"	"	"	"	"	I
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	1.7	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.68	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.9	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.57	0.44	"	"	"	"	"	"	
m,p-Xylene	2.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.79	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte IA-6 (E102029-05) Vapor Sampled: 05-Feb-21 Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene	Result Received: 05-F ND ND		Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene	ND								
1,1,2,2-Tetrachloroethane 4-Ethyltoluene									
4-Ethyltoluene	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
		0.70	"	"	"	"	"	"	
	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.60	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		89.3 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	77-1		"	"	"	"	
IA-5 (E102029-06) Vapor Sampled: 05-Feb-21	Received: 05-I	eb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	0.95	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.85	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.53	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	45	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.61	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.45	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-5 (E102029-06) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.2	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.44	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.55	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		89.6 %	76-13	34	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-12	?5	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	77-12	?7	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-4 (E102029-07) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21					-		
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.90	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	52	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.68	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.4	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.4	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.53	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
			Cints	1 actor	Butch	Trepured	7 mary zea	Wiethou	
IA-4 (E102029-07) Vapor Sampled: 05-Feb-21			/2	1	ED11006	10 E-k 21	10 E-k 21	EDA TO 15	
Bromoform 1,1,2,2-Tetrachloroethane	ND	1.0	ug/m3	1 "	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
, , ,	ND	0.70	"	"	"	,,	,,	,,	
4-Ethyltoluene	ND	0.50	,,	"	"	"	"	,,	
1,3,5-Trimethylbenzene	ND	0.50	,,	,,	"	,,	,,		
1,2,4-Trimethylbenzene	0.65	0.50	,,		"				
1,3-Dichlorobenzene	ND	0.61	,,		"				
1,4-Dichlorobenzene	ND	0.61	,,		"	,,			
1,2-Dichlorobenzene	ND	0.61	,,		"				
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	,,	,,	"	
Hexachlorobutadiene	ND	2.7			"	"		"	
Surrogate: 1,2-Dichloroethane-d4		88.2 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	77-		"	"	"	"	
IA-3 (E102029-08) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.3	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.77	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2-Butanone (MEK)	32	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.25	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.55	"	,,	"	"	"	"	
Benzene	0.65	0.41	"	"	"	"	"	"	
Carbon tetrachloride		0.16	"	"	"	"	"	"	
Trichloroethene	0.51 ND	0.32	,,	"	"	"	"	"	
1,2-Dichloropropane			,,	"	"	"	"	"	
1,2-Diemoropropane	ND	0.47							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Thousand Oaks, CA 91361

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-3 (E102029-08) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.4	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.53	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.70	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		88.1 %	76-13	34	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-12		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-2 (E102029-09) Vapor Sampled: 05-Feb-2	Received: 05	-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.96	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.53	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	3.9	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.65	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.5	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.48	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

T. Control of the Con			C GCOCII						
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-2 (E102029-09) Vapor Sampled: 05-Feb-2	Received: 05-	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.60	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91.4 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.7 %	77-1		"	"	"	"	
IA-2 (E102029-10) Vapor Sampled: 05-Feb-2	1 Received: 05-I	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.1	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
					"	"	"		
Bromomethane	ND	0.39	"	"	"		.,	"	
Bromomethane Chloroethane	ND ND	0.39 0.27	"	"	"	"	"	"	
Chloroethane	ND	0.27						" "	
				"	"	"	"	" " " " " " " " " " " " " " " " " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND 0.96 ND	0.27 0.56	"	"	"	"	"	" " " " " " " " " " " " " " " " " " " "	
Chloroethane Trichlorofluoromethane (F11)	ND 0.96 ND ND	0.27 0.56 0.40	"	" "	" "	"	"	" "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND 0.96 ND ND 0.56	0.27 0.56 0.40 0.77 0.35	" "	" "	" " "	" " "	" " "	" "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND 0.96 ND ND 0.56 ND	0.27 0.56 0.40 0.77 0.35 0.32	" " " "	" "	" " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	" "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND 0.96 ND ND 0.56	0.27 0.56 0.40 0.77 0.35	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	" "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND 0.96 ND ND 0.56 ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40	" " " " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	" " " " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND 0.96 ND ND 0.56 ND ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND 0.96 ND ND 0.56 ND ND ND ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40 0.41	" " " " " " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " "	" " " " " " " " " " " " "	" " " " " " " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND 0.96 ND ND 0.56 ND ND ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25	" " " " " " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND 0.96 ND ND 0.56 ND ND ND ND ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40				" " " " " " " " " " " " "			
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND 0.96 ND ND 0.56 ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41				" " " " " " " " " " " " "			
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC)	ND 0.96 ND ND 0.56 ND ND ND ND ND ND 0.30 ND ND ND ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41 0.16							
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane (EDC) Benzene	ND 0.96 ND ND 0.56 ND	0.27 0.56 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55 0.41							1

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 (E102029-10) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.3	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.48	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.55	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.1 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		103 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	77-12	?7	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 DUP (E102029-11) Vapor Sampled: 05-Feb-	21 Received	d: 05-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.0	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.1	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.49	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	85	0.60	"	"	"	"	"	"	F
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.30	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.61	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.3	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.70	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	"	"	"	"	"	
Styrene	ND	0.44	"	"	"	"	"	"	
o-Xylene	0.53	0.43	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-2 DUP (E102029-11) Vapor Sampled: 05-F	eb-21 Received	: 05-Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		88.9 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	77-1		"	"	"	"	
IA-1 (E102029-12) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.96	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.56	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	74	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND ND	0.41	"	"	"	"	"	"	
Benzene	0.71	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.71	0.10	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND ND	0.33	"	"	"	"	"	"	
1,2 Diemoropropune	IND	U. 4 /							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA-1 (E102029-12) Vapor Sampled: 05-Feb-21	Received: 05-1	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.8	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.5	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.62	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.85	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	II .	
Surrogate: 1,2-Dichloroethane-d4		90.7 %	76-13	R <i>4</i>	,,	"	"	"	
Surrogate: Toluene-d8		101 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	77-12		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-3 (E102029-13) Vapor Sampled: 05-Feb-2	1 Received: 05	-Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.63	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	5.9	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.91	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	2.1	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.48	0.44	"	"	"	"	"	"	
m,p-Xylene	1.7	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.70	0.44	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

		X1 1/10/01/	e Geoen	icillisti y	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-3 (E102029-13) Vapor Sampled: 05-Feb-2	1 Received: 05-	Feb-21							
Bromoform	ND	1.0	ug/m3	1	EB11006	10-Feb-21	10-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.70	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	II .	"	
Surrogate: 1,2-Dichloroethane-d4		90.1 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.3 %	77-1		"	"	"	"	
AA-1 (E102029-14) Vapor Sampled: 05-Feb-2	1 Received: 05-	Feb-21							
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	1	EB11006	10-Feb-21	11-Feb-21	EPA TO-15	
Chloromethane	1.2	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.71	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	1.2	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.81	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.51	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
,	110	0.17							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
AA-1 (E102029-14) Vapor Sampled: 05-Feb-21	Received: 05-	Feb-21							
Bromodichloromethane	ND	0.68	ug/m3	1	EB11006	10-Feb-21	11-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	1.6	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	1.7	"	"	"	"	"	"	
Tetrachloroethene	ND	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	0.44	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.50	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
			_						
Surrogate: 1,2-Dichloroethane-d4		90.8 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		110 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.8 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EB11006-BLK1)				Prepared & Analyzed: 10-Feb-21
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
ichlorotetrafluoroethane (F114)	ND	0.71	"	
inyl chloride	ND	0.13	"	
romomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
richlorofluoromethane (F11)	ND	0.56	"	
,1-Dichloroethene	ND	0.40	"	
,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
rans-1,2-Dichloroethene	ND	0.40	"	
,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
1,1-Trichloroethane	ND	0.55	"	
,2-Dichloroethane (EDC)	ND	0.41	"	
enzene	ND	0.16	"	
arbon tetrachloride	ND	0.32	"	
richloroethene	ND	0.55	"	
,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
is-1,3-Dichloropropene	ND	0.46	"	
-Methyl-2-pentanone (MIBK)	ND	0.83	"	
rans-1,3-Dichloropropene	ND	0.46	"	
oluene	ND	0.76	"	
,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	1.7	"	
Tetrachloroethene	ND	0.69	"	
,2-Dibromoethane (EDB)	ND	0.78	"	
,1,1,2-Tetrachloroethane	ND	0.70	"	
Chlorobenzene	ND	0.47	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB11006 - TO-15										
Blank (EB11006-BLK1)				Prepared &	Analyzed:	10-Feb-21				
Ethylbenzene	ND	0.44	ug/m3							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	1.9	"							
Hexachlorobutadiene	ND	2.7	"							
Surrogate: 1,2-Dichloroethane-d4	44.3		"	42.7		104	76-134			
Surrogate: Toluene-d8	43.9		"	41.6		106	78-125			
Surrogate: 4-Bromofluorobenzene	65.2		"	72.6		89.8	77-127			
1 CC (ED1100 (DC1)				Prepared &	z Analyzed:	10-Feb-21				
LCS (EB11006-BS1) Dichlorodifluoromethane (F12)	47.0	1.0	22 c/m 2	20.2	c / maryzea.	85.9	59-128			
· /	17.3	1.0	ug/m3							
Vinyl chloride	8.9	0.13	,,	10.4		85.5	64-127			
Chloroethane	9.0	0.27	,,	10.7		83.6	63-127			
Trichlorofluoromethane (F11)	18.5	0.56	,,	22.6		81.7	62-126			
1,1-Dichloroethene	13.6	0.40	,,	16.2		84.1	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	25.7	0.77	,,	31.0		82.8	66-126			
Methylene chloride (Dichloromethane)	10.5	0.35	,,	14.2		74.4	62-115			
trans-1,2-Dichloroethene	13.0	0.40		16.2		80.2	67-124			
1,1-Dichloroethane	12.9	0.41		16.5		78.2	68-126			
cis-1,2-Dichloroethene	13.3	0.40	"	16.0		83.2	70-121			
Chloroform	16.3	0.25	"	19.8		82.3	68-123			
1,1,1-Trichloroethane	18.9	0.55	"	22.2		84.8	68-125			
1,2-Dichloroethane (EDC)	13.8	0.41	"	16.5		83.5	65-128			
Benzene	10.5	0.16	"	13.0		81.4	69-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 12-Feb-21 10:45

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB11006 - TO-15										
LCS (EB11006-BS1)				Prepared &	Analyzed:	10-Feb-21				
Carbon tetrachloride	21.5	0.32	ug/m3	25.6		83.8	68-132			
Trichloroethene	18.8	0.55	"	21.9		85.8	71-123			
Toluene	12.8	0.76	"	15.4		83.5	66-119			
1,1,2-Trichloroethane	18.3	0.55	"	22.2		82.1	73-119			
Tetrachloroethene	22.0	0.69	"	27.6		79.6	66-124			
1,1,1,2-Tetrachloroethane	23.3	0.70	"	28.0		83.4	67-129			
Ethylbenzene	14.3	0.44	"	17.7		80.8	70-124			
m,p-Xylene	15.0	0.44	"	17.7		85.0	61-134			
o-Xylene	14.0	0.44	"	17.7		79.3	67-125			
1,1,2,2-Tetrachloroethane	19.0	0.70	"	28.0		67.9	65-127			
Surrogate: 1,2-Dichloroethane-d4	42.8		"	42.7		100	76-134			
Surrogate: Toluene-d8	42.1		"	41.6		101	78-125			
Surrogate: 4-Bromofluorobenzene	68.9		"	72.6		94.9	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST020821-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons12-Feb-21 10:45

Notes and Definitions

R-02 This sample was diluted due to limited sample volume, resulting in elevated reporting limits.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is

considered an estimate (CLP E-flag).

LCC Leak Check Compound

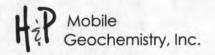
ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.

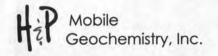

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.



2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02/05/2

La	b Client an	d Project	Information			19						5	Sample	e Rec	eipt (L	ab Us	e Only	y)	
Lab Client/Consultant: Stanter			Project Name / #:	185864	1980						Date	Rec'd:	2/81	21	Contro	ol#: =	DIS	085	5.04
Lab Client Project Manager:			Project Location:	24747 C			VI T	-			H&P	Project	# <1	721	0821	-18	213		
Lab Client Address:	ms										Lab V	Vork Or	_		20:				
Lab Client City, State, Zip: Cone Ridge A	(A 91.	361	Jan 1	lewis sin	rons	oust	intec	COM			Samp	ole Intac	1		No [Notes Be	elow	
Phone Number: 562 - 799 - 9866	(1)	161		lewis.sin	enas	tant	ec				1000000		ige ID: (RT	
Reporting Requirements	Т	urnaroun			npler Info							de Lab:							
Standard Report Level III Level IV	-	20 9 10 20 20 10 10		Sampler(s): J.A			1/1/				Recei	ipt Note	s/Tracki	ng #:	171				
Excel EDD Other EDD:			or final report)			_	V1//	1											
CA Geotracker Global ID:	Rush	(specify):_		Date:	2)	/21		0								Lab	PM Initi	ials:	UB
Additional Instructions to Laboratory:					, , ,														
* Preferred VOC units (please choose one):				100			Full List 7TO-15	t/ Project List]70-15	□10-15	☐ TO-15m	atic Fractions	mpound A He	4 8015m	ASTM D1945				
FIELD POINT NAME SAMPLE NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List/ Project	Oxygenates 8260SV	Naphthalene	TPHv as Gas	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945				
1A-8	02/09/21	1728	IA	61	453	-13.4	X							4		1	The D		
it -10	1	1729	IA	6L	320	-5.33	X		. 1										
1A - 9		1729	IA	64	336	-5.64	X										-		
A-7		1726	IA	61	279	-1:39	X									- 3			
A-6		1848	IA	62	278	78	X												
A-5		1847	IA	QL.	479	-1-35	X						-						
A-4		1546	1A	61	454	-1.62	X												
1A-3		1412	IA	64	478	-2.16	X												
AA-2		1914	AA	6L	477	-4.80	X												
14-1	1	1844	IA	61	448	-3.17	X												
Committee Michael Pinemen	Stampany	ec	2/5/21	1925	Received by:	20	h				Company	11	#P	Date	02/0	5/21	Time:	1923	
Approved/Relinquished by: Approved/Relinquished by:	Company		Date:	Time:	Received by:	,					Company			Date	:		Time:		10

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 02/05/21

Lat	Client and Proje	ct Information	Ly edg _	TO!	10/13				1	No.	5	Sample	e Rec	eipt (La	ab Us	e Only	y)	
Lab Client/Consultant: Stantec		Project Name / #:	15580499	50						Date	Rec'd:	28	21	Contro	1#:0	1 b	280	.04
Lab Client Project Manager: Lewis Sime	914	Project Name / #: Project Location:	1247 (nous	haw Bl	of The	was	10			H&P	Project	#ST	020	821	R		3	1
Lab Client Address: 290 Coneja, Pida		Report E-Mail(s):	ben charle	m @	tan	ton				Lab W	Vork Or			202	7			
Lab Client City, State, Zip:	s, (A 913/6)	1	ben-chevle	mag c	fante		2			Samp	le Intac			No [A Section Control	lotes B	elow	
Phone Number: 562 - 799 - 9866	21 (7) (100)	1	ew 13.214	21/61	umu	EW	m			Rece	ipt Gau	ge ID:	107	nu		Temp	R	-
Reporting Requirements	Turnarou	nd Time	San	npler Info	rmation	1					de Lab:		-					
Standard Report Level III Level IV	Standard (7 da			rellans		-			111	Recei	pt Note	s/Tracki	ng #:	11.11				
Excel EDD Other EDD:	report, 10 days		Signature:	2/-		M.Id												
CA Geotracker Global ID:	Rush (specify):		Date:	105/2	4										Lab	PM Init	tials: V	B
Additional Instructions to Laboratory:																		
* Preferred VOC units (please choose one): □ μg/L □ μg/m³ □ ppbv □ ppmv						rd Full List	st / Project List	□T0-15	☐TO-15	□ TO-15m	natic Fractions	ompound	A 8015m	Fixed Gases by ASTM D1945				
FIELD POINT NAME SAMPLE NAME (if applicable)	DATE TIME mm/dd/yy 24hr cloc	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List / Project	Oxygenates 8260SV	Naphthalene 8260SV	TPHv as Gas	Aromatic/Aliphatic Fractions 8260SVm T0-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases b				
1A-2 DUP	02/05/21 1844	IA	GL	452	-2.03	X												
1A-1	1 184	3 1A	6L	480	-3.43	X												
AA-3	1901	IAA	64	481	-3.24	X												
AA-1	1850	1 AA	64	296	-2.86	X			1						Y Y			
										1								
									-								110	
				1 4						, i								
Approved/Relinquished by: Approved/Relinquished by:	Stantec	25/21	Time: 1925	Received by:	To	Vin			35	Company	11	\$P	Date	04/0	5/21	Time:	1925	- 0
Approved/Relinquished by:	Company:	Date:	Time:	Received by:						Company			Date			Time:		

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	ST020521- TECH	Consultant: Stantec
Site Address:	24747 Crenshaw Blyd	Consultant Rep: E. Medler Reviewed: EC
-	Torrance LA	H&P Rep: J. Arellano B. Villa Scanned: 116m.
-	Torrance, LT	

	lovre	ance, Lt	4		пар кер.	J.Arellano	. S. VINO	Ocamica.	1 1000
		SAMPLE ID	: •	A-8					
Summa ID #:	43	Start Date:	21827	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-2
Flow Cont ID #:	F195	Start Time:	1027	Check Time:	1306	Check Time:	1647	End Time:	1728
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	.30	Check Vac ("Hg):	-24	Check Vac ("Hg):	-16	End Vac ("Hg):	-14
Summa Canister H	leight abov	e Ground (ft):	5			(and/or send pl			
Description of Sun	nma Canist	er Placement:			The	otos ser	nt to	, FM	

Summa Canister Height above Ground (ft):	DIAGRAM (and/or send prioto to high him).
Description of Summa Canister Placement:	Photos sent to PM
	Note: *Access to building cut Off before 8HRS. -E-C 219/21

Outdoor Temp Hi (F):	64	Barometric Pressure:	30 in A	Weather Conditions: A.M. Overcast	
Outdoor Temp Low (F):	48	Wind Speed:	4mph	P.M Sumy	
Indoor Temp Avg (F):	70	Wind Direction:	NW	1.7/(- 300)	

PRODUCT INVENTORY (nearby products that may contain chemicals of concern; continue on back if needed):

Name of Product	List of Chemicals
National Control of the Control of t	

Source	Location	

Indoor Temp Avg

(F)

70

FMS008 Revision: 1

Revised: 10/23/14 Effective: 12/9/14

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #: _ Site Address: _		020521-7 7 Crensha nce. CA	Blud		Consultant: sultant Rep: H&P Rep:	Stante E. Med J. Arellano	ler	Reviewed: Scanned:	EC
		SAMPLE ID:		1A - 1	0				
Summa ID #:	320	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-2
Flow Cont ID #:	F133	Start Time:	1029	Check Time:	1307	Check Time:	1647	End Time:	1729
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	-25	Check Vac ("Hg):	-12	End Vac ("Hg):	-10
Summa Canister H	leight abov	e Ground (ft):	5'			(and/or send p			
Description of Sun	nma Canist	er Placement:				Access to	building		1
Outdoor Temp Hi (F): Outdoor Temp Low (F):	64 48	Barometric Pressure: Wind Speed:	30" Hg	Weather Cond -AM- P. M	ditions: Overas Sunn	+ 4			

PRODUCT INVENTORY (nearby products that may contain chemicals of concern; continue on back if needed):

Wind

Direction:

Name of Product	List of Chemicals	
7		
	to the second se	

Location	
	Location

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	ST020521-TECH	Consultant:	Stantec		
Site Address:	24747 Crenshaw Blad.	Consultant Rep:	E. Medler	Reviewed:	
	Torrance, LA	H&P Rep: 5	Arellano, B. Villa	Scanned:	Home

	SAMPLE ID:	1A-9			
Summa ID #: 336	Start Date: 2-5-2	Check Date: 2-5-2	Check Date: 2-5-2	End Date:	2-5-21
Flow Cont ID #: F104	Start Time: 1031	Check Time: 1307	Check Time: 1648	End Time:	17310
Flow Rate (hrs or cc/min):	Start Vacuum ("Hg): -30+	Check Vac ("Hg): - 22	Check Vac ("Hg):	End Vac ("Hg):	-7
Summa Canister Height above Description of Summa Caniste			M (and/or send photo to H&		
		*,	Access to building	g not 12 shut off. -E.C. 210	2

Outdoor Temp Hi (F):	64	Barometric Pressure:	30" Ha	Weather Conditions: AM - Overcast
Outdoor Temp Low (F):	48	Wind Speed:	4mph	PM- Sunny
Indoor Temp Avg (F):	70	Wind Direction:	NW	

PRODUCT INVENTORY (nearby products that may contain chemicals of concern; continue on back if needed):

Name of Product	ct List of Chemicals		

Source	Location	
*		

Log Sheet: Indoor/Ambient Air Sampling

	Log Officet. Indoo	II/AIIIDICIIL AII	Jamping		
H&P Project #: _	57020521 - TECH	Consultant:	Stantec		
Site Address: _	24747 Crenshaw Blvd	Consultant Rep:	E. Medler	Reviewed:	EC
_	Torrance, CA	H&P Rep:	Arellano, B.	/://scanned:	Thoms

		SAMPLE ID	:	IA-7					
Summa ID #:	279	Start Date:	2-5-4	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F189	Start Time:	1035	Check Time:	1300	Check Time:	1632	End Time:	1726
Flow Rate (hrs or cc/min):	X	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-19	Check Vac ("Hg):		End Vac ("Hg):	-3

Summa Canister Height above Ground (ft): 5

Description of Summa Canister Placement:

Photos sent to PM

** Access to building not allowed before 8 HR shut att.

- Can filled fust OkeEC.

2/9/21

Outdoor Temp Hi (F):	64	Barometric Pressure:	12	Weather Conditions: AM - Overcast
Outdoor Temp Low (F):	48	Wind Speed:	4mph	24 6
Indoor Temp Avg (F):	70	Wind Direction:	NW	- PM- Sunny

PRODUCT INVENTORY (nearby products that may contain chemicals of concern; continue on back if needed):

Name of Product	List of Chemicals

Source	Location	

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #: _ Site Address: _		Crenshau Ce, LA		-	Consultant: sultant Rep: H&P Rep:		edler	Reviewed:	EC Mon
		SAMPLE ID	:	1A-6					
Summa ID #:	270	Start Date:	25-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-2(
Flow Cont ID #:	F134	Start Time:	1038	Check Time:	1257	Check Time:	1634	End Time:	1848
Flow Rate (hrs or cc/min):	8hv	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	- 22	Check Vac ("Hg):	-7	End Vac ("Hg):	-3
Summa Canister H	eight above	Ground (ft):	5'		DIAGRAM	(and/or send p	hoto to H&F	PM):	
Description of Sum	ma Caniste	r Placement:			Tho	tos sen	t to	PM	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	48 70	Barometric Pressure: Wind Speed: Wind Direction:	30"Hg Ymph NW	Weather Cond -AM - PM -	itions: Overcas Sunny	+			
PRODUCT INVENT			at may cont	ain chemicals o				l):	
Ivalite	e of Product				Lis	of Chemicals			
OUTDOOR SOURC	CES (possib	le sources of c	hemicals o	f concern from	outdoor acti	vities; continue	on back if	needed):	
5	Source					Location			

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling Consultant: Stantec

H&P Project #: Site Address:	24747	Crenshav nce. LA			ultant Rep:	Stan F. Medl J. Arellano	er	Reviewed: Scanned:	EL
		SAMPLE ID):	1A-	-5				
Summa ID #:	479	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F185	Start Time:	1040	Check Time:	1255	Check Time:	1635	End Time:	1847
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30t	Check Vac ("Hg):	-21	Check Vac ("Hg):	-8	End Vac ("Hg):	- 2
Summa Canister H	leight above	e Ground (ft):	5		DIAGRAM	(and/or send pl	noto to H&P	PM):	
Description of Sun	nma Caniste	er Placement:			Photo	os sent	to 3	PM	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	64 48 70	Barometric Pressure: Wind Speed: Wind Direction:	NW		Overca Sunny				
PRODUCT INVEN	e of Produc		at may cont	ain chemicals o		t of Chemicals		1):	
OUTDOOD COUR	050 / "	1	Lande-F	£ 6		dila a a a di	- L - 1 - 2	and the N	
OUTDOOR SOUR	Source	DIE SOURCES OF	nemicals o	concern from	outdoor acti	Location	on back if	needed):	

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

Site Address:		Crenchau 3		• 1	Consultant: sultant Rep:	E. Meu	dler	Reviewed:	
	Torran	ce, lA			H&P Rep:	J. Arellano	B.Villa	Scanned:	Tlan
		SAMPLE ID	: 1	A-4					
Summa ID #:	454	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-24
Flow Cont ID #:	F179	Start Time:	1042	Check Time:	1254	Check Time:	1636	End Time:	1846
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):		Check Vac ("Hg):	-11	End Vac ("Hg):	-4
Summa Canister H	Height above	e Ground (ft):	5'		DIAGRAM	(and/or send pl	noto to H&F	PM):	
Description of Sun	nma Caniste	er Placement:			Thor	tos sent	to FM		
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	64 48 70	Barometric Pressure: Wind Speed: Wind Direction:	30" Hg Ymph NW	Weather Cond	litions: AM- Ove M - Su	ovcast nmy			
PRODUCT INVEN	ITORY (nea	rby products tha	at may cont	ain chemicals	of concern;	continue on bad	ck if needed	I):	
Nam	ne of Produc	t			Lis	st of Chemicals			
									1
OUTDOOR SOUR	CES (possil	ble sources of c	hemicals o	f concern from	outdoor act	ivities; continue	on back if	needed):	
	Source					Location			

H&P Project #:

FMS008 Revision: 1 Revised: 10/23/14 Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

Consultant:

Stantec

Site Address:	-	t Crenshaw Blvd e. (A	_ Cons	sultant Rep: H&P Rep:	J. Avellano	er B.Villa	Reviewed: Scanned:	Flore
		SAMPLE ID:	1A-3					
Summa ID #:	478	Start Date: 2-5-2		2-5-21	Check Date:	2-5-2	End Date:	2-5-21
Flow Cont ID #:	F205	Start Time: 1044	Check Time:	1248	Check Time:	1637	End Time:	1842
Flow Rate (hrs or cc/min):		Start Vacuum ("Hg): -30*	Check Vac ("Hg):	21	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister F	Height above	e Ground (ft): 5	1	DIAGRAM	(and/or send ph	noto to H&F	PPM):	
Description of Sun	nma Caniste	er Placement:		Phon	tos sent	to PM	1	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	48 70	Barometric Pressure: Wind Speed: Wind Direction: Word Direction:		Overcas: Sunny		ok if poodoo	y).	
	e of Produc		itam chemicais i		st of Chemicals	k ii needed	1):	
	ting o);			of of offermodis			
	CES (possil	ble sources of chemicals	of concern from	outdoor act	ivities; continue	on back if	needed):	

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:			-			Stante			
Site Address:		e. (A 9	Blvd	- Cons	sultant Rep: H&P Rep:	J. Arellano			EC Thomas
	IBYTAME	e. CAT M	W/		Tion Trop.	J. Mellano	DVIIIA	·	1 come
		SAMPLE ID):	AA-	2				
Summa ID #:	477	Start Date:	2-5-21	Check Date:	2-52	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F164	Start Time:	1046	Check Time:	1244	Check Time:	1640	End Time:	1914
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-25	Check Vac ("Hg):	-12	End Vac ("Hg):	-7
Summa Canister H	Height above	e Ground (ft):	5		DIAGRAM	(and/or send pl	noto to H&F	PM):	
Description of Sun					Pho	tos sen	t to	FM	
					1.00	102			
Outdoor Temp Hi	11	Barometric	141	Meather Cond	litions:				
(F):	69	Pressure:	30"Hg	Weather Cond AM- PM-	Overcas	st			
Outdoor Temp Low (F):	48	Wind Speed:	Imoh	PM-	5				
Indoor Temp Avg	20	Wind	MIN	1///	Dung				
(F):	10	Direction:	7777						
PRODUCT INVEN	TORY (near	rby products th	at may con	tain chemicals	of concern;	continue on bad	ck if needed	d):	
Nam	e of Produc	t			Lis	st of Chemicals			
- 6	utting !	1 1							
	Diesel	Exhaust							
OUTDOOR SOUR	CES (possit	ble sources of	chemicals o	of concern from	outdoor act	ivities; continue	on back if	needed):	
	Source					Location			

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	5	T020521- T	Ect		Consultant:	Stant	For		
Site Address:		Crenshew &		Cons	sultant Rep:			Reviewed:	EC
	Torrance	1 1	,,,,		H&P Rep:	J. Arellano	BVilla		7%-
		SAMPLE ID	:	1A-7	2				
Summa ID #:	448	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	7-5-21	End Date:	2-5-2
Flow Cont ID #:	F191	Start Time:	1049	Check Time:		Check Time:	1639	End Time:	1844
Flow Rate (hrs or cc/min):	Thrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):		Check Vac ("Hg):	10	End Vac ("Hg):	-4
Summa Canister F	leight above	e Ground (ft):	5		DIAGRAM	(and/or send pl	noto to H&P	PM):	
Description of Sun	nma Caniste	er Placement:			The	otos sent	to P	M	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	64 48 70	Barometric Pressure: Wind Speed: Wind Direction:	30" Hg Yumph NW	Weather Cond A P	itions: M - Over M - Sun	cast			
PRODUCT INVEN	TORY (nea	rby products that	at may cont	ain chemicals o	of concern; of	continue on bac	ck if needed)):	
Nam	e of Produc	t			Lis	t of Chemicals			
	Solvan	oi/ ts							
OUTDOOR SOUR	CES (possit	ole sources of c	hemicals o	f concern from	outdoor acti	vities; continue Location	on back if r	needed):	

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	510	20521- TECH	+		Consultant:	Stante	c		
Site Address:	24747	Crenshaw 3	vd	Cons	ultant Rep:	E. Medler		Reviewed:	EC
	Torrane				H&P Rep:	J. Arellans,	BVilla	Scanned:	Mor.
		SAMPLE ID	:	1A -	2 D	VP			
Summa ID #:	452	Start Date:	2-5-21	Check Date:		Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F209	Start Time:	1049	Check Time:	1252	Check Time:	1639	End Time:	1844
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	- 20	Check Vac ("Hg):		End Vac ("Hg):	-2
Summa Canister H	Height above	e Ground (ft):	51		DIAGRAM	(and/or send pl	noto to H&F	PPM):	
Description of Sun	nma Caniste	er Placement:			Phot	tos sent	to PA	1	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	64 18 70	Barometric Pressure: Wind Speed: Wind Direction:	30" Hg Ymph NW	Weather Cond A P/	litions: M- Overa M- Sunn	ast			
PRODUCT INVEN			at may cont	tain chemicals				d):	
	e of Produc				Lis	st of Chemicals			
	Solve	nts							
OUTDOOR SOUR	RCES (possi	ble sources of	chemicals o	of concern from	outdoor act	ivities; continue	e on back if	needed):	
	Source					Location			

Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	STO	20521-TE	CH		Consultant:	Stant	er		
Site Address:	24747			Cons	ultant Rep:	E. Medler		Reviewed:	EC
-	Torran			-	H&P Rep:	J. Avellano :	BVilla	Scanned:	Tloms
		SAMPLE ID):	14-1					
Summa ID #:	480	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-21	End Date:	2-5-21
Flow Cont ID #:	F150	Start Time:	1051	Check Time:	1250	Check Time:	1638	End Time:	1843
Flow Rate (hrs or cc/min):	8hrs	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	25	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister H	leight above	e Ground (ft):	51		DIAGRAM	(and/or send p	hoto to H&P	PM):	
Description of Sum	nma Caniste	er Placement:			The	tos sent	to Th	1	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	48 70	Barometric Pressure: Wind Speed: Wind Direction:	NW		4M- OV PM- S				
PRODUCT INVEN	TORY (nea		at may con	tain chemicals of		continue on ba st of Chemicals		d):	
	fing o	ils S							
OUTDOOR SOUR	CES (possi Source	ble sources of	chemicals c	of concern from	outdoor act	ivities; continuo Location	e on back if	needed):	

H&P Project #:

57020521-TECH

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling Consultant: Stantec

Site Address:	24747	Crenchau ?	Blue	Cons	ultant Rep: H&P Rep:	J. Avelano	Bilila	Reviewed: Scanned:	EC
	(orra					O. WEI DOWN	Jyma		at the street
THE RELEASE		SAMPLE ID	: 1	1A-3				在 學生	
Summa ID #:	481	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	25-21	End Date:	2-5-2
Flow Cont ID #:	F210	Start Time:	1100	Check Time:	1302	Check Time:	1642	End Time:	1901
Flow Rate (hrs or cc/min):	Shrs	Start Vacuum ("Hg):	-30	Check Vac ("Hg):	-24	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister I	Height above	e Ground (ft):	5'			(and/or send p			
Description of Sur	mma Caniste	er Placement:			The	itos sen	t to	FM .	
Outdoor Temp Hi (F): Outdoor Temp Low (F): Indoor Temp Avg (F):	48	Barometric Pressure: Wind Speed: Wind Direction:	30 "Hg Imph	Weather Cond	itions:	~			
PRODUCT INVEN	NTORY (nea		at may cont	ain chemicals		continue on ba	•	d):	
							,		
OUTDOOR SOUP		ble sources of	chemicals o	of concern from	outdoor act		e on back if	needed):	
1	Source	. 1				Location			
Car	exhau	57							

FMS008 Revision: 1 Revised: 10/23/14

Effective: 12/9/14 Page 1 of 1

Log Sheet: Indoor/Ambient Air Sampling

H&P Project #:	STO	120521- TEC	4		Consultant:	Stan	tec		
Site Address:	2474	7 Grenshaw	Bhd	Cons	sultant Rep:	E. Medler		Reviewed:	ac
	Torran				H&P Rep:	J. Arellano,	B.Villa	Scanned:	Mores
		SAMPLE ID	: 4	AA-Y					
Summa ID #:	296	Start Date:	2-5-21	Check Date:	2-5-21	Check Date:	2-5-2	End Date:	2-5-21
Flow Cont ID #:	F132	Start Time:	1101	Check Time:	1305	Check Time:	1650	End Time:	1859
Flow Rate (hrs or cc/min):	-	Start Vacuum ("Hg):	-30+	Check Vac ("Hg):	- 25	Check Vac ("Hg):	-12	End Vac ("Hg):	-5
Summa Canister I	Height above	e Ground (ft):	51			(and/or send p			
Description of Sur	nma Caniste	er Placement:			F	rotos sent	to PA	N	
Outdoor Temp Hi	64	Barometric	39" Ha	Weather Cond		,			
(F): Outdoor Temp		Pressure:	11 17		AM - C	Overcast Sunny			
Low (F):	18	Wind Speed:	Tuph		PM- 5	Sunny			7.4
Indoor Temp Avg (F):	70	Wind Direction:	NW			/			
PRODUCT INVEN			at may con	tain chemicals	of concern;	continue on ba	ck if neede	d):	
	ne of Produc					st of Chemicals			
OUTDOOR SOUF	RCES (possi	ble sources of o	chemicals of	of concern from	outdoor ac	tivities; continu	e on back if	needed):	
	Source					Location			
	Car E	xhaved							

Lewis Simons Stantec - Thousand Oaks 290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

H&P Project: ST021221-13

Client Project: 185804980 / Crenshaw Blvd

Dear Lewis Simons:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 11-Feb-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Reported:
Project Manager: Lewis Simons 24-Feb-21 15:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VP-9	E102048-01	Vapor	11-Feb-21	11-Feb-21
VP-10	E102048-02	Vapor	11-Feb-21	11-Feb-21
VP-8	E102048-03	Vapor	11-Feb-21	11-Feb-21
VP-7	E102048-04	Vapor	11-Feb-21	11-Feb-21
VP-6	E102048-05	Vapor	11-Feb-21	11-Feb-21
VP-5	E102048-06	Vapor	11-Feb-21	11-Feb-21
VP-4	E102048-07	Vapor	11-Feb-21	11-Feb-21
VP-3	E102048-08	Vapor	11-Feb-21	11-Feb-21
VP-2	E102048-09	Vapor	11-Feb-21	11-Feb-21
VP-2 Dup	E102048-10	Vapor	11-Feb-21	11-Feb-21
VP-1	E102048-11	Vapor	11-Feb-21	11-Feb-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks
Project: ST021221-13
290 Conejo Ridge Avenue, Suite 200
Project Number: 185804980 / Crenshaw Blvd
Reported:
Thousand Oaks, CA 91361
Project Manager: Lewis Simons
24-Feb-21 15:43

DETECTIONS SUMMARY

Sample ID: VP-9	Laboratory ID:	E102048-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	10	5.6	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	1500	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	150	30	ug/m3	EPA TO-15	
Trichloroethene	61	5.5	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	9.0	8.3	ug/m3	EPA TO-15	
Toluene	16	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	1200	6.9	ug/m3	EPA TO-15	
m,p-Xylene	12	8.8	ug/m3	EPA TO-15	
ample ID: VP-10	Laboratory ID:	E102048-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	500	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	87	30	ug/m3	EPA TO-15	
Trichloroethene	320	5.5	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	1000	6.9	ug/m3	EPA TO-15	
m,p-Xylene	9.1	8.8	ug/m3	EPA TO-15	
Sample ID: VP-8	Laboratory ID:	E102048-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,1,2-Trichlorotrifluoroethane (F113)	25	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	50	30	ug/m3	EPA TO-15	
Trichloroethene	16	5.5	ug/m3	EPA TO-15	
Toluene	6.6	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	69	6.9	ug/m3	EPA TO-15	
Sample ID: VP-7	Laboratory ID:	E102048-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	13	5.6	ug/m3	EPA TO-15	
1,1-Dichloroethene	100	4.0	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	920	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	47	30	ug/m3	EPA TO-15	
Trichloroethene	310	5.5	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Laboratory ID: Result 2200 9.5 Laboratory ID: Result 250 42 64 9.5 900	Reporting Limit 6.9 8.8	Units ug/m3 ug/m3 Units ug/m3 ug/m3	Method EPA TO-15 EPA TO-15 Method EPA TO-15	Notes
2200 9.5 Laboratory ID: Result 250 42 64 9.5	Limit 6.9 8.8 E102048-05 Reporting Limit 7.7 30 5.5	ug/m3 ug/m3 Units ug/m3 ug/m3	EPA TO-15 EPA TO-15 Method EPA TO-15	
2200 9.5 Laboratory ID: Result 250 42 64 9.5	6.9 8.8 E102048-05 Reporting Limit 7.7 30 5.5	ug/m3 ug/m3 Units ug/m3 ug/m3	EPA TO-15 EPA TO-15 Method EPA TO-15	
9.5 Laboratory ID: Result 250 42 64 9.5	8.8 E102048-05 Reporting Limit 7.7 30 5.5	Units ug/m3 ug/m3	Method EPA TO-15	Notes
Laboratory ID: Result 250 42 64 9.5	E102048-05 Reporting Limit 7.7 30 5.5	Units ug/m3 ug/m3	Method EPA TO-15	Notes
Result 250 42 64 9.5	Reporting Limit 7.7 30 5.5	ug/m3 ug/m3	EPA TO-15	Notes
250 42 64 9.5	Limit 7.7 30 5.5	ug/m3 ug/m3	EPA TO-15	Notes
250 42 64 9.5	7.7 30 5.5	ug/m3 ug/m3	EPA TO-15	Notes
42 64 9.5	30 5.5	ug/m3		
64 9.5	5.5	-		
9.5		/ 2	EPA TO-15	
	3.8	ug/m3	EPA TO-15	
900		ug/m3	EPA TO 15	
	6.9	ug/m3	EPA 10-15	
Laboratory ID:	E102048-06			
	Reporting			37.
				Notes
		-		
		-		
		-		
		-		
		-		
		-		
		-		
12	8.8	ug/m3	EPA 10-15	
Laboratory ID:	E102048-07			
	Reporting			
Result		Units		Notes
		-		
		-		
		-		
		-		
		-		
		-		
		-		
		-		
	900 Laboratory ID: Result 12 1000 45 43 3.2 35 20 2400 12 Laboratory ID:	Laboratory ID: E102048-06 Reporting Result Limit 12	Reporting Result Limit Units ug/m3 Laboratory ID: E102048-06 Reporting Result Limit Units ug/m3 1000 7.7 ug/m3 45 30 ug/m3 3.2 3.2 ug/m3 3.2 3.2 ug/m3 3.5 5.5 ug/m3 20 3.8 ug/m3 2400 6.9 ug/m3 12 8.8 ug/m3 12 8.8 ug/m3 2400 6.9 ug/m3 12 8.8 ug/m3 2400 6.9 ug/m3 2400 6.9 ug/m3 2400 6.9 ug/m3 2400 6.9 ug/m3 2400 250 230 4.0 ug/m3 250 4.0 ug/m3 250 4.0 ug/m3 250 4.0 ug/m3 250 4.9 ug/m3 250 4.0 ug/m3 250 4.	Reporting Result Limit Units Method

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks	Project: ST02					
290 Conejo Ridge Avenue, Suite 200	Project Number: 1858		Blvd	Reported:		
Thousand Oaks, CA 91361	Project Manager: Lewi	is Simons		24-Feb-	21 15:43	
sample ID: VP-4	Laboratory ID: F	E102048-07				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
m,p-Xylene	15	8.8	ug/m3	EPA TO-15		
Sample ID: VP-3	Laboratory ID: E	E102048-08				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Helium (LCC)	0.13	0.10	%	ASTM D1945M		
Trichlorofluoromethane (F11)	11	5.6	ug/m3	EPA TO-15		
1,1-Dichloroethene	360	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	290	7.7	ug/m3	EPA TO-15		
Chloroform	18	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	35	5.5	ug/m3	EPA TO-15		
Benzene	13	3.2	ug/m3	EPA TO-15		
Trichloroethene	20000	140	ug/m3	EPA TO-15		
Toluene	6.8	3.8	ug/m3	EPA TO-15		
Tetrachloroethene	44000	170	ug/m3	EPA TO-15		
Sample ID: VP-2	Laboratory ID: F	E102048-09				
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
Helium (LCC)	0.13	0.10	%	ASTM D1945M		
1,1-Dichloroethene	140	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	ug/m3	EPA TO-15		
Chloroform	8.6	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	6.6	5.5	ug/m3	EPA TO-15		
Trichloroethene	910	5.5	ug/m3	EPA TO-15		
Toluene	6.0	3.8	ug/m3	EPA TO-15		
Tetrachloroethene	1800	6.9	ug/m3	EPA TO-15		
Sample ID: VP-2 Dup	Laboratory ID: F	E102048-10				
•		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
1,1-Dichloroethene	130	4.0	ug/m3	EPA TO-15		
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	ug/m3	EPA TO-15		
Chloroform	8.7	4.9	ug/m3	EPA TO-15		
1,1,1-Trichloroethane	6.6	5.5	ug/m3	EPA TO-15		
Trichloroethene	960	5.5	ug/m3	EPA TO-15		
Toluene	6.3	3.8	ug/m3	EPA TO-15		
	0.0			- -		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Sample ID: VP-1	Laboratory ID: E102	2048-11			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	18	5.6	ug/m3	EPA TO-15	
1,1-Dichloroethene	230	4.0	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)	450	7.7	ug/m3	EPA TO-15	
2-Butanone (MEK)	82	30	ug/m3	EPA TO-15	
1,1,1-Trichloroethane	33	5.5	ug/m3	EPA TO-15	
Trichloroethene	900	5.5	ug/m3	EPA TO-15	
Toluene	10	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	2700	6.9	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13 Project Number: 185804980 / Crenshaw Blvd

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Soil Vapor/Air Analysis by ASTM D1945M

Analyte VP-9 (E102048-01) Vapor Sampled:	Result	Reporting Limit		Dilution					
VP-9 (E102048-01) Vapor Sampled			Units	Factor	Batch	Prepared	Analyzed	Method	Notes
	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-10 (E102048-02) Vapor Sample	d: 11-Feb-21 Received: 11	-Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-8 (E102048-03) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-7 (E102048-04) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-6 (E102048-05) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-5 (E102048-06) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-4 (E102048-07) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	0.16	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-3 (E102048-08) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	0.13	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	
VP-2 (E102048-09) Vapor Sampled	: 11-Feb-21 Received: 11-	Feb-21							
Helium (LCC)	0.13	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Project Manager: Lewis Simons Reported: 24-Feb-21 15:43

Soil Vapor/Air Analysis by ASTM D1945M

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes	
VP-2 Dup (E102048-10) Vapor Sampled: 11-Feb-2	1 Received	: 11-Feb-21								
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M		
VP-1 (E102048-11) Vapor Sampled: 11-Feb-21 Received: 11-Feb-21										
Helium (LCC)	ND	0.10	%	1	EB11714	17-Feb-21	17-Feb-21	ASTM D1945M		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

	Dagult	Reporting	TT 10	Dilution	D + 1	D 1		N. d. d.	Notes
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
VP-9 (E102048-01) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	10	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	1500	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	150	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	61	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	9.0	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	16	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	1200	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	12	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
•									

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

	110		ic Georgi	icinisti y	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-9 (E102048-01) Vapor Sampled: 11-Feb-2	21 Received: 11-F	eb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	ıı	"	"	II	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.9 %	77-1		"	"	"	"	
VP-10 (E102048-02) Vapor Sampled: 11-Feb-	-21 Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	500	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	87	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	320	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-10 (E102048-02) Vapor Sampled: 11-Feb-21	Received: 11	-Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	1000	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.1	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.5 %	76-1		"	"	"	"	
Surrogate: Toluene-d8		94.6 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.0 %	77-1	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-8 (E102048-03) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	25	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	50	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	16	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	6.6	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	69	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
~y v	ND	7.7							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

		XI WIUDII	e Geoen	icinisti j	, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-8 (E102048-03) Vapor Sampled: 11-Feb-21	Received: 11-1	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.3 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		94.4 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6 %	77-1		"	"	"	"	
VP-7 (E102048-04) Vapor Sampled: 11-Feb-21	Received: 11-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	13	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	100	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	920	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	47	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	310	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-7 (E102048-04) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2200	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.5	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	76-1		"	"	"	"	
Surrogate: Toluene-d8		97.9 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	77-1	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-6 (E102048-05) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	250	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	42	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	64	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	9.5	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	900	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-6 (E102048-05) Vapor Sampled: 11-Feb-2	Received: 11-	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	77-1		"	"	"	"	
VP-5 (E102048-06) Vapor Sampled: 11-Feb-2	Received: 11-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	12	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	1000	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	45	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	43	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	3.2	3.2	"	"	"	"	"	"	
			"	,,	"	"	"	"	
	ND	64							
Carbon tetrachloride Trichloroethene	ND 35	6.4 5.5	,,	"	"	,,	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-5 (E102048-06) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	20-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	20	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2400	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	12	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.1 %	76-13		"	"	"	"	
Surrogate: Toluene-d8		99.5 %	78-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.4 %	77-12	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

24-Feb-21 15:43

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Project Manager: Lewis Simons

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-4 (E102048-07) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	8.3	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	230	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	560	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	75	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	200	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	7.8	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	6.8	3.2	"	"	"	"	,,	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	,,	"	
Trichloroethene	4600	27	"	5	"	"	22-Feb-21	"	
1,2-Dichloropropane	ND	9.4	"	1	"	"	21-Feb-21	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	,,	"	
Toluene	29	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	,,	"	
2-Hexanone (MBK)	ND	8.3	"	"	,,	,,	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	7300	34	"	5	"	"	22-Feb-21	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	1	"	"	21-Feb-21	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.7	"	"	"	"	"	"	
m,p-Xylene	15	8.8	"	"	"	"	"	"	
Styrene	ND	4.3		"	,,	,,	"	"	
o-Xylene	ND	4.3		"	,,	,,	"	"	
0-Aylene	טאו	4.4							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte VP-4 (E102048-07) Vapor Sampled: 11-Feb-21 Bromoform	Result Received: 11-H	Reporting Limit	Units	Dilution					
Bromoform	Received: 11-F			Factor	Batch	Prepared	Analyzed	Method	Notes
		eb-21							
	ND	10	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	II .	
Surrogate: 1,2-Dichloroethane-d4		99.0 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.6 %	77-1		"	"	"	"	
VP-3 (E102048-08) Vapor Sampled: 11-Feb-21	Received: 11-F	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	11	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	360	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	290	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	18	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	35	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	13	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	20000	140	"	25	"	"	22-Feb-21	"	
1,2-Dichloropropane	ND	9.4	"	1	"	"	21-Feb-21	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-3 (E102048-08) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromodichloromethane	ND	6.8	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	6.8	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	44000	170	"	25	"	"	22-Feb-21	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	1	"	"	21-Feb-21	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	н	"	
Surrogate: 1,2-Dichloroethane-d4		98.2 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		103 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 (E102048-09) Vapor Sampled: 11-Feb-21	Received: 11-	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	140	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	190	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	8.6	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	6.6	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	910	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	6.0	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	1800	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
			"	"	"	"	"	"	
-		_	"	"	"	"	"	"	
Styrene o-Xylene	ND ND	4.3 4.4							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

		XI WIODII		J ,	,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 (E102048-09) Vapor Sampled: 11-Feb-21	Received: 11-1	Feb-21							
Bromoform	ND	10	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.4 %	77-1		"	"	"	"	
VP-2 Dup (E102048-10) Vapor Sampled: 11-Fe	eb-21 Received	: 11-Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	130	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	8.7	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	6.6	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
	ND	6.4	"	"	"	"	"	"	
Carbon tetrachloride									
Carbon tetrachloride Trichloroethene	960	5.5	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd Project Manager: Lewis Simons Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Resu	Reporting lt Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-2 Dup (E102048-10) Vapor	Sampled: 11-Feb-21 Rec	eived: 11-Feb-21							
Bromodichloromethane	NI	0 6.8	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
cis-1,3-Dichloropropene	NI	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	NI	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	NI	4.6	"	"	"	"	"	"	
Toluene	6.:	3 3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	NI	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	NI	8.3	"	"	"	"	"	"	
Dibromochloromethane	NI	8.6	"	"	"	"	"	"	
Tetrachloroethene	190	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	NI	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	NE	7.0	"	"	"	"	"	"	
Chlorobenzene	NI	4.7	"	"	"	"	"	"	
Ethylbenzene	NI	9 4.4	"	"	"	"	"	"	
m,p-Xylene	NI	8.8	"	"	"	"	"	"	
Styrene	NI	4.3	"	"	"	"	"	"	
o-Xylene	NI	9 4.4	"	"	"	"	"	"	
Bromoform	NI	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	NI	7.0	"	"	"	"	"	"	
4-Ethyltoluene	NI	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	NI	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	NI	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	NI) 12	"	"	"	"	"	"	
1,4-Dichlorobenzene	NI) 12	"	"	"	"	"	"	
1,2-Dichlorobenzene	NI) 12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	NI	38	"	"	"	"	"	"	
Hexachlorobutadiene	NI	54	"	"	"	"	"	"	
<u> </u>									
Surrogate: 1,2-Dichloroethane-d-	4	92.8 %	76	5-134	"	"	"	"	
Surrogate: Toluene-d8		99.9 %	78	3-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	e	90.8 %	77	7-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 (E102048-11) Vapor Sampled: 11-Feb-21	Received: 11-1	Feb-21							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	18	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	230	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	450	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	82	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	33	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	900	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	10	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2700	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361 Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
VP-1 (E102048-11) Vapor	Sampled: 11-Feb-21	Received: 11-	Feb-21							
Bromoform		ND	10	ug/m3	1	EB12209	20-Feb-21	21-Feb-21	EPA TO-15	
1,1,2,2-Tetrachloroethane		ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	38	"	"	"	"	"	"	
Hexachlorobutadiene		ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroetha	ne-d4		93.5 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8			97.6 %	78-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobe	nzene		92.3 %	77-1	27	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Soil Vapor/Air Analysis by ASTM D1945M - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB11714 - GC

 Blank (EB11714-BLK1)
 Prepared & Analyzed: 17-Feb-21

 Helium (LCC)
 ND
 0.10
 %

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number:185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager:Lewis Simons24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EB12209-BLK1)			
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3
Chloromethane	ND	2.1	"
Dichlorotetrafluoroethane (F114)	ND	7.1	"
Vinyl chloride	ND	2.6	"
Bromomethane	ND	16	"
Chloroethane	ND	8.0	"
Trichlorofluoromethane (F11)	ND	5.6	"
1,1-Dichloroethene	ND	4.0	"
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"
Methylene chloride (Dichloromethane)	ND	3.5	"
Carbon disulfide	ND	6.3	"
trans-1,2-Dichloroethene	ND	8.0	"
1,1-Dichloroethane	ND	4.1	"
2-Butanone (MEK)	ND	30	"
cis-1,2-Dichloroethene	ND	4.0	"
Chloroform	ND	4.9	"
1,1,1-Trichloroethane	ND	5.5	"
1,2-Dichloroethane (EDC)	ND	4.1	"
Benzene	ND	3.2	"
Carbon tetrachloride	ND	6.4	"
Trichloroethene	ND	5.5	"
1,2-Dichloropropane	ND	9.4	"
Bromodichloromethane	ND	6.8	"
cis-1,3-Dichloropropene	ND	4.6	"
4-Methyl-2-pentanone (MIBK)	ND	8.3	"
trans-1,3-Dichloropropene	ND	4.6	"
Toluene	ND	3.8	"
1,1,2-Trichloroethane	ND	5.5	"
2-Hexanone (MBK)	ND	8.3	"
Dibromochloromethane	ND	8.6	"
Tetrachloroethene	ND	6.9	"
1,2-Dibromoethane (EDB)	ND	7.8	"
1,1,1,2-Tetrachloroethane	ND	7.0	"
Chlorobenzene	ND	4.7	"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd Reported:
Project Manager: Lewis Simons 24-Feb-21 15:43

Source

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB12209 - TO-15										
Blank (EB12209-BLK1)				Prepared &	k Analyzed:	20-Feb-21				
Ethylbenzene	ND	4.4	ug/m3							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	198		"	214		92.5	76-134			
Surrogate: Toluene-d8	202		"	208		97.1	78-125			
Surrogate: 4-Bromofluorobenzene	308		"	363		84.9	77-127			
I CC (ED12200 DC1)				Prepared: 2	20-Feb-21 <i>A</i>	Analyzed: 2	1-Feb-21			
LCS (EB12209-BS1) Dichlorodifluoromethane (F12)	120	5.0	ug/m3	101	20 1 00 211	118	59-128			
Vinyl chloride	58	2.6	ug/III3	52.0		111	64-127			
Chloroethane	58	8.0	"	53.6		108	63-127			
Trichlorofluoromethane (F11)	110	5.6	"	113		100	62-126			
1,1-Dichloroethene	82	4.0	"	80.8		101	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	155		106	66-126			
Methylene chloride (Dichloromethane)	72	3.5	"	70.8		102	62-115			
trans-1,2-Dichloroethene	77	8.0	"	80.8		94.9	67-124			
1,1-Dichloroethane	82	4.1	"	82.4		100	68-126			
cis-1,2-Dichloroethene	78	4.1	"	80.0		97.9	70-121			
Chloroform	100	4.0 4.9	"	99.2		104	68-123			
1,1,1-Trichloroethane	110	4.9 5.5	"	99.2 111		104	68-125			
1,2-Dichloroethane (EDC)	84	5.5 4.1	"	82.4		102	65-128			
			,,			102	69-119			
Benzene	66	3.2	*	64.8		101	09-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks

Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200 Thousand Oaks, CA 91361

Project Number: 185804980 / Crenshaw Blvd

Project Manager: Lewis Simons

Reported: 24-Feb-21 15:43

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB12209 - TO-15										
LCS (EB12209-BS1)				Prepared: 2	20-Feb-21 A	\nalyzed: 2	1-Feb-21			
Carbon tetrachloride	130	6.4	ug/m3	128		102	68-132			
Trichloroethene	120	5.5	"	110		112	71-123			
Toluene	84	3.8	"	76.8		109	66-119			
1,1,2-Trichloroethane	120	5.5	"	111		107	73-119			
Tetrachloroethene	160	6.9	"	138		118	66-124			
1,1,1,2-Tetrachloroethane	170	7.0	"	140		124	67-129			
Ethylbenzene	110	4.4	"	88.4		126	70-124			QL-1H
m,p-Xylene	110	8.8	"	88.4		125	61-134			
o-Xylene	110	4.4	"	88.4		124	67-125			
1,1,2,2-Tetrachloroethane	160	7.0	"	140		111	65-127			
Surrogate: 1,2-Dichloroethane-d4	203		"	214		95.2	76-134			
Surrogate: Toluene-d8	199		"	208		95.7	78-125			
Surrogate: 4-Bromofluorobenzene	363		"	363		100	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - Thousand Oaks Project: ST021221-13

290 Conejo Ridge Avenue, Suite 200Project Number: 185804980 / Crenshaw BlvdReported:Thousand Oaks, CA 91361Project Manager: Lewis Simons24-Feb-21 15:43

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

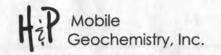
All soil results are reported in wet weight.

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138


The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

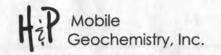
VAPOR / AIR Chain of Custody

DATE: 02-11-21
Page 1 of 2

								5	Sample	Rece	eipt (Lal	b Use Onl	y)					
Lab Client/Consultant: Star	te	TT		Project Name / #:	18580498	0					Date	Rec'd:	2/1:	2	Control	#: 210	2800	5.08
Lab Client Project Manager: Lew				Project Location:	24747	Creach	w BI	4			H&P I	Project	# ST	021	131 -	N13		
	Congo Rio	La Ave		Report E-Mail(s):		CI CIU NO		0							200			400
	nd pals, Ci		1		@stantec.											See Notes E	elow	
	766-1686	9 1170		Ben cheden (estante.com	,					-	ipt Gau	an ID:	17	-06	Tem	p: R-	-
Reporting Requirement		Т	urnaroun	nd Time	San	npler Info	rmation	1			Outsid	de Lab:		60 1	0,0		,-	`
	Level IV			s for preliminary	Sampler(s):	Arella					Recei	pt Note	s/Trackir	ng #:				
Excel EDD Other EDD:		10000		or final report)	Signature:	/ rella	no				F							
CA Geotracker Global ID:		Rush		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date: 02-4	1-21	T S								9	Lab PM In	itials.	UB
		L Rusii	(specify)		Date: 02-1	2/			_							Labrimin	tials.	vu)
* Preferred VOC units (please ch	noose one): Conf	in with	Ben C	theulen per				d Full List V TO-15		TO-15	□ TO-15m	latic Fractio	ompound A N He	A 8015m	y ASTM D19			
SAMPLE NAME	FIELD POINT NAME	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar,	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	S260SV T0-15 Oxygenates	Naphthalene	10 C	Aromatic/Aliphatic Fractions 8260SVm TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
	(if applicable)		100000000000000000000000000000000000000	SV SV	Tube, etc.			> >		Z		∢ L	7	2	ш.			\vdash
VP-9		02-11-21	1029	30	450 ml	634	0.26	/					/				-	\vdash
VP-10 VP-8			1042			636	0.46	/					1					
VP-7			11/3			649	0.78						-					
VP-6			1126			637	0.17	/					-					
VP-5			1139			639	0.37	/					1	100				
VP-4			1151			641	0.21	1		1			1					
VP-3			1202			727	0.38						/					
			17.7.5					1				10	1					\vdash
VP-2			1217	1	1	703	0.39		-				/					
Approved/Relinquished by:	2	Company:	1217	Date: .	757 8 22 8						Company	11	10	Date	02 1/	Time:	134	-
Approved/Relinquished by:	our_	STAT Company:	TEC	2/11/2i Date:	Time:	Received by:	J. A	rellan	0		Company	178	-/	Date	02-11-	Time:	111	
Approved/Relinquished by:		Date: Time: Received by:						Company: Date: Time:										

VAPOR / AIR Chain of Custody

DATE: 02-/12/ Page 2 of 2


NAME OF STREET	Lal	b Client an	d Projec	t Information					5	Sample	Rec	eipt (L	ab Use	Only)					
Lab Client/Consultant:	Stantec			Project Name / #:	18580498	0	38					Date	Rec'd:	2/1	7	Contro	ol#: 0	1100	85.08
	Lewis Sinon	,		Project Location:	24747 (BI	11				H&P	Project	# 57	021	221	JW-	3 US	43/12/
Lab Client Address: 29		Bidge A	Ano	Report E-Mail(s):	DO V			-	11-11	1		Lab V	Vork On			20		7 0	241
	owand oak		2000 0000000000000000000000000000000000		on astan		- 10			403		Samp	le Intac	t: X Y	es 🗌	No [otes Belov	N
	562) 766-16		17301	ben chevi	len @ stante	ec.com				430		Rece	ipt Gau	ge ID:	600	0/0		Temp: (7	
Reporting Requirer	COLUMN TWO IS NOT THE OWNER.	-	urnarour	nd Time	San	npler Info	rmatio	n				Outsid	de Lab:		000	00			
Standard Report Level III				s for preliminary						000		Recei	pt Note	s/Tracki	ng #:		- William	great int	No.
Excel EDD Other EDD:		A Livery of the Control of the	90/40, \$2,000/5	ys for preliminary for final report) Signature:															
CA Geotracker Global ID:		Rush			90	in the							Lab	PM Initials	· Wh				
		L Rusii	(specify)		Date: O27	1-21											Lau	-IVI IIIIIIais	MIZ
* Preferred VOC units (please μg/L μg/m³ μppbv	choose one): Con	firm with	Ben a	hevlen per B				rd Full List NTO-15	st / Project	□ TO-15	□ T0-15	□ TO-15m	hatic Fracti	ompound PA NHe	A 8015m	y ASTM D			
Char Char.	FIELD POINT NAME	DATE	TIME	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS),	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar,	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List ☐ 8260SV NTO-15	VOCs Short List / Project	Oxygenates	Naphthalene	TPHv as Gas	hati	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Soil Vapor (SV)	Tube, etc.	8-	E S	9 □	§ □	ő □	Nap	Ē	Aro	Lea 🗆	Met	Ĕ 🗆			
VP-1		02-11-21	1276	N	450mL	638	0.43	/					111	/					
				-															
				/															
		VI.																	100
			31						-										
				100					J T			- 3							1 3 3
Approved/Relinquished by	21_	Company:	EC	2/11/21	Time: 1345	Received by:	J. A	rellan	0			Company	H	P	Date	02-1	1-21	Time: 17	45
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company	y:		Date: Time:				
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company	y:		Date	i:		Time:	

VAPOR / AIR Chain of Custody

DATE: 02-11-21
Page 1 of 2

								5	Sample	Rece	eipt (Lal	b Use Onl	y)					
Lab Client/Consultant: Star	te	TT		Project Name / #:	18580498	0					Date	Rec'd:	2/1:	2	Control	#: 210	2800	5.08
Lab Client Project Manager: Lew				Project Location:	24747	Creach	w BI	4			H&P I	Project	# ST	021	131 -	N13		
	Congo Rio	La Ave		Report E-Mail(s):		CI CIU NO		0							200			400
	nd pals, Ci		1		@stantec.											See Notes E	elow	
	766-1686	9 1170		Ben cheden (estante.com	,					-	ipt Gau	an ID:	17	-06	Tem	p: R-	-
Reporting Requirement		Т	urnaroun	nd Time	San	npler Info	rmation	1			Outsid	de Lab:		60 1	0,0		,-	`
	Level IV			s for preliminary	Sampler(s):	Arella					Recei	pt Note	s/Trackir	ng #:				
Excel EDD Other EDD:		10000		or final report)	Signature:	/ rella	no				F							
CA Geotracker Global ID:		Rush		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date: 02-4	1-21	T S								9	Lab PM In	itials.	UB
		L Rusii	(specify)		Date: 02-1	2/			_							Labrimin	tials.	vu)
* Preferred VOC units (please ch	noose one): Conf	in with	Ben C	theulen per				d Full List V TO-15		TO-15	□ TO-15m	latic Fractio	ompound A N He	A 8015m	y ASTM D19			
SAMPLE NAME	FIELD POINT NAME	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar,	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	S260SV T0-15 Oxygenates	Naphthalene	10 C	Aromatic/Aliphatic Fractions 8260SVm TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
	(if applicable)		100000000000000000000000000000000000000	SV SV	Tube, etc.			> >		Z		∢ L	7	2	ш.			\vdash
VP-9		02-11-21	1029	30	450 ml	634	0.26	/					/				-	\vdash
VP-10 VP-8			1042			636	0.46	/					1					
VP-7			11/3			649	0.78						-					
VP-6			1126			637	0.17	/					-					
VP-5			1139			639	0.37	/					1	100				
VP-4			1151			641	0.21	/		1			1					
VP-3			1202			727	0.38						/					
			17.7.5					1				10	1					\vdash
VP-2			1217	1	1	703	0.39		-				/					
Approved/Relinquished by:	2	Company:	1217	Date: .	757 8 22 8						Company	11	10	Date	02 1/	Time:	134	-
Approved/Relinquished by:	our_	STAT Company:	TEC	2/11/2i Date:	Time:	Received by:	J. A	rellan	0		Company	178	-/	Date	02-11-	Time:	111	
Approved/Relinquished by:		Date: Time: Received by:						Company: Date: Time:										

VAPOR / AIR Chain of Custody

DATE: 02-/12/ Page 2 of 2

NAME OF STREET	Lal	b Client an	d Projec	t Information					5	Sample	Rec	eipt (L	ab Use	Only)					
Lab Client/Consultant:	Stantec			Project Name / #:	18580498	0	38					Date	Rec'd:	2/1	7	Contro	ol#: 0	1100	85.08
	Lewis Sinon	,		Project Location:	24747 (BI	11				H&P	Project	# 57	021	221	JW-	3 US	43/12/
Lab Client Address: 29		Bidge A	Ano	Report E-Mail(s):	DO V			-	11-11	1		Lab V	Vork On			20		7 0	241
	owand oak		2000 0000000000000000000000000000000000		on astan		- 111			403		Samp	le Intac	t: X Y	es 🗌	No [otes Belov	N
	562) 766-16		17301	ben chevi	len @ stante	ec.com				430		Rece	ipt Gau	ge ID:	600	0/0		Temp: (7	
Reporting Requirer	COLUMN TWO IS NOT THE OWNER.	-	urnarour	nd Time	San	npler Info	rmatio	n				Outsid	de Lab:		000	00			
Standard Report Level III				s for preliminary						000		Recei	pt Note	s/Tracki	ng #:		- William	great int	No.
Excel EDD Other EDD:		A Livery of the Control of the	90/40, \$2,000/5	ys for preliminary for final report) Signature:															
CA Geotracker Global ID:		Rush			90	in the							Lab	PM Initials	· Wh				
		L Rusii	(specify)		Date: O27	1-21											Lau	-IVI IIIIIIais	MIZ
* Preferred VOC units (please μg/L μg/m³ μppbv	choose one): Con	firm with	Ben a	hevlen per B				rd Full List NTO-15	st / Project	□ TO-15	□ T0-15	□ TO-15m	hatic Fracti	ompound PA NHe	A 8015m	y ASTM D			
Char Char.	FIELD POINT NAME	DATE	TIME	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS),	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar,	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List ☐ 8260SV NTO-15	VOCs Short List / Project	Oxygenates	Naphthalene	TPHv as Gas	hati	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Soil Vapor (SV)	Tube, etc.	8-	E S	9 □	§ □	ő □	Nap	Ē	Aro	Lea 🗆	Met	Ĕ 🗆			
VP-1		02-11-21	1276	N	450mL	638	0.43	/					111	/					
				-															
				/															
		VI.																	100
			31						-										
				100					J T			- 3							1 3 3
Approved/Relinquished by	21_	Company:	EC	2/11/21	Time: 1345	Received by:	J. A	rellan	0			Company	H	P	Date	02-1	1-21	Time: 17	45
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company	y:		Date: Time:				
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company	y:		Date	i:		Time:	

FMS006 Revision: 3 sed: 1/15/2016

Revised: 1/15/2016 Effective: 1/25/2016 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Helium Shroud

H&P Project #:	5T021021-TECH/He	Date: 02-1/-2/	
Site Address:	24747 Crenshaw Plus (Parco Build	ling) Page: / of 2	_
Consultant:	Stantec	H&P Rep(s): J. Arellono	Reviewed:
Consultant Rep(s):	Bon Barren		Scanned: 770-

Equipment Info
nline Gauge ID#: 705
Pump ID#:
le Meter ID#: 0/7
Shroud ID#: 047

Purge Volume
PV Amount: 300 mL
PV Includes:
☑ Tubing
□ Sand 40%

☐ Dry Bent 50%

MGD 2002 Helium	Detector (Jalibration
	Time	Helium (%)
Calibration Standard	n/a	2.5
Opening Calibration	1009	2.4
Closing Calibration	1248	2.7
Acceptable Range	n/a	2.1 - 2.9

	Procedure:	
HEP	He Shroud SOP	
1177	116	

	Sample	and Sur	nma In	forma	ation		Probe Specs P					Purge & Collection Information						Shroud Info						
	Point ID	Summa ID#	Sample Kit ID #	Start Time	Initial Vac ("Hg)	End / Sample Time	End Vac ("Hg)	Probe Depth (ft)	Tube Length (ft)	Tube OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min: sec)	Sample Flow Rate (mL/min)		He % Before		ppmv	Probe
1	VP-9	634	281	1025	-30	1029	0	VP	2	18	_				V	300	4200	1	4200	0	94.9	811	0	0
2	VP-10	698	175	1039	-27.5	1042	0	VP	2	18	-			-	/	300	200	1	200	0	60.9	91.9	0	0
3	VP-8	636	207	1091	-27	1056	0	VP	2	8	-			-	/	700	-200	١	4200	0	56.7	508	425	0
4	VP-7	649	177	1109	-26	1113	0	VP	2	8	_			-	1	300	4200	1	200	0	609	55.1	0	0
5	VP-6	637	074	1/23	-28	1126	0	VP	2	18	-			-	1	300	4200	1	4200	0	58.7	81.2	0	0
6	VP-5	639	136	1134	27	1139	0	VP	2	18	-			-	1	300	200	-	-200	0	57.3	52.4	0	0
7	VP-4	641	073	1147	-28	1151	0	VP	2	18	-			-	V	300	220	-	1200	0	89.9	56.0	0	0
8	VP-3	727	320	1158	27	115ge	00	VP	2	18	-			-	1	300	400	-	-200	1		56.5		0
9	VP-2	703	279	1212	-30+	1217	0	VP	2	18	-	-	7 11	-	V	700	400	-	200	0	59.4	91.2	0	0
10	VP-2 Dup	701	165	1212	26.9	1217	0	VP	2	8	-			-	V	300	4200	-	4200	0	59.4	5/.2	0	0

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

VP = Vapor pin

STO21021-TECH/He

H&P Project #:

FMS006

Page 1 of 1

Revision: 3 Revised: 1/15/2016 Effective: 1/25/2016

Log Sheet: Soil Vapor Sampling with Helium Shroud

Date: 02-1/-21

Equipment Info Purge Volume								MGD 2002 Helium Detector Calibration Shroud Proce										Proced	dure:					
Inline Gauge ID#: TOS PV Amount:300 A				ol		120 15.	200		Time n/a		Helium (%) 2.5		1	/	YEP H	le Shra	roud sop							
Pump ID#: PV Includes: He Meter ID#: 0/7 PTubing			S:		Calibration Standard			rd																
			1				Opening Calibration			1009 1248 n/a		2.4 2.7 2.1 - 2.9												
Shroud ID#: 047			□ Sand 40%				Closing Calibration Acceptable Range																	
					□ Dr	Bent 5	50%		Accept	able F	Range		n.	a										ļ
Sample and Sum			nma In	ma Information				Probe Specs							Purge 8		& Colle	Collection Informatio			Shi	Shroud Info		-
	Point ID	Summa ID#	Sample Kit ID #	Start Time	Initial Vac ("Hg)	End / Sample Time	End Vac ("Hg)	Probe Depth (ft)	Tube Length (ft)	Tube OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min: sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☐ H ₂ O	He % Before	He % After	Probe ppmv	
V	P-1	638	290	1227	-27.5	1236	0	VP	2	18	-			-	V	300	400	-	200	0	58.9	52.2		
									V							V		,		-	d.			
															-					New York				
			10					1000																
					11																			
19													1											1
													100	-				C TO				1		1