CONFIRMATION SAMPLING REPORT
FOR NO FURTHER ACTION STATUS
IN THE SOUTHERN PARCELS

Former Canoga Park Facility
8433 Fallbrook Avenue
Canoga Park, California

Oneida Total Integrated Enterprises Project No. 2009025
July 31, 2012

Los Angeles Regional Water Quality Control Board File No. 94-45
Monitoring and Reporting Program No. CI-7483
Global ID SL2043T1572

Prepared for:
Su Han, CHG
Site Cleanup I
Los Angeles Regional Water Quality Control Board
320 W. Fourth Street, Suite #200
Los Angeles, California 90013

Prepared by:

OTIE
Oneida Total Integrated Enterprises

317 East Main Street
Ventura, California 93001
(805) 585-2110
CONFIRMATION SAMPLING REPORT
FOR NO FURTHER ACTION STATUS
IN THE SOUTHERN PARCELS

Former Canoga Park Facility
8433 Fallbrook Avenue
Canoga Park, California

Oneida Total Integrated Enterprises Project No. 2009025
July 31, 2012

Los Angeles Regional Water Quality Control Board File No. 94-45
Monitoring and Reporting Program No. CI-7483
Global ID SL2043T1572

Prepared for:
Su Han, CHG
Site Cleanup I
Los Angeles Regional Water Quality Control Board
320 W. Fourth Street, Suite #200
Los Angeles, California 90013

Prepared by:
Lucas E. Budny, PG
Project Geologist

Reviewed by:
Jacques Marcillac, CHG
Project Manager
EXECUTIVE SUMMARY

Oneida Total Integrated Enterprises, LLC, on behalf of the Raytheon Company (Raytheon), has prepared this report of confirmatory characterization of trichlorofluoromethane (Freon 11) in soil and groundwater underlying the southern parcels of the Former Canoga Park Facility located at 8433 Fallbrook Avenue, Canoga Park, California, hereafter referred to as the “Site.”

The purpose of the activities described in this document was to collect confirmation data in order for the Los Angeles Regional Water Quality Control Board (LARWQCB) to make an informed decision per a No Further Action (NFA) status request for the southern parcels of the Site (herein referred to as Southern Parcels), namely Assessor Parcel Numbers (APN #'s) 2005-002-011 and 2005-002-901. The report provides background information on previous investigations, a regulatory synopsis, conceptual site model (CSM) information, and a summary of results for the 2012 confirmatory sampling activities.

The confirmatory sampling included nine CPT borings (six onsite and three offsite), six locations where discrete depth groundwater samples were collected (three onsite and three offsite) and two existing groundwater monitoring wells (CM-10 and MW-31) were sampled. In addition, three multi-depth soil vapor probes were installed within the postulated source area where elevated Freon 11 concentrations in shallow soil vapor were previously delineated. All samples were analyzed for volatile organic compounds, including Freon 11.

In reviewing the analytical results from this confirmatory sampling, and also evaluating the previous assessments and monitoring data that has been collected over the last 20 years, the following conclusion statements can be made:

- No VOC concentrations have been detected above the MCLs for drinking water in groundwater samples from each of the monitoring wells (CM-10, CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, MW-30 and MW-31) located on or in the vicinity of the Southern Parcels for more than 10 years of groundwater monitoring. Moreover, samples from all wells, except for wells CM-10 and MW-31, have been non-detect for the Site constituents of concern (chlorinated VOCs), for more than 15 years.

- The only detected VOC in groundwater historically exceeding a California MCL was Freon 11, which is not identified as a carcinogen and is low in toxicity.

- Data from previous investigations and the off-site confirmatory sampling documented in this report completely delineate the vertical and lateral extent of Freon 11-impacted groundwater at the Site.

The following lines of evidence are provided below to support an NFA status:

- Soil gas concentrations of Freon 11 in the postulated source area collected in 2012 were below all available Environmental Screening Levels (ESLs).

- No significant increase of Freon 11 concentrations with depth was observed in soil vapor samples collected in the postulated release area down to the groundwater table and the low detections above the groundwater table are well below calculated threshold levels that could impact groundwater above MCLs.
• Groundwater sampling in the Southern Parcels indicated that lateral and vertical distribution of Freon 11 is consistent with the previous site conceptual model, e.g., CM-10 is approximately centerline with the axis of Freon 11 concentration distributions, and Freon 11 concentrations are limited to shallow groundwater per the non-detect in the deeper sample collected offsite underlying Schoenborn Street.

• Concentrations of Freon 11 in samples collected from wells CM-10 and MW-31 have been below the California MCL since 1995 and 1999, respectively, quantifying that natural attenuation has been effective.

• Comparing groundwater elevations and Freon 11 concentrations in wells MW-31 and CM-10, indicate that there is no correlation between increased groundwater elevations and increased Freon 11 concentrations, the inverse is generally true (e.g., higher elevations correspond with decreased concentrations). This supports the premise that no soil “source” exists in the vadose zone that could impact groundwater quality above MCLs.

• Off-Site groundwater sampling indicated Freon 11 concentrations attenuate significantly away from MW-31, as concentrations are at or very near the reporting limit of 10 µg/L.

From these converging lines of evidence, it is apparent that the Freon 11 concentrations do not pose a significant impact to the Site or surrounding area; therefore, Raytheon respectfully requests that NFA status be issued for APN’s 2005-002-011 and 2005-002-901 and as such, authorization to abandon wells CM-10, CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, MW-30 and MW-31 be granted.
FIGURES
Figure 1 Site Vicinity Map
Figure 2 Previous Southern Parcels Assessment and Historical VOC Results
Figure 3 Sampling Locations
Figure 4 Soil Gas Analytical Results for Freon 11
Figure 5 Discrete-Depth Groundwater Analytical Results for Freon 11
Figure 6 Cross-Section A-A’

TABLES
Table 1 Summary of Soil Gas Sample Results
Table 2 Summary of Groundwater Analytical Results

GRAPHS
Graph 1 Freon 11 Concentrations and Groundwater Elevations vs. Time, Monitoring Well MW-31
Graph 2 Freon 11 Concentrations and Groundwater Elevations vs. Time, Monitoring Well CM-10

APPENDICES (provided on CD)
Appendix A Historical Soil Gas Data (GTI 1998)
Appendix B Regulatory Correspondence
Appendix C Permits
Appendix D Cone Penetration Testing Reports
Appendix E Field Documentation
Appendix F Analytical Laboratory Reports
Appendix G Calculated Environmental Screening Levels for Freon 11
Acronyms and Abbreviations

- µg/L: micrograms per liter
- amsl: above mean sea level
- bgs: below ground surface
- Cal/EPA: California Environmental Protection Agency
- Calscience: Calscience Environmental Laboratories, Inc.
- CPT: cone penetration testing
- DPT: Direct-push technology
- ESL: environmental screening level
- FID: flame ionization detector
- FDGTI: Fluor Daniel GTI, Inc.
- Freon 11: trichlorofluoromethane
- ft/ft: feet per foot
- GRC: Groundwater Resources Consultants, Inc.
- Gregg: Gregg Drilling and Testing, Inc.
- GTI: Groundwater Technology, Inc.
- LARWQCB: Los Angeles Regional Water Quality Control Board
- LCS: Laboratory control sample
- LCSD: Laboratory control sample duplicate
- µg/L: micrograms per liter
- MCL: maximum contaminant levels
- McLaren Hart: McLaren/Hart, Inc.
- NFA: No Further Action
- OTIE: Oneida Total Integrated Enterprises
- QA/QC: quality assurance/quality control
- Raytheon: Raytheon Company
- SFRWQCB: San Francisco Regional Water Quality Control Board
- US EPA: United States Environmental Protection Agency
- VOCs: volatile organic compounds
1.0 INTRODUCTION

Oneida Total Integrated Enterprises, LLC (OTIE), on behalf of the Raytheon Company (Raytheon), has prepared this report of confirmatory characterization of trichlorofluoromethane (Freon 11) in soil and groundwater underlying the southern parcels of the Former Canoga Park Facility located at 8433 Fallbrook Avenue, Canoga Park, California (Figure 1), hereafter referred to as the “Site.”

1.1 PROJECT CONTACTS

The following table lists the key individuals of the project team during implementation of the confirmatory sampling event:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Organization</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Samorano, PE</td>
<td>Raytheon</td>
<td>520-794-9026</td>
</tr>
<tr>
<td>Su Han, CHG</td>
<td>LARWQCB</td>
<td>213-576-6735</td>
</tr>
<tr>
<td>Jacques Marcillac, CHG</td>
<td>OTIE</td>
<td>805-585-6382</td>
</tr>
</tbody>
</table>

1.2 PURPOSE AND OBJECTIVES

The purpose of the activities described in this document was to collect confirmation data in order for the Los Angeles Regional Water Quality Control Board (LARWQCB) to make an informed decision per a No Further Action (NFA) status request for the southern parcels of the Site (herein referred to as Southern Parcels), namely Assessor Parcel Numbers (APN #'s) 2005-002-011 and 2005-002-901. The report provides background information on previous investigations, a regulatory synopsis, conceptual site model (CSM) information, and a summary of results for the 2012 confirmation sampling activities. The objective of the report is to present the sampling methodologies, sample locations, results, and provide a data discussion to support the NFA status recommendation for the southern parcels.
2.0 SITE BACKGROUND

In 1959, the 8433 Fallbrook Avenue property was developed as an industrial park by Bunker-Ramo, an electrical component design and testing company. Bunker-Ramo was the sole occupant of the facility from 1959 until 1966. From 1966 to 1976, Hughes Missile Systems Company was a co-occupant with Rocketdyne, a division of Rockwell International, and Bunker-Ramo. Hughes Missile Systems purchased the entire Site in the mid-1970s and became the sole occupant, operating as an aerospace research and development facility. The Former Canoga Park facility was purchased from Hughes Missile Systems Company by Coast Federal Bank in May 1995. Parcels were subsequently purchased by DeVry and the Los Angeles Metropolitan Police Department. The northern portion of the Site was sold to Regent Properties, Inc., in 1997. Regent Properties sold its portion of the property to Shamrock Holdings, Inc., in 2001, who in turn, sold the property to MEPT West Hills, LLC, in June 2002. MEPT West Hills, LLC, is the current property owner; however, CB Richard Ellis is the current property manager and is the primary contact for Site logistical issues. Through a merger with Hughes Missile Systems in 1997, Raytheon assumed management of the environmental investigations and remediation activities at the Site.

2.1 PREVIOUS CHARACTERIZATION ACTIVITIES

Environmental investigations in the early 1990s identified Freon 11 concentrations exceeding the maximum contaminant level (MCL) of 150 micrograms per liter (µg/L) for drinking water. These data were indicated by samples from monitoring well CM-10, located in the southeastern portion of the property (Figure 2). Follow-up characterization activities were conducted between 1993 and 1998 in the area near Buildings 274 and 276, which is upgradient from well CM-10 to identify the source of the Freon 11 concentrations. The investigations indicated that an area of Freon 11 concentrations greater than 1,000 µg/L in soil gas was delineated in the former parking lot and southeast of former Building 274 (thereafter termed “the Freon 11 Area”) (Figure 2). In 1998, three temporary wells and one permanent well (MW-31) were installed within the Freon 11 Area. In addition, several other wells (CM-11, CM-11A, MW-28, MW-29 and MW-30) were installed at various times in the Southern Parcels area to further characterize groundwater underlying the former facility. A routine monitoring of these wells was implemented in the early 1990s. The following are brief summaries of previous investigations conducted between 1993 and 1998 concerning Freon 11 in the Southern Parcels.

In August 1993, a monitoring well and soil borings were completed within the area enclosed by Buildings 276 and 274 and well CM-10. The following soil borings were advanced in the area between Buildings 276 and 274 and southeast of well MW-29: B-RNDM-3, B-SL-8, and B-SL-9. At each boring, soil samples were collected at 10, 20, and 30 feet below ground surface (bgs); no VOCs were detected above their respective reporting limits for these soil samples (GTI 1994). One boring (B-SL-10) advanced immediately northwest of well CM-10 had no VOCs reported above their respective detection limits in the soil samples collected at 10, 20, and 30 feet bgs (GTI 1994). During the advancement of the boring for well MW-29, soil samples were collected and analyzed for VOCs at 45 and 50 feet bgs; no VOCs were detected above their respective reporting limits in either sample (GTI 1994).

In June 1995, soil gas surveys were conducted to delineate the lateral extent of Freon 11-impacted soil (GTI 1995a). Soil gas probes were installed at four locations within the immediate area of well CM-10, one was located at an on-site sewer junction within the vicinity of well CM-10, and one was located immediately southeast of the former Building 274’s cooling unit. All probes were set at approximately 5 feet bgs. Freon 11 was detected at the on-site
sewer junction and adjacent to the cooling unit for the former Building 274 at concentrations of 183 µg/L and 6 µg/L, respectively. No Freon 11 was detected above the reporting limit at the soil gas probes installed within the immediate area of well CM-10 (GTI 1995a).

In August 1995, additional soil gas probes were installed to the southeast of former Building 274 at depths of approximately 5 feet bgs (GTI 1995b) in the Freon 11 Area. Historical soil gas VOC results are provided in Appendix A.

In May 1998, soil and groundwater samples were collected for analytical laboratory analysis during well installation of temporary and permanent monitoring wells. Temporary and permanent monitoring wells were installed in the vicinity of well CM-10 and the Freon 11 Area (FDGTI 1998). Well identifications, locations, and screened intervals are summarized as follows:

- The temporary wells are identified as WP-265-1, WP-276 -1, and WP-DEV-1 and were installed in northwest (upgradient), southwest (crossgradient), and southeast (downgradient) locations, respectively, of the Freon 11 Area. Each temporary well was screened from 45 to 70 feet bgs (WP-265-1), 75 to 100 feet bgs (WP-276 -1), and 35 to 60 feet bgs (WP-DEV-1).
- The permanent well, identified as MW-31, is located within the Freon 11 Area, and is screened from 45 to 70 feet bgs.

Soil and groundwater analytical results are summarized as follows:

- Soil samples selected for laboratory analysis were collected at various depths (typically at 10-foot intervals from 10 to 70 feet bgs). Freon 11 was the only VOC detected above the reporting limit, and only in one soil sample, at a concentration of 7.2 micrograms per kilogram (WP-276-1 at a depth of 50 feet bgs). The presence of Freon 11 in this sample was possibly due to interference by groundwater in the saturated soil sample.
- Groundwater samples were also collected from these wells following well development and submitted for chemical analysis. Freon 11 was detected in the groundwater samples collected from wells WP-DEV-1 and MW-31 at concentrations of 23 µg/L and 150 µg/L, respectively (FDGTI 1998).

Previous investigative results for the Southern Parcels are summarized on Figure 2.

2.2 GROUNDWATER MONITORING AND REGULATORY SUMMARY

No VOC concentrations have been detected above the MCLs for drinking water in groundwater samples from each of the monitoring wells (CM-10, CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, MW-30 and MW-31) located on or in the vicinity of the Southern Parcels for more than 10 years of groundwater monitoring. Moreover, samples from all wells, except for wells CM-10 and MW-31, have been non-detect for the Site constituents of concern (chlorinated VOCs), for more than 15 years. In a response to a June 27, 2006, memorandum requesting removal of Southern Parcel monitoring wells and NFA status for the Southern Parcels, the LARWQCB issued a letter dated January 22, 2007, approving the removal of several wells from the monitoring program, but did not approve their abandonment, citing concerns about the potential presence of manmade radiological isotopes in wells CM-10, CM-12 and CM-17 based on community concerns with previous data (GRC 1992).

Between March 2008 and August 2009, Raytheon, OTIE, and the LARWQCB worked together to evaluate radiological conditions in the Southern Parcels. A radiological evaluation was performed; the results of the radiological evaluation indicated that the presence of low-level radiological isotopes were attributable to naturally-occurring sources in the underlying soil,
bedrock, and groundwater. The LARWQCB concurred, and issued a NFA letter with regard to radioactivity in groundwater for the Southern Parcels on October 30, 2009 (OTIE 2009a).

In addition to the radiological sampling, OTIE performed a confirmation sampling event including VOCs for wells CM-10, CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, MW-30, and MW-31 in November 2008. Analytical results from this confirmation sampling event were nondetect for all VOCs (CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, and MW-30) or below the MCL for the only detected VOC, Freon 11 (only in wells CM-10 and MW-31).

Based on the findings of the NFA for radiological parameters and confirmation results for VOCs in the Southern Parcel wells, Raytheon sought NFA status from the LARWQCB for the Southern Parcels once again in a technical memorandum dated July 8, 2010. The LARWQCB responded in a letter dated May 13, 2011, and requested Raytheon to better define vertical and lateral extent of the Freon 11 plume detected in wells MW-31 and CM-10. The additional characterization described herein was performed to address the LARWQCB request.

Past regulatory documents are provided in Appendix B.

2.3 PHYSICAL SETTING
The Site is located immediately northwest of the intersection of Roscoe Boulevard and Fallbrook Avenue in the western part of the San Fernando Valley, adjacent the Simi Hills. The Site includes APN #s 2005-002-901 and 2005-002-011 and is currently occupied by two office buildings, one for DeVry (2005-002-901) and the other for Los Angeles Metropolitan Police Department (2005-2002-011). The Site is currently zoned as Limited Manufacturing per the City of Los Angeles.

The Site is centered on a north-south oriented knoll, with hilly regions to the north and west, and relatively flat valley floor to the south and east. The Chatsworth Creek drainage lies immediately west of the Site. Elevations range from approximately 840 (along the edges of the property) to approximately 897 feet above mean sea level (amsl) (at the top of the knoll). Land uses adjacent to the Site, include commercial/light industrial to the north and south, and residential to the east and west.

2.4 SURFACE WATER HYDROLOGY
Primary surface drainage in the Site vicinity flows towards Chatsworth Creek, lying immediately west of the Site. Portions of Chatsworth Creek, north and south of Hidden Lake (formerly Lees Lake), are contained within large underground culverts. Other portions are contained in lined or unlined structured channels. The portion of Chatsworth Creek in the Site vicinity is contained in underground cement-lined tunnels. Water from Chatsworth Creek eventually flows into the Los Angeles River about 2.5 miles downstream.

Hidden Lake is the only surface body of water within a 1-mile radius of the Site. Hidden Lake is used as a recreational area by residents of the surrounding housing development. Storm drainage, including storm drain discharge from the Site flows to the channelized Chatsworth Creek, the majority of which enters south and downstream of Hidden Lake.

It should be noted that the comparison of survey data for the water level of Hidden Lake measured in March 2002 (849.60 amsl) and the potentiometric surface of shallow groundwater in wells near the reservoir (840 to 842 feet amsl in May 2009) concluded that the potentiometric groundwater surface was approximately eight to ten feet below the surface water elevation. This
indicates that Hidden Lake is a "losing" body of water; therefore, groundwater does not recharge Hidden Lake.

2.5 SITE GEOLOGY

The geologic deposits of the western San Fernando Valley in the vicinity of the study area are comprised of predominantly unconsolidated sands, silts and clays with occasional gravels. These alluvial fill deposits are of Quaternary age and range in thickness from a thin veneer at the valley margins to more than 700 feet in the central portion of the San Fernando Valley (McLaren Hart 1990). In the western portion of valley, the unconsolidated alluvial fill deposits are underlain by consolidated bedrock of the Miocene Modelo and Cretaceous Chatsworth Formations, respectively. The Modelo Formation consists of grayish siltstone, clayey siltstone and shale, with minor interbedded diatomaceous shale. A relatively thin weathered zone exists along the top of the formation where it is in contact with the shallower alluvial deposits. The Chatsworth Formation is comprised primarily of a turbidite sandstone sequence with interbedded shales and minor conglomerates. The bedrock of the Chatsworth Formation is the major rock comprising the Simi Hills and from the distinct outcrops north of Chatsworth Reservoir (McLaren Hart 1990).

The major portion of the Site is constructed on consolidated bedrock of the Miocene Modelo Formation. Near surface (to 50 or 100 feet bgs), deposits are highly weathered. Beds of the Modelo are seen in road cuts and in drill-hole samples to be dipping at up to 45 degrees from horizontal. Generally, the dip direction is to the south or southwest.

In the northwestern portion of the Site, to the west and northwest of Building 8531 (former Building 270), and at other locations on the Site periphery, the shallow subsurface is comprised of unconsolidated alluvial valley fill of Quaternary age. This material is present to depths of at least 75 feet. The beds are flat-lying, and consist primarily of mixed silt and fine sand, with lesser amounts of clay. The Modelo Formation is believed to be unconformably present beneath the alluvium. A thin (up to 10-foot) layer of construction fill material is locally present at the surface overlying the Modelo Formation or alluvium.

2.6 SITE HYDROGEOLOGY

Groundwater gradient direction within the vicinity of the Site regionally flows from northwest to southeast, from the Simi Hills to the San Fernando Valley. The depth to groundwater is approximately 25 feet bgs near Roscoe Boulevard. The hydraulic gradient of the regional groundwater is approximately 0.0047 feet per foot (ft/ft).

The water-bearing materials comprising the western portion of the valley are generally fine-grained alluvial sediments, which contain naturally-occurring total dissolved solids in excess of 1,000 milligrams per liter, exceeding the recommended United States Environmental Protection Agency (US EPA) drinking water guidelines. Due to the relatively low yields and excessive total dissolved solids, there are no drinking water wells in the vicinity of the Site. Essentially all drinking water consumed in the western San Fernando Valley is derived from the State Water project and the Los Angeles Aqueduct, which delivers water to southern California from the Sierra Nevada Mountains.

Although the Los Angeles Department of Water and Power does supplement its water supply with groundwater from the San Fernando Basin, all of the groundwater production well fields are located in the eastern portion of the basin. The nearest active production well for supply of potable water to the public is in excess of 15 miles downgradient from the Site.
In the vicinity of the Former Hughes Facility, groundwater occurs between 10 and 65 feet bgs, depending on the location on the property. The groundwater gradient direction is generally to the southeast (that is, from the Simi Hills to the San Fernando Valley), but on the western side of the property, there is a westward component due to the local topography.

Routine groundwater gauging of onsite monitoring wells (CM-10, CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, MW-30, and MW-31) has been conducted since December 1991 (with previous monthly gauging from August 1990). Groundwater flow in the northwest area of the Site is consistently westward until reaching the western edge of the property where it heads southward. Gradients in this area generally range from 0.01 to 0.02 ft/ft. The apparent groundwater flow across the remainder of the Site is towards the southwest, south, and south-southeast, with historic hydraulic gradients ranging from 0.01 to 0.04 ft/ft. Depths to groundwater, groundwater gradients, and apparent groundwater flow directions are generally consistent with minor localized changes due to pumping activities during operation of the groundwater recovery and treatment system.

Aquifer tests were conducted in 1991 and 1993 to determine hydraulic parameters of the aquifer as a prerequisite to groundwater modeling and conceptual design of the groundwater remediation system. Average hydraulic conductivities were estimated at approximately 9 gallons per day per square foot for the Modelo Formation (4.24x10^{-4} centimeters per second) and approximately 270 gallons per day per square foot for the alluvial fill (1.27x10^{-2} centimeters per second) (GTI 1993).

2.7 Nature and Extent of the Chemical Release

The only VOC detected previously above MCL in groundwater in the Southern Parcels of the Site is Freon 11. Freon 11 was historically used in refrigeration devices and as a solvent.

The current understanding of the concentration distributions indicates that the Freon 11 Area is limited to the southeast of former Building 274 (GTI 1995a and GTI 1995b). The postulated release of Freon 11 occurred in an unpaved area adjacent to the parking lot southeast of former Building 274, which may have been used as a maintenance area (FDGTI 1998). This area was identified by shallow soil gas investigations in 1995, which delineated an area of elevated Freon 11 greater than 1,000 μg/L (Figure 2). Therefore, it is likely that surface releases of Freon 11 infiltrated the vadose zone in this area, and migrated vertically to groundwater, then migrated laterally in groundwater in the dissolved phase. Groundwater impacted by Freon 11 is localized to the area of well MW-31 and downgradient to well CM-10. Because of the low average hydraulic conductivity of 9 gallons per day per square foot for the Modelo Formation (GTI 1993), the movement of dissolved-phase Freon 11 in the Southern Parcels was believed to be mainly in the discontinuous discrete sand stringers in the Modelo Formation, which limited its lateral migration. Vertical migration was likely hindered by the low permeability of the siltstones in the Modelo Formation, as well as the limited volume of Freon 11 that was released. This is supported by the relatively low concentrations detected in groundwater (max: 360 μg/L) compared to Freon 11’s solubility limit of 1,100,000 μg/L (CalEPA, 1997).
3.0 DESCRIPTION OF FIELD ACTIVITIES

Soil gas and groundwater data were collected to further characterize the lateral and vertical extent of Freon 11 in the subsurface. The following sections describe the field activities for the confirmation sampling.

3.1 PRE-FIELD ACTIVITIES

- Underground Service Alert of Southern California was notified of the intent to drill and issued the following ticket numbers: A20961187-00A, A21420522-02A, and A21510963-01A.

- A geophysical utility locator was contracted to clear the drilling locations prior to any drilling activities by identifying subsurface utilities or other subsurface anomalies, under the direction of an OTIE geologist.

- Well permit number 890438-7-12 for discrete-depth groundwater samples was obtained from the Environmental Health Division of Los Angeles County.

- Excavation E-Permit number E-1281-0011 was obtained from the City of Los Angeles Department of Public Works for borings within the City of Los Angeles right-of-way, located in Fallbrook Avenue and Schoenborn Street.

Copies of the Underground Service Alert of Southern California tickets, well permit, and excavation permit are located in Appendix C.

3.2 CONE PENETRATION TESTING

A cone penetration testing (CPT) rig was used to perform the investigative work. CPT is a process of advancing a probe into the subsurface that measures sleeve friction and cone penetration resistance. The ratio of sleeve friction to cone penetration resistance predicts the subsurface lithology (Robertson, 1998). The CPT provides a rapid, consistent method of predicting soil stratigraphy, relative density, and hydrogeologic information (that is, static and dynamic pore pressure and hydraulic conductivity). The ability to determine soil stratigraphy continuously to total depth is beneficial for understanding the movement of groundwater at the Site by identifying spatial distribution of sand stringers. The CPT data allows for subsurface identification of these sand stringers and, therefore, a more accurate prediction of groundwater flow zones beneath the Southern Parcels. The CPT rig was operated by Gregg Drilling and Testing, Inc. (Gregg) of Signal Hill, California, under the supervision of an OTIE geologist. All CPT borings were cleared for utilities using a hand auger to a depth between 5 and 8 feet bgs prior to invasive activity. Soil generated during hand augering was used to backfill each respective boring to provide support for advancing the CPT probe.

A total of nine CPT borings were advanced during field activities.

- Three CPT borings were advanced in the vicinity of the Freon 11 Area on April 12, 2012 (borings AGW2011-1, AGW2011-2, and AGW2011-3).

- Three CPT borings were advanced along a transect in the vicinity of well CM-10 on April 13, 2012 (borings BGW2011-1, BGW2011-2, and BGW2011-3).

- Three CPT borings were advanced along a transect off Site on Fallbrook Avenue and Schoenborn Street on May 30, 2012, and June 5, 2012 (borings FLBGW2012-1, FLBGW2012-2, and SHBGW2012-3).

Locations of CPT borings are presented on Figure 3. CPT reports, including detailed CPT logs, are provided in Appendix D.
3.3 Soil Gas Investigation

The following section discusses the construction and sampling of temporary soil gas probes installed in the Freon 11 Area.

3.3.1 Construction of Temporary Soil Gas Probes

Borings were advanced within the vicinity of the Freon 11 Area for collecting soil gas samples at discrete depths using either CPT or direct-push technology (DPT) rigs, operated by Gregg, between April 12 and 16, 2012. All soil gas borings were cleared for utilities prior to drilling using a hand auger to a depth of 5 feet bgs. Soil generated during hand augering was used to backfill boring to provide support for advancing the CPT/DPT rods. Depth to groundwater was measured at approximately 52 feet bgs in well MW-31, in the immediate vicinity of the Freon 11 Area. Total depth of soil gas borings were limited by bedrock refusal and ranged in depth from 33.8 (SG2011-1) to 48.2 feet bgs (SG2011-2).

Each temporary soil gas probes was installed at 10-foot depth intervals, beginning at approximately 6 feet bgs, and subsequently placed every 10 feet to the total depth of the boring. Soil gas probes were constructed using a 1-inch long perforated stainless-steel probe connected to nylon tubing. The stainless-steel probes were surrounded by one foot of sand, overlain by one foot of dry granular bentonite, and then discrete, hydrated lifts of granular bentonite to the surface, in accordance with Active Soil Gas Investigation Advisory (Cal/EPA 2003). Because only three soil vapor probes could fit in one boring, an additional boring was advanced in the immediate area for installing two additional probes.

Locations of soil gas borings are presented on Figure 3.

3.3.2 Sampling of Temporary Soil Gas Probes

Soil gas probes were sampled using low flow sampling procedures as described in Active Soil Gas Investigation Advisory (Cal/EPA 2003) after a minimum of 24 hours between installation and sampling of probes. Soil gas probes were sampled on April 17, 2012. Each temporary soil gas probe was purged with a low flow pump at an approximate flow rate of 200 milliliters per minute until three system volumes had been evacuated. Following purging, a sample was collected in a polyvinyl fluoride bag and screened with a calibrated organic vapor meter equipped with a flame ionization detector (FID). FID readings ranged from 0.0 to 13.0 parts per million with the highest reading measured at boring SG2011-2 at a depth of 14.9 feet bgs. FID readings from the probes were compared to ambient air at the surface of each soil gas sampling location. FID readings of ambient air at the Southern Parcels ranged from 0 to 9.6 parts per million with the highest reading measured at boring SG2011-2 at a depth of 25.0 feet bgs. Samples were collected in laboratory-supplied stainless steel electropolished passivated vessels (SUMMA Canisters®) with flow control valve set at 200 milliliters per minute for VOC analysis using US EPA TO-15. A duplicate sample was collected at boring SG2011-1 at a depth of 33.3 feet bgs. Samples were labeled and shipped under chain-of-custody procedures via courier to Calscience Environmental Laboratories, Inc.(Calscience) of Garden Grove, California.

The temporary soil gas probe was removed, the boring backfilled with hydrated bentonite chips, and the surface restored with the appropriate material to match the existing surface on April 18, 2012.

Locations of soil gas borings are presented on Figure 3. A copy of the soil gas sampling log is provided in Appendix E.
3.4 DISCRETE-DEPTH GROUNDWATER SAMPLING

Discrete-depth groundwater samples were collected to characterize the vertical and lateral extent of Freon 11 from borings advanced along the two on-Site transects using a CPT rig operated by Gregg:

- Three CPT borings (BGW2011-1, BGW2011-2, and BGW2011-3) in the vicinity of well CM-10, were sampled on April 16, 2012, and

- Three CPT borings (FLBGW2012-1, FLLBGW2012-2, and SHBGW2012-3), off Site, and downgradient of well CM-10 on Fallbrook Avenue and Schoenborn Street. Boring SHBGW2012-3 was sampled on May 30, 2012, and borings FLLBGW2012-1 and FLLBGW2012-2 were sampled on June 5, 2012.

Groundwater samples were collected at discrete depths as follows:

<table>
<thead>
<tr>
<th>Boring Identification</th>
<th>Depth(s) of Groundwater Sample (feet bgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGW2011-1</td>
<td>56</td>
</tr>
<tr>
<td>BGW2011-2</td>
<td>56</td>
</tr>
<tr>
<td>BGW2011-3</td>
<td>56 and 72</td>
</tr>
<tr>
<td>FLLBGW2012-1</td>
<td>50 and 64</td>
</tr>
<tr>
<td>FLLBGW2012-2</td>
<td>52 and 62</td>
</tr>
<tr>
<td>SHBGW2012-3</td>
<td>48 and 60</td>
</tr>
</tbody>
</table>

For collecting the discrete-depth groundwater sample, the CPT rod was driven to the desired depth, then retracted three feet to expose three feet of ¾-inch outer diameter polyvinyl chloride 0.020-inch slot screen. A clean stainless steel bailer was used to collect samples in laboratory-supplied containers appropriate for US EPA 8260B VOC analysis. A separate boring was advanced for collecting each discrete-depth groundwater sample, with the exception of boring BGW2011-3 (which both samples were collected in the same boring). Samples were labeled and shipped under chain-of-custody procedures via courier to Calscience.

Locations of discrete-depth groundwater borings are presented on Figure 3.

3.5 SAMPLING OF SELECT GROUNDWATER MONITORING WELLS

Two groundwater monitoring wells, MW-31 and CM-10, historically exhibiting concentrations of Freon 11 were sampled on April 30, 2012, using low flow groundwater sampling procedures, which were identical to routine groundwater monitoring, per Monitoring and Reporting Program Number CI-7483. Samples were collected on stabilization of groundwater indicator parameters in laboratory-supplied containers appropriate for US EPA 8260B VOC analysis. Trip blanks were shipped with samples. Samples were labeled and shipped under chain-of-custody procedures via courier to Calscience. Sampling records are provided in Appendix E.

Purged groundwater was containerized and disposed in the on-Site groundwater treatment system.
3.6 FIELD QUALITY CONTROL SAMPLES

3.6.1 Soil Gas Samples
A field duplicate sample was collected and analyzed to evaluate the accuracy and precision of the contract laboratory. The field duplicate sample for soil gas was collected concurrently with the primary sample from boring SG2011-1 at a depth of 33.3 feet bgs. The field duplicate was labeled as “SG2011-1A-33.3” and was analyzed for VOCs.

3.6.2 Groundwater Samples
A groundwater field duplicate sample was collected concurrently with the primary sample from boring SHBGW2012-3 at a depth of 60 feet bgs. The field duplicate was labeled as “SHBGW2012-3A-60” and was analyzed for VOCs.

Trip blanks are used to evaluate whether the samples were contaminated by VOCs during shipping and handling, storage on Site or at the laboratory. Trip blanks accompanied every shipment of groundwater samples to Calscience and were labeled as “TB-1,” “QCTB20120530,” “field blank,” and “QCTB20120605.”
4.0 CONFIRMATORY SAMPLING RESULTS

The following section describes the analytical results from the soil gas investigation in the vicinity of the Freon 11 Area, discrete-depth groundwater samples collected along the two transects, and samples collected from the two groundwater monitoring wells.

4.1 SOIL GAS ANALYTICAL RESULTS

Eleven VOCs were detected in the 14 primary soil gas samples collected in temporary soil gas probes located in the vicinity of the Freon 11 Area. Freon 11 was the only VOC that was reported at elevated concentrations (exceeding 1 µg/L). The following is a summary of detected VOCs:

- Freon 11 was detected in all soil gas samples ranging in concentrations from 0.081 (at boring SG2011-3 at a depth of 45.5 feet bgs) to 260 µg/L (at boring SG2011-1 at a depth of 33.3 feet bgs).

- Tetrachloroethene was detected in all soil gas samples with the exception of the soil gas sample collected from SG2011-3 at a depth of 45.5 feet bgs, which was nondetect at or above a reporting limit of 0.0034 µg/L. Detected tetrachloroethene concentrations in samples ranged from 0.095 (at boring SG2011-2 at a depth of 6.0 feet bgs) to 0.78 µg/L (at boring SG2011-1 at a depth of 33.3 feet bgs).

- 1,1,2-Trichloro-1,2,2-trifluoroethane was detected in 11 of 14 primary soil samples. Detected 1,1,2-Trichloro-1,2,2-trifluoroethane concentrations in samples ranged from 0.84 (at boring SG2011-3 at a depth of 15.4 feet bgs) to 0.33 µg/L (at boring SG2011-2 at a depth of 25.0 feet bgs). 1,1,2-Trichloro-1,2,2-trifluoroethane was nondetect at or above the reporting limit in samples collected at borings SG2011-1 at a depth of 14.6 feet bgs (reporting limit of 0.460 µg/L), SG2011-2 at a depth of 6.0 feet bgs (reporting limit of 0.180 µg/L), and SG2011-3 at a depth of 45.5 feet bgs (reporting limit of 0.011 µg/L).

- Acetone was detected in 11 of the 14 primary samples. Detected acetone concentrations in samples ranged from 0.17 (at boring SG2011-3 at a depth of 25.2 feet bgs) to 0.66 µg/L (at boring SG2011-2 at a depth of 6.0 feet bgs).

- Other detected VOCs were benzene, toluene, 2-butanone, chloromethane, ethylbenzene, total xylenes, and dichlorodifluoromethane. Detected concentrations of these VOCs in soil gas samples ranged from 0.0023 (for chloromethane in boring SG2011-3 at a depth of 45.5 feet bgs) to 0.10 µg/L (for total xylene in borings SG2011-2 at a depth of 14.9 feet bgs).

Soil gas analytical results are provided on Table 1. Soil gas analytical results are presented on Figure 4. Laboratory reports are provided in Appendix F.

4.2 GROUNDWATER ANALYTICAL RESULTS

Only two VOCs, Freon 11 and chloroform, were detected in discrete-depth groundwater samples:

- Freon 11 was detected in 7 of the 10 discrete-depth groundwater samples. Detected Freon 11 concentrations ranged from 11 (at borings FLBGW2012-2 at depths of 52 feet bgs and 62 feet bgs and SHBGW2012-3 at a depth of 48 feet bgs) to 29 µg/L (at boring BGW2011-3 at depth of 56 feet bgs). Freon 11 was not detected at or above the reporting limit of 10 µg/L in the remaining discrete-depth samples.
Chloroform was detected in the sample collected from BGW2011-1 at a depth of 56 feet bgs at a concentration of 2.6 µg/L. Freon 11 and chloroform were also the only two VOCs detected in the groundwater samples collected from the monitoring wells MW-31 and CM-10:

- Freon 11 was detected in samples collected from wells MW-31 and CM-10 at concentrations of 120 µg/L and 35 µg/L, respectively.
- Chloroform was detected at a concentration of 1.1 µg/L in the sample collected from well CM-10.

Groundwater analytical results are provided on Table 2. Groundwater analytical results are presented on Figure 5. Historical concentrations of Freon 11 and groundwater elevations in wells MW-31 and CM-10 are presented on Graphs 1 and 2, respectively. Laboratory reports are provided in Appendix F.

4.3 DATA QUALITY

4.3.1 Soil Gas Samples

Fourteen soil gas samples were collected on April 17, 2012, with one field duplicate sample. All soil gas samples were shipped under appropriate chain-of-custody protocol. All samples were analyzed within the method-specific holding time.

The calculated relative percent difference for the duplicate pair did not exceed 40 percent.

Laboratory quality assurance/quality control (QA/QC) procedures were within US EPA method specifications, and data were accepted based on the QA/QC criteria established by the US EPA including method blanks, laboratory control sample (LCS), and laboratory control sample duplicates (LCSD).

All method blanks were free of contamination.

LCS/LCSD samples were within their respective control limits with the exception of one LCS/LCSD sample. One LCS/LCSD sample with the batch number 120420L01 was detected with Freon 11 exceeding the Marginal Exceedance Control Limit. However, the allowable number of Marginal Exceedance compounds is 3 per 60 analytes, and the number of Marginal Exceedance compounds detected was one per 60 analytes. Therefore, the sample passed the LCS Marginal Exceedance Control Limit validation, so associated samples are unqualified.

The laboratory analytical QA/QC results were reviewed by OTIE’s chemist. Additionally, OTIE’s chemist reviewed the laboratories certification to ensure that the laboratory was certified by California Department of Public Health for the analyses for this soil gas sampling event.

4.3.2 Groundwater Samples

A total of 11 discrete-depth groundwater samples (including a duplicate) were collected during three sampling events on April 16, 2012, May 30, 2012, and June 5, 2012. Two monitoring wells were sampled on April 30, 2012.

All groundwater samples were shipped under appropriate chain-of-custody protocol at the method-specified temperature limit (4 degrees Celsius +/- 2 degrees Celsius) to Calscience. All samples were analyzed within the method-specific holding time.
Trip blanks accompanied each of the four sampling events to Calscience. No contaminants were detected in the analyzed trip blanks.

The calculated relative percent difference for the duplicate pair did not exceed 40 percent.

Laboratory QA/QC procedures were within US EPA method specifications, and data were accepted based on the QA/QC criteria established by the US EPA including method blanks, laboratory control samples and laboratory control samples duplicates. All method blanks were free of contamination. All LCS and LCSD were within their respective control limits. The laboratory analytical QA/QC results were reviewed by OTIE’s chemist. Additionally, OTIE’s chemist reviewed the laboratories certification to ensure that the laboratory was certified by California Department of Public Health for the analyses for these groundwater samples.
5.0 DATA DISCUSSION

5.1 FREON 11 IN SOIL GAS

There are no readily available environmental screening levels (ESLs) for Freon 11 in soil gas because it has not been identified as a carcinogen (USEPA, 2012) and is generally low in toxicity (Cal/EPA 2003). Therefore, ESLs for Freon 11 in soil gas were calculated based on US EPA screening levels for commercial/industrial and residential indoor air using published attenuation factors, and on the California groundwater MCL for Freon 11 converted to a vapor concentration. Calculated ESLs are as follows:

1. Using the quotient of US EPA regional screening level for commercial/industrial air (3.1 µg/L) (US EPA 2012) and the Cal/EPA attenuation factor for future industrial air (0.0005) (Cal/EPA 2011), the calculated ESL for commercial/industrial air is 6,200 µg/L.

2. Using the quotient of US EPA regional screening level for residential air (0.730 µg/L) (US EPA 2012) and the Cal/EPA attenuation factor for future residential air (0.001) (Cal/EPA 2011), the calculated ESL for residential air is 730 µg/L.

3. The California groundwater MCL of 150 µg/L for Freon 11 was converted to an air concentration using Henry’s Law, which was calculated to be 687 µg/L.

Additional information on these calculations is provided in Appendix G.

None of the Freon 11 concentrations in soil gas samples collected during this confirmatory sampling event exceed these three calculated ESLs. The highest Freon 11 concentration was 260 µg/L (encountered in a sample at boring SG2011-1 at a depth of 33.3 feet bgs), which was well below the calculated ESLs of 6,200 µg/L for commercial/industrial air, 730 µg/L for residential air, and 687 µg/L for the California groundwater MCL converted to air. In addition, there is no significant increase in concentration with depth, all concentrations are within the same order of magnitude and appear to be diffuse. This indicates that there is no significant source of Freon 11 in the vadose zone that could come into contact with groundwater when groundwater elevations increase seasonally.

5.2 FREON 11 IN GROUNDWATER

Freon 11 concentrations in all groundwater samples did not exceed the California MCL of 150 µg/L. Wells MW-31 and CM-10 have been below the California MCL since December 1999 and June 1995, respectively. The six off-Site discrete-depth groundwater samples collected on Fallbrook Avenue and Schoenborn Street were below the California MCL with the highest concentration of 15 µg/L in the sample collected at boring FLBGW2012-1 at a depth of 62 feet bgs.

Based on CPT boring profiles and boring logs for wells MW-31 and CM-10, a cross section was compiled between the Freon 11 Area and the boring SHBGW2012-3, which is approximately 270 feet east of the eastern property line of the Site (Figure 5). The cross section illustrates coarse-grained zones (primarily poorly graded sand with gravel), groundwater level, and the approximate depth of the Modelo Formation. Lithologic logs indicate that coarse-grained zones are not interconnected in the Modelo Formation as they are outside of the Formation in the vicinity of the Freon 11 Area southeast to boring SHBGW2012-3 on Schoenborn Street. Movement of dissolved phase Freon 11 is restricted in the Modelo Formation due to isolated discrete coarse-grained zones of limited lateral and vertical extent.
6.0 SUMMARY AND CONCLUSION

Soil and groundwater investigations have occurred in the Site's Southern Parcels over the course of the last 20 years. The only detected VOC in groundwater historically exceeding a California MCL was Freon 11, which is not identified as a carcinogen and is low in toxicity. Elevated concentrations were first detected in well CM-10 in the early 1990s, this was followed by an extensive soil gas investigation in 1995, which defined the Freon 11 Area in the shallow vadose zone. In 1998, a series of additional groundwater investigations defined the onsite extent of Freon 11-impacted groundwater in every direction except towards the southeast. Off-site samples collected in 2012 documented in this report, filled the data gap by defining the vertical and lateral extent of Freon 11-impacted groundwater towards the southeast.

The following lines of evidence are provided below to support an NFA status:

- Soil gas concentrations of Freon 11 in the postulated source area collected in 2012 were below all available ESLs.
- No significant increase of Freon 11 concentrations with depth was observed in soil vapor samples collected in the postulated release area down to the groundwater table. Based on calculated threshold levels, no concentration detected in soils overlying groundwater could potentially impact groundwater above MCLs in the future.
- Groundwater sampling in the Southern Parcels indicated that lateral and vertical distribution of Freon 11 is consistent with the previous site conceptual model, e.g., CM-10 is approximately centerline with the axis of Freon 11 concentration distributions, and Freon 11 concentrations are limited to shallow groundwater per the non-detect in the deeper sample collected offsite underlying Schoenborn Street.
- Concentrations of Freon 11 in samples collected from wells CM-10 and MW-31 have been below the California MCL since 1995 and 1999, respectively, quantifying that natural attenuation has been effective.
- Comparing groundwater elevations and Freon 11 concentrations in wells MW-31 and CM-10 (Graphs 1 and 2), indicate that there is no correlation between increased groundwater elevations and increased Freon 11 concentrations, the inverse is generally true (e.g., higher elevations correspond with decreased concentrations). This supports the premise that no soil "source" exists in the vadose zone that could impact future groundwater quality above MCLs.
- Off-Site groundwater sampling indicated Freon 11 concentrations attenuate significantly away from MW-31, as concentrations are at or very near the reporting limit of 10 µg/L.

From these converging lines of evidence, it is apparent that the Freon 11 concentrations do not pose a significant impact to the Site or surrounding area; therefore, Raytheon respectfully requests that NFA status be issued for APN's 2005-002-011 and 2005-002-901 and as such, authorization to abandon wells CM-10, CM-11A, CM-12, CM-15, CM-17, MW-21S, MW-21D, MW-22S, MW-22D, MW-28, MW-29, MW-30 and MW-31 be granted.
7.0 REFERENCES

California Environmental Protection Agency (Cal/EPA 2011). Department of Toxic Substances Control. Final Guidance For The Evaluation And Mitigation Of Subsurface Vapor Intrusion To Indoor Air (Vapor Intrusion Guidance). October.

Oneida Total Integrated Enterprises, LLC. (OTIE 2009a). Groundwater Investigation Report to Verify Current Radioactivity Conditions, Former Canoga Park Facility, 8433 Fallbrook Avenue, Canoga Park, California. August.

United States Environmental Protection Agency. (US EPA 2012) Region IX Regional Screening Level (RSL) Summary Table. April.
FIGURES
Fig. 1: Site Vicinity Map

Former Canoga Park Facility, 8433 Fallbrook Avenue, Canoga Park, CA

Source: Map data from Yahoo, Inc./NAVTEO 2009
Approximate Scale in Feet

0 2 0 0 100 300

1.) "ug/L" = micrograms per liter; "ug/kg" = micrograms per kilogram; "ND" = not detected above the laboratory reporting limits; "ft bgs" = feet below ground surface; "S" = sewer line; "mg/kg" = milligrams per kilograms; "vs" = versus.

2.) Non-detected values graphed as half the detection limit.

3.) Freon 11 Area approximated from previous report (GTI 1995b).

5.) *The Freon 11 detection in the soil sample collected at 50 ft bgs at boring WP-276-1 is likely due to groundwater, as it was a saturated soil sample.

Legend

Property Line
Former Canoga Park Facility
Oneida Total Integrated Enterprises
Soil Gas Sample Point at approximately 5 ft bgs, June 1995 with Freon 11 Concentration (ug/L)
Soil Gas Sample Point at approximately 5 ft bgs, August 1995 with Freon 11 Concentration (ug/L)
Soil Boring Locations, 1993
Soil Gas Boring Locations: approximate 4 ft bgs, June 1995
Temporary Well Locations, 1998
Freon 11 Area (>1,000 ug/L in soil gas)

Groundwater Monitoring Well

Notes

1.) Hydrocarbon concentrations are reported in "ug/L" or "ug/kg" in kilograms. "ND" = not detected above the laboratory reporting limits. "ft bgs" = feet below ground surface; "S" = sewer line; "mg/kg" = milligrams per kilograms; "vs" = versus.

2.) Non-detected values graphed as half the detection limit.

4.) *The Freon 11 detection in the soil sample collected at 50 ft bgs at boring WP-276-1 is likely due to groundwater, as it was a saturated soil sample.

Figure 2

Previous Southern Parcels Assessment and Historical VOC Results

Former Canoga Park Facility
Canoga Park, California

July 11, 2011
1.) "S" = Sewer line; "ug/L" = micrograms per liter; "Freon 11" = trichlorofluoromethane.

2.) Freon 11 Area from previous report (Fluor Daniel GTI 1998).

Notes
1.) "S" = Sewer line; "ug/L" = micrograms per liter; "Freon 11" = trichlorofluoromethane.
2.) Freon 11 Area from previous report (Fluor Daniel GTI 1998).
1.) "S" = Sewer line; "ug/L" = micrograms per liter; "Freon 11" = trichlorofluoromethane.

2.) Only the shallowest sample analytical result at each boring was used in contouring 100 ug/L soil gas data.

Soil Gas Analytical Results for Freon 11

SG2011-1

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Date</th>
<th>Units</th>
<th>Freon 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>170</td>
</tr>
<tr>
<td>14.6</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>220</td>
</tr>
<tr>
<td>24.5</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>190</td>
</tr>
<tr>
<td>33.3</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>260</td>
</tr>
</tbody>
</table>

SG2011-2

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Date</th>
<th>Units</th>
<th>Freon 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>8.9</td>
</tr>
<tr>
<td>14.9</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>86</td>
</tr>
<tr>
<td>25.0</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>100</td>
</tr>
<tr>
<td>35.1</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>110</td>
</tr>
<tr>
<td>47.1</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>140</td>
</tr>
</tbody>
</table>

SG2011-3

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Date</th>
<th>Units</th>
<th>Freon 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>140</td>
</tr>
<tr>
<td>15.4</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>150</td>
</tr>
<tr>
<td>25.2</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>150</td>
</tr>
<tr>
<td>35.5</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>170</td>
</tr>
<tr>
<td>45.5</td>
<td>4/17/2012</td>
<td>ug/L</td>
<td>0.081</td>
</tr>
</tbody>
</table>
1.) "S" = Sewer line; "ug/L" = micrograms per liter; Freon 11 = trichlorofluoromethane.

2.) Freon 11 area defined as Freon 11 concentrations > 1,000 ug/L in soil gas from previous report (Fluor Daniel GTI 1998).

3.) Freon 11 MCL = 150 ug/L.

4.) Freon 11 groundwater contour represents current and historical concentrations.
Former Canoga Park Facility
8433 Fallbrook Ave, Canoga Park, California

Figure 6
Cross Section A - A'

Groundwater Elevation (4/30/12)

Poorly Graded Sands (SP, SM, SC) with Gravel
* All other sediment encountered were fine grained.

Primarily Fine Grained (ML, CL) Material
and the Mundo Formation

* Demarcated in the boring log for well CM-10,
and inferred to the northwest and southeast.
Table 1
Summary of Soil Gas Sample Results
Former Canoga Park Facility, 8433 Fallbrook Avenue, Canoga Park, California

<table>
<thead>
<tr>
<th>Analyte:</th>
<th>Acetone</th>
<th>Benzene</th>
<th>2-Butanone</th>
<th>Chloroform</th>
<th>Ethylene</th>
<th>Total Xylenes</th>
<th>Tetrachloroethene</th>
<th>Toluene</th>
<th>Trichlorofluoromethane</th>
<th>Dichlorofluoromethane</th>
<th>1,1,2-Trichloro-1,2,2-trifluoroethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td></td>
</tr>
<tr>
<td>Butanone</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
</tr>
<tr>
<td>Trifluoroethane</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Depth (feet)</th>
<th>Sample Date</th>
<th>Method</th>
<th>Soil Gas Sample Results (ug/L)</th>
<th>Units</th>
<th>EPA TO-15</th>
<th>SG2011-1</th>
<th>EPA TO-15</th>
<th>SG2011-2</th>
<th>EPA TO-15</th>
<th>SG2011-3</th>
<th>EPA TO-15</th>
<th>SG2011-4</th>
<th>EPA TO-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SFRWQCB ESLs Commercial/Industrial (ug/L):</td>
<td>1,800</td>
<td>280</td>
<td>2,900</td>
<td>53</td>
<td>3</td>
<td>58</td>
<td>1</td>
<td>180</td>
<td>6,200*</td>
<td>NE</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFRWQCB ESLs Residential (ug/L):</td>
<td>660</td>
<td>84</td>
<td>1,000</td>
<td>19</td>
<td>0.98</td>
<td>21</td>
<td>0.41</td>
<td>63</td>
<td>730*</td>
<td>NE</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CA MCL Converted to Soil Gas (ug/L):

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Depth (feet)</th>
<th>Sample Date</th>
<th>Method</th>
<th>Soil Gas Sample Results (ug/L)</th>
<th>Units</th>
<th>EPA TO-15</th>
<th>SG2011-1</th>
<th>EPA TO-15</th>
<th>SG2011-2</th>
<th>EPA TO-15</th>
<th>SG2011-3</th>
<th>EPA TO-15</th>
<th>SG2011-4</th>
<th>EPA TO-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SFRWQCB ESLs Commercial/Industrial (ug/L):</td>
<td></td>
</tr>
<tr>
<td>SFRWQCB Commercial/Industrial (ug/L):</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1) Trichlorofluoromethane = Freon 11
2) Bolded results indicate positive detections
3) ug/L = micrograms per liter
4) SFRWQCB ESLs = Environmental screening levels (ESLs) established by Regional Water Quality Control Board, San Francisco Region (SFRWQCB), in their Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table E, Interim Final (SFRWQCB, 2007) for indoor Air and Soil Gas Screening Levels (Vapor Intrusion Concerns), which are converted from parts per billion volume to micrograms per cubic meter.
5) Duplicate sample was collected at SFRWQCB ESLs -33.3 was identified as SFRWQCB ESLs -33.3 - identified as "dup" in depth column of table.
6) Total xylene is the summation of both ortho-xylene and para/xylene.
7) NE = not established.
8) *The Freon 11 ESL is based on the quotient of United States Environmental Protection Agency’s Regional Screening Levels for industrial air (3.1 ug/L) and residential air (0.730 ug/L) dated April 2012 and California Environmental Protection Agency’s Attenuation Factor for future industrial air (0.0005) and future residential air (0.001) dated October 2011 (refer to Appendix G for additional information on conversion).
9) **CA MCL Converted to Air was determined using Henry’s Law to convert the California groundwater MCL of 150 ug/L, to an air concentration (refer to Appendix G for additional information on conversion).
Table 2
Summary of Groundwater Analytical Results
Former Canoga Park Facility, 8433 Fallbrook Avenue, Canoga Park, California

<table>
<thead>
<tr>
<th>Analyte: Trichlorofluoromethane CA MCL (ug/L): 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>BGW2011-1</td>
</tr>
<tr>
<td>BGW2011-2</td>
</tr>
<tr>
<td>BGW2011-3</td>
</tr>
<tr>
<td>FLBGW2012-1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FLBGW2012-2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SHBGW2012-3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MW-31</td>
</tr>
<tr>
<td>CM-10</td>
</tr>
</tbody>
</table>

NOTES:
1) **Bolded** results indicate positive detection;
2) ug/L = micrograms per liter
3) Duplicate sample was collected at SHBGW2012-3-60 was identified as SHGBW2012-3A-60. Identified as "dup" in depth column of table.
4) Chloroform was detected in BGW2011-1 and CM-10 at concentrations of 2.6 ug/L and 1.1 ug/L, respectively.
GRAPHS
Graph 1: Freon 11 Concentrations and Groundwater Elevations vs. Time
Monitoring Well MW-31
Former Raytheon Canoga Park Facility, California

Notes:
1) ug/L = micrograms per liter; MCL = maximum contaminant level; vs. = versus; Freon 11 = trichlorofluoromethane
Graph 2: Freon 11 Concentrations and Groundwater Elevations vs. Time
Monitoring Well CM-10
Former Raytheon Canoga Park Facility, California

Notes:
1) ug/L = micrograms per liter; MCL = maximum contaminant level; vs. = versus; Freon 11 = trichlorofluoromethane
APPENDIX A

Historical Soil Gas Data (GTI 1998)
LEGEND

SEWER LINE

⊙ Soil Gas Point, June 1995
⊙ Soil Gas Point, August 1995
; 62 Freon 11 Concentration (μg/l)
ND Not Detected (≤ 1 μg/l)

Freon 11 ISOCON (μg/l)

⊙ Monitoring Well
⊙ New Monitoring Well Location
⊙ Temporary Well Sampling Location

EDGE OF ORIGINAL PAVEMENT

Freon-11 Concentrations in Soil Gas with Respect to Original Paved Area

FLUOR DANIEL GTI

Raytheon Missile System Co.

File: 102599-3 (1:1800)
Project No.: 102599

P.O.: 8433 Fallbrook Avenue
Candora Park, California

Figure: 16
APPENDIX B

Regulatory Correspondence
January 22, 2007

Ms. Jean Roberts, Manager
Safety, Health, Environmental Affairs
Raytheon Company
P.O. Box 11337
Tucson, AZ 85736-1337

Dear Ms. Roberts:

REVISED MONITORING AND REPORTING PROGRAM NO. CI-7483 – RAYTHEON SYSTEMS COMPANY (FORMER HUGHES MISSILE SYSTEM COMPANY), 8433 FALLBROOK AVENUE, CANOGA PARK, CALIFORNIA (SLIC NO. 0693, SITE ID NO. 2043T00)

On January 23, 1995, the Los Angeles Regional Water Quality Control Board (Regional Board) adopted a site specific Waste Discharge Requirements Order No. 95-012 to discharge treated groundwater to an existing onsite landscape irrigation system at the above-referenced site. On August 26, 1997, the Regional Board revised the monitoring and sampling requirements.

On July 27, 2006, Mr. Jacques Mareillac of T N & Associates, Inc., on your behalf, requested a modification of the Monitoring and Reporting Program (MRP) No. CI-7483 as follows:

1. Monitoring data indicated that several wells have been consistently below Maximum Contaminant Levels or non-detect for several years for volatile organic compounds; and concentrations of trichlorofluoromethane in groundwater have decreased over the last six years. Therefore, remove nine groundwater monitoring wells, CM-10, CM-11A, CM-12, CM-15, CM-17, MW-28, MW-29, MW-30, and MW-31, from the monitoring program, and

2. Perform semi-annual basis on site-wide gauging instead of quarterly.

Based on our review of the information submitted, the Regional Board approved change of Monitoring and Reporting Program No. CI-7483 as you requested. All monitoring reports shall be sent to the Regional Board, ATTN: Information Technology Unit. When submitting monitoring or technical reports to the Regional Board per these requirements, please include a reference to “Compliance File No. CI-7483”, which will assure that the reports are directed to the appropriate file and staff. Submit each type of report as a separate document. Please do not combine other reports with your monitoring reports.

Should you have any questions, please contact Ms. Thilzar Tintut-Williams at (213) 576-6723.

Sincerely,

[Signature]

Jonathan S. Bishop
Executive Officer

cc: see List

California Environmental Protection Agency

Recycled Paper

Our mission is to preserve and enhance the quality of California's water resources for the benefit of present and future generations.
List

Mr. Mike Floyd, Division of Water Quality, State Water Resources Control Board
Mr. Bernard Franklin, Department of Health Services, County of Los Angeles
Mr. Timothy Garvey, TN & Associates, Inc.
Mr. Jacques Marcillac, TN & Associates, Inc.

/tw
January 26, 2007

Ms. Jean Roberts, Manager
Safety, Health, Environmental Affairs
Raytheon Company
P.O. Box 11337
Tucson, AZ 85334-1337

Dear Ms. Roberts:

REQUEST TO ABANDON SELECTED GROUNDWATER MONITORING WELLS – RAYTHEON SYSTEMS COMPANY (FORMER HUGHES MISSILE SYSTEM COMPANY), 8433 FALLBROOK AVENUE, CANOGA PARK, CALIFORNIA (SLIC NO. 0693, SITE ID NO. 2043T00)

The Los Angeles Water Quality Control Board (Regional Board) staff received and reviewed, Request for Interim Shutdown of the Groundwater Recovery and Treatment System (GRTS), Modification to M&RP No. 7483 and Request for No Further Action for Southern Parcels, Former Raytheon Facility, 8433 Fallbrook Avenue, Canoga Park, California, Compliance File No. CI-8567, dated June 28, 2006, prepared by TN & Associates, Inc. on your behalf, for the above-referenced location (Site). In the letter, you also requested to abandon some groundwater monitoring wells.

Please note that in this letter, the Regional Board is responding to your request for abandoning groundwater monitoring wells only; and the Regional Board have responded or will be responding to the others in a separate letter(s) upon completion of the reviews.

Raytheon began operating the GRTS in 1995 under Waste Discharge Requirements (WDR) Order No. 95-012, and Monitoring and Reporting Program (MRP) No. CI-7483. The system was shut down in 1998 to accommodate redevelopment activities at the Site. The GRTS was re-started in 1995 until recently shut down in April 2006 due to low influent volatile organic compounds (VOCs) levels and higher sulfate levels as required in the WDR. In September 2003, a pilot test was performed to assess the potential for EISB to further remediate the VOC concentrations in groundwater. This pilot test included the injection of lactic acid, and based on the EISB pilot test results, Raytheon implemented a full-scale EISB program to accelerate degradation of chlorinated ethenes in shallow groundwater. This program is being performed under the WDR Order No. R4-2005-0030, MRP No. CI-8947. Soil Vapor Extraction (SVE) and air sparge (AS) systems were also used for remediation on site, and they were shut down in 2005 to prepare for the implementation of an enhanced in-situ bioremediation (EISB) program. On January 25, 2007, the Regional Board approved an interim shut-down of GRTS and required that the GRTS system remains in operational condition to be used as a contingency measure if it is found that the EISB program is not effective.

Raytheon requests to abandon groundwater wells, CM-2, CM-3, CM-4, CM-7, CM-8, CM-9, MW-21S, MW-21D, MW-22S, MW-22D, VE-2, and VE-3 because they were either installed too shallow and are always dry, were installed at distal locations not down gradient from any existing plumes or were pilot test wells.
Based on our review of the information submitted, we approve your request to abandon the groundwater wells, CM-2, CM-3, CM-4, CM-7, CM-8, CM-9, VE-2, and VE-3. However, the groundwater monitoring wells, MW-21S, MW-21D, MW-22S, and MW-22D, shall remain on-site and continue to monitor annually until our review of your request for “No-Further Action” for Southern Parcels is complete.

Please follow the proper well abandonment procedures as stated in Department of Water Resources Bulletin 74-90. You are required to submit a well abandonment report to the Regional Board sixty-days after completing the proper abandonment procedures for the above referenced wells in the area.

Should you have any questions, please contact Thizar Tintut-Williams at (213) 576-6723.

Sincerely,

[Signature]
Jonathan S. Bishop
Executive Officer

/cc: Ms. Heather Collins – California Department of Health Services
Mr. Chris Nagler, WaterMaster, California Department of Water Resources
Mr. Bernard Franklin, Los Angeles County, Department of Public Health
Mr. Hoover Ng, Water Replenishment District- Southern California
Mr. Timothy Garvey, TN & Associates, Inc.
Mr. Jacques Marcillac, TN & Associates, Inc.
October 30, 2009

Mr. Daniel S. Samorano
Raytheon Company
1151 East Hermans Road
TU, Bldg 826
Tucson, AZ 85706

NO FURTHER ACTION FOR RADIOACTIVITY ANALYSES IN GROUNDWATER PURSUANT TO CALIFORNIA WATER CODE SECTION 13267 ORDER – RAYTHEON COMPANY (FORMER HUGHES MISSILE SYSTEMS COMPANY), 8433 FALLBROOK AVENUE, CANOGA PARK, CALIFORNIA 91304 (SCP NO. 0693, SITE ID NO. 2043T00)

Dear Mr. Samorano:

The California Regional Water Quality Control Board, Los Angeles Region (Regional Board) is the State regulatory agency responsible for protecting water quality in Los Angeles and Ventura Counties. To accomplish this, the Regional Board issues investigative orders authorized by the Porter-Cologne Water Quality Control Act (California Water Code [CWC], Division 7).

At the request of the Regional Board, Raytheon's predecessor, Hughes Missile Systems, Inc., conducted eight groundwater sampling events between March 1990 and December 1991 to determine radioactivity levels in groundwater at the site. The results were submitted to the Regional Board in 1992 and indicated that a subset of the well samples had radiological parameters exceeding California Maximum Contaminant Levels (MCLs), but that the concentrations were naturally occurring based on the relative abundances of the individual uranium isotopes.

In response to public concerns regarding radioactivity sampling results from the on-site groundwater monitoring wells, the Regional Board issued a CWC section 13267 Order on March 5, 2008, requiring submittal of a work plan for a site-wide groundwater investigation to verify current radioactivity conditions. The revised work plan was reviewed and conditionally approved by the Regional Board on January 29, 2009. Subsequently, Regional Board staff have received and reviewed the Groundwater Investigation Report to Verify Current Radioactivity Conditions (Report), dated August 2009, prepared by Oneida Total Integrated Enterprises (OTIE) on behalf of Raytheon Company for the referenced site.

The Report presents the results of the groundwater sampling from 11 site wells for radioactivity analyses in May 2009. Gross alpha particle activity, uranium, combined radium - 226+228, and gross beta particle activity were detected up to 61.12 pCi/L, 126.5 pCi/L, 18.62 pCi/L, and 54.77 pCi/L, respectively, which exceeded their California MCLs of 15 pCi/L, 20 pCi/L, 5 pCi/L, and 50pCi/L, respectively.
The data produced during 2009 groundwater investigation are consistent with previous results collected in 1990 and 1991. This current investigation and the 1990/1991 investigation work have demonstrated that the levels of radiological isotopes detected in groundwater at the former Raytheon facility are attributable to naturally occurring sources in the underlying aquifer matrix and geochemical system. OTIE recommends no further action for radioactivity analyses in groundwater at the site.

Based on review of the submitted information and radionuclides related documentation, Regional Board staff have the following findings:

1. **No Suspected Releases of Radioisotopes from Historical Operations at the Site**

 The Regional Board has jurisdiction for the investigation and remediation of groundwater contamination at the former Raytheon site, while the Department of Toxic Substances Control (DTSC) has jurisdiction to address environmental contamination in soil as a result of historic operations. On March 4, 2009, DTSC issued the following responses to public comments:

 “DTSC has obtained records submitted by Raytheon which includes information on the types radioisotopes used at the site, and the buildings in which the radioisotopes were used. The records indicate that only small amounts of radioactive materials were present, primarily in measurement devices, and that licenses were properly terminated and materials were properly disposed of more than twenty (20) years ago.”

 Regional Board staff has also reviewed the *Supporting Documentation for the Radioactive Materials Investigation at Hughes Aircraft Company-MSG-CP*, dated May 1992, documenting the information on radioactive materials being used at the site approximately from 1964 to 1992. Based on review of the information provided, Regional Board staff concurs with DTSC’s statement. Following further consultation with DTSC, Regional Board staff concludes that there is no evidence suggesting that releases of radionuclides resulted from the historical operations at the former Raytheon facility.

2. **Naturally Occurring Uranium and Radium**

 During the 2009 groundwater investigation, isotopic uranium analyses were conducted to calculate the relative mass ratios in order to determine if the origin of the uranium was man-made (enriched or depleted) or was consistent with naturally occurring sources. The results of the 2009 groundwater investigation were compared to the published values of typical isotopic abundances. These values were obtained from both the United States Department of Energy’s *Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities* (USDOE, 2004) and the United States Environmental Protection Agency’s *Depleted Uranium Technical Brief* (USEPA, 2006).
Mr. Daniel S. Samorano
Raytheon Company

October 30, 2009

The isotopic analysis of uranium demonstrates that the isotopic mass percentages for the 2009 groundwater samples with elevated uranium levels fall within the range expected for naturally occurring uranium as shown in the table below. The same calculations were previously performed for the October 1991 and December 1991 analytical results and yielded similar ratios. The 2009 groundwater data strongly support the statement that naturally occurring uranium is encountered in groundwater at the site.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>U-238</th>
<th>U-235</th>
<th>U-234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Abundance (%)</td>
<td>99.27</td>
<td>0.72</td>
<td>0.0055</td>
</tr>
<tr>
<td>October 1991 Sampling Results</td>
<td>99.10</td>
<td>0.57</td>
<td>0.0053</td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>99.42</td>
<td>0.88</td>
<td>0.0067</td>
<td></td>
</tr>
<tr>
<td>December 1991 Sampling Results</td>
<td>99.14</td>
<td>0.44</td>
<td>0.0051</td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>99.55</td>
<td>0.84</td>
<td>0.0064</td>
<td></td>
</tr>
<tr>
<td>May 2009 Sampling Results</td>
<td>99.13</td>
<td>0.48</td>
<td>0.0050</td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>99.50</td>
<td>0.85</td>
<td>0.0062</td>
<td></td>
</tr>
</tbody>
</table>

Based on the information obtained from the USEPA website at: http://www.epa.gov/radiation/radionuclides/index.html, uranium and radium occur naturally in the environment. They are present in virtually all rock, soil, and water. Uranium, radium and their compounds are soluble in water. As a result, groundwater in areas where concentrations of uranium and radium are high in aquifer materials and in surrounding bedrock typically has relatively high uranium and radium content.

Based upon the information provided to the Regional Board, and with the provision that the information was accurate and representative of site conditions, the Regional Board finds that the May 2009 groundwater investigation for radioactivity analyses carried out at the site is in compliance with the requirements of the CWC section 13267 Order issued to Raytheon Company on March 5, 2008 and that no further action for radioactivity analyses in groundwater is required at the site at this time. However, if new information indicates potential releases of radionuclides from the former Raytheon facility, the Regional Board may require groundwater monitoring for radioactivity analyses at the site.

If you have any questions, please contact Dr. Ann Chang at (213) 620-6070 or nchang@waterboards.ca.gov.

Sincerely,

[Signature]
Tracy J. Egoscue
Executive Officer

California Environmental Protection Agency

Our mission is to preserve and enhance the quality of California’s water resources for the benefit of present and future generations.
cc: Mr. Stefan Cajina, California Department of Public Health
Mr. Chris Nagler, Watermaster, California Department of Water Resources
Mr. Bernard Franklin, Los Angeles County, Department of Public Health
Mr. Hoover Ng, Water Replenishment District- Southern California
Mr. Rod Collins, Department of Toxic Substances Control
Mr. Jacques Marcillac, Oneida Total Integrated Enterprises
Mr. Kenneth Katich, Trammell Crow Company
Mr. William Preston Bowling, Aerospace Cancer Museum and Education
Ms. Christina Walsh, Cleanuprocketdyne.org
Ms. Bonnie Klea
Ms. Chris Rowe
Mr. Daniel Wiseman

California Environmental Protection Agency

Our mission is to preserve and enhance the quality of California’s water resources for the benefit of present and future generations.
May 13, 2011

Mr. Daniel S. Samorano
Raytheon Company
1151 East Hermans Road
TU, Bldg 845
Tucson, AZ 85706

SUBJECT: RESPONSE TO REQUEST FOR GROUNDWATER CLOSURE FOR TWO SOUTHERN PARCELS

SITE/CASE: RAYTHEON COMPANY (FORMER HUGHES MISSILE SYSTEMS COMPANY), 8433 FALLBROOK AVENUE, CANOGA PARK, CALIFORNIA (SCP NO. 0693, SITE ID NO. 2043T00)

Dear Mr. Samorano:

Los Angeles Regional Water Quality Control Board (Regional Board) staff reviewed the July 8, 2010, Request for No Further Action Status for Southern Parcels (Report), prepared by Oneida Total Integrated Enterprises, LLC (OTIE) for the reference site. Regional Board staff also reviewed the project files and recent submittals related to the source and extent of groundwater contamination beneath and in the vicinity of the two southern parcels. On May 3, 2011, Regional Board staff held a meeting with you and Mr. Jacques Marcillac of OTIE to discuss issues related to groundwater closure for two southern parcels of the site and data gaps that need to be addressed.

Based on the review of the Report and file documents and as discussed during the May 3, 2011 meeting, Regional Board staff have determined that groundwater closure for the southern parcels can not be granted at this time based on the following:

1. The lateral extent of the trichlorofluoromethane (Freon-11) plume in groundwater originating from the site and migrating through the southern parcels has not been adequately defined. During the groundwater sampling in June 1990, Freon-11 was detected at concentrations up to 360 micrograms per liter (µg/L) in monitoring well CM-10, which is located near the site boundary. This indicates that the Freon-11 groundwater plume originating from the site has migrated off site. To date, there have been no monitoring wells installed at appropriate locations cross- and down-gradient from monitoring well CM-10.

2. The vertical extent of the Freon-11 plume in groundwater has not been adequately defined. A review of the well construction details indicates that two monitoring wells, CM-10 and MW-31 that are located within the Freon-11 plume, have approximately the same screened interval lengths. These well screened lengths bottom are at approximately 10 to 25 feet below groundwater surface. To determine if multiple-depth groundwater monitoring wells are needed and to verify the vertical change trend of the Freon-11 plume in groundwater beneath the southern parcels and the vicinity of the site, discrete multiple-depth groundwater samples shall be
monitoring wells MW-31 (located near the identified source area) and CM-10 during the next scheduled site-wide groundwater monitoring event for the site.

3. The residual soil source of Freon-11 contamination has not been adequately addressed. It is our understanding that an active source of Freon-11 was removed from the site several decades ago. However, the magnitude and the lateral and vertical extent of Freon-11 soil contamination at the identified source area near the southern parcels has not been adequately characterized. The results of a 1995 shallow [(up to 5 feet below ground surface (bgs))] soil gas survey indicate that Freon-11 was detected at concentrations up to 1,300 µg/L in vapor samples collected from the identified source area. To assess the potential for vapor intrusion and continuing source of groundwater contamination from residual Freon-11 soil contamination, multiple-depth soil and soil vapor samples shall be collected from approximately 5 feet bgs to the water table at the identified source area. If the detected concentrations of residual Freon-11 in soil and soil vapor are greater than its site-specific soil and soil vapor screening levels that are protective of both human health and groundwater resource at the southern parcels and vicinity, active soil remediation or other mitigation measures may be required.

4. To confirm if the lateral and vertical extent of Freon-11 soil and groundwater contamination from releases at the site near the two southern parcels are adequately defined, please submit a work plan for soil/soil vapor and groundwater investigations at the identified source area near the southern parcels, and cross- and down-gradient from existing well CM-10 to the Regional Board by October 15, 2011, for review and approval.

Thank you for your continued efforts in working with the Regional Board staff and moving this project forward. If you have any questions, please contact Dr. Ann Chang at (213) 620-6070 (achang@waterboards.ca.gov).

Sincerely,

Samuel Unger, PE
Executive Officer

cc: Ms. Sutida Bergquist, California Department of Public Health
Mr. Chris Nagler, Watermaster, California Department of Water Resources
Mr. Bernard Franklin, Los Angeles County, Department of Public Health
Mr. Hoover Ng, Water Replenishment District- Southern California
Ms. Stephanie Lewis, Department of Toxic Substances Control
Mr. Jacques Marcillac, Oneida Total Integrated Enterprises
Mr. Kenneth Katch, Trammell Crow Company
Mr. William Preston Bowling, Aerospace Cancer Museum and Education
Ms. Christina Walsh, Cleanuprocketdyne.org
Ms. Bonnie Klea
Ms. Chris Rowe
Mr. Daniel Wiseman

California Environmental Protection Agency

Recycled Paper
October 3, 2011

Mr. Daniel S. Samorano
Raytheon Company
1151 East Hermans Road
TU, Bldg 845
Tucson, AZ 85706

SUBJECT: APPROVAL OF WORK PLAN FOR CONFIRMATION SAMPLING

SITE/CASE: RAYTHEON COMPANY (FORMER HUGHES MISSILE SYSTEMS COMPANY), 8433 FALLBROOK AVENUE, CANOGA PARK, CALIFORNIA (SCP NO. 0693, SITE ID NO. 2043T00)

Dear Mr. Samorano:

Los Angeles Regional Water Quality Control Board (Regional Board) staff reviewed the September 2011, WORK PLAN FOR CONFIRMATION SAMPLING FOR NO FURTHER ACTION STATUS IN THE SOUTHERN PARCELS (Work Plan), submitted on your behalf by Oneida Total Integrated Enterprises, LLC (OTIE) on September 16, 2011, for the referenced site. The Work Plan is submitted in response to the Regional Board letter, dated May 13, 2011, requesting for trichlorofluoromethane (Freon-11) confirmation sampling.

The Work Plan presents the scope of work to collect discrete-depth soil gas samples at three locations in the previously identified Freon-11 impacted area and discrete-depth groundwater samples at six locations in the vicinity of existing groundwater monitoring wells CM-10 and MW-31. Based on the initial groundwater sampling results, additional groundwater samples may be collected from a selected off-site location down-gradient of well CM-10 if warranted.

Based on the review of the information submitted, Regional Board staff concurs with the scope of work proposed in the Work Plan, with the following additions:

1. Because this is a confirmation sampling, teflar bags shall not be used to collect soil gas samples for volatile organic compound analysis. Please use the containers recommended in “ADVISORY - ACTIVE SOIL GAS INVESTIGATIONS” dated January 28, 2003, or its latest version, developed by the California Department of Toxic Substances Control and the Regional Board. This document is available at the following website:

2. Following the completion of field work and laboratory analysis, a report presenting the results of the Work Plan implementation shall be submitted/uploaded to GeoTracker by January 15, 2012.

Thank you for your continued efforts in working with the Regional Board staff and moving this project forward in a timely manner. If you have any questions, please contact me at (213) 576-6735 (shann@waterboards.ca.gov).

Sincerely,

Su Han, CHG
Senior Engineering Geologist
Site Cleanup I Unit Chief

cc: Ms. Sutida Bergquist, California Department of Public Health
Mr. Chris Nagler, Watermaster, California Department of Water Resources
Mr. Bernard Franklin, Los Angeles County, Department of Public Health
Mr. Hoover Ng, Water Replenishment District- Southern California
Ms. Stephanie Lewis, Department of Toxic Substances Control
Mr. Jacques Marcillac, Oneida Total Integrated Enterprises
Mr. Kenneth Katich, Trammell Crow Company
Mr. William Preston Bowling, Aerospace Cancer Museum and Education
Ms. Christina Walsh, Cleanuponrocketdyne.org
Ms. Bonnie Klea
Ms. Chris Rowe
Mr. Daniel Wiseman
May 24, 2012

Mr. Daniel S. Samorano
Raytheon Company
1151 East Hermans Road
TU, Bldg 845
Tucson, AZ 85706

SUBJECT: APPROVAL OF SECOND EXTENSION REQUEST FOR SUBMITTAL OF TECHNICAL REPORT FOR SOIL GAS AND GROUNDWATER CONFIRMATION SAMPLING IN SOUTHERN PARCELS

CASE/SITE: RAYTHEON COMPANY (FORMER HUGHES MISSILE SYSTEMS COMPANY)
8433 FALLBROOK AVENUE, CANOGA PARK, CALIFORNIA (SCP NO. 0693, SITE ID NO. 2043T00)

Dear Mr. Samorano:

Los Angeles Regional Water Quality Control Board (Regional Board) staff have received a request for a 30-day extension to submit the technical report (Report) presenting the results of soil gas and groundwater confirmation samples conducted in 2012 (Request). The Request was prepared and submitted by your consultant Oneida Total Integrated Enterprise (OTIE) via email on May 14, 2012. Due to limited budget/funding available to implement the field work in 2011, the original Report due date of January 15, 2012 was extended to June 30, 2012, as indicated in the Regional Board’s letter dated November 7, 2011.

On May 4, 2012, Regional Board staff held a meeting with you and OTIE and reviewed the preliminary results of soil gas and groundwater samples conducted on-site in April 2012. Based on the data, Regional Board staff discussed with you the need for additional off-site characterizations. The Request indicates that additional time is need for your consultant to obtain a permit from the City of Los Angeles for completing the off-site sampling. Therefore, Regional Board staff approves your due date extension request for the submittal of the Report from June 30, 2012 to July 31, 2012. The Report shall include the findings and results of both the on-site and off-site confirmation sampling activities.

Should you have any questions, please contact me at (213) 576-6736 (ewong@waterboards.ca.gov).

Sincerely,

Emily Wong
Water Resource Control Engineer
Site Cleanup Unit I

cc: See next page
cc: Mr. Sutida Bergquist, California Department of Public Health
Mr. Chris Nagler, Watermaster, California Department of Water Resources
Mr. Bernard Franklin, Los Angeles County, Department of Public Health
Mr. Hoover Ng, Water Replenishment District – Southern California
Ms. Stephanie Lewis, Department of Toxic Substances Control
Mr. Jacques Marcillac, OTIE
Mr. Kenneth Katich, Trammell Crow Company
Mr. William Preston Bowling, Aerospace Cancer Museum and Education
Ms. Christina Walsh, Cleanuprocketdyne.org
Ms. Bonnie Klea
Ms. Chris Rowe
Mr. Daniel Wiseman
APPENDIX C

Permits
Follow Up Flag: Follow up
Flag Status: Flagged

EMLCFM 01102A USAS 04/05/12 17:06:09 A20961187-00A NORM NEW GRID

Thank you for calling Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert. For your safety, please respect and protect the marks, and excavate carefully around the marked utility lines.

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY BACK TO THIS EMAIL.

Ticket : A20961187 Date: 04/05/12 Time: 16:51 Oper: ADS Chan: 100
Old Tkt: A20961187 Date: 04/05/12 Time: 17:05 Oper: ADS Revision: 00A

Company: GREGG DRILLING Caller: LUKE-ONEIDA TOTAL INTEGRATED
Co Addr: 317 E MAIN ST
City&St: VENTURA, CA Zip: 93001 Fax: 805-585-2111
Phone: 805-585-2110 Ext: 4475 Call back: ANYTIME 8-5
Formn: LUKE BUDNY Phone: 805-365-5042
Email: LBUDNY@OTIE.COM

State: CA County: LOS ANGELES Place: CANOGA PARK
Delineated: Y
Delineated Method: WHITEPAINT
Address: 8433 Street:FALLBROOK AVE
X/ST 1 : ECCLES ST
MPM 1: MPM 2:
Locat: 4 LOC ON PROPERTY AT ADDRESS: AT APPROX 410FT W/OF CENTERLINE FALLBROOK
 : AVE & APPROX 400FT N/OF C/L ECCLES ST (IF EXTENDED W); AT APPROX 380FT
 : W/OF C/L FALLBROOK AVE & APPROX 360FT N/OF C/L ECCLES ST (IF EXTENDED W);
 : AT APPROX 420FT W/OF C/L FALLBROOK AVE & APPROX 330FT N/OF C/L ECCLES ST
 : (IF EXTENDED W); AT APPROX 450FT W/OF C/L FALLBROOK AVE & APPROX 290FT
 : N/OF C/L ECCLES ST (IF EXTENDED W), (CALLER STATES MEMBERS CAN ENTER LOC
 : ON TURN OFF AT PARKING LOT ON FALLBROOK AVE AT APPROX 320FT N/OF ECCLES
 : ST) (DELINEDATED WITH WHITE BOXES WITH OTIE USA)

Excav Enters Into St/Sidewalk: N

Grids: 0529G022 0529H021
Lat/Long : 34.224615/-118.624926 34.224085/-118.624156
 : 34.223577/-118.625640 34.223047/-118.624870
Caller GPS:

Boring: Y Explosives: N Vacuum: N
Re-Mark: N

Work : CPT TESTING
Wkend: N Night: N
Work date: 04/12/12 Time: 07:00 Priority: 2
Instruct : MARK BY Permit: PENDING
Done for : RAYTHEON

Tkt Exp: 05/03/12

Mbrs :
ATTD14LAN AT&T - DISTRIBUTION SBC DAMAGE PREVENTION HO 510-645-2929
CITYLA C/OF LA-STREET LIGHTING FRONT OFFICE STAFF 323-913-4744
LAWP2 LA DEPT WTR & PWR-WTR,E,FIB O JEFF HOVEY 818-771-4068
SCG4U2 SC GAS - CANOGA GAS CO CALL CENTER 800-427-2200
UACWHI UTILIQUEST 4 AIRTOUCH AIRTOUCH CELLULAR REP 562-802-9443
UTWCNC10 UTILIQUEST/TIME WARNER-W CN SHAWN RIGGS 818-407-3152
From: noreply@digalert.org [mailto:noreply@digalert.org]
Sent: Monday, May 21, 2012 11:20 AM
To: Iris Shao
Subject: USAS EMLCFM 2012/05/21 #00593A A21420522-02A NORM RXMT

EMLCFM 00593A USAS 05/21/12 11:19:54 A21420522-02A NORM RXMT GRID

Thank you for calling Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert. For your safety, please respect and protect the marks, and excavate carefully around the marked utility lines.

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY BACK TO THIS EMAIL.

Ticket : A21420522 Date: 05/21/12 Time: 11:16 Oper: CJD Chan: 100
Old Tkt: A21420522 Date: 05/21/12 Time: 11:08 Oper: CJD Revision: 02A

Company: GREGG DRILLING Caller: IRIS SHAO (OTIE)
Co Addr: 317 E MAIN ST
City&St: VENTURA, CA Zip: 93001 Fax: 805-585-2111
Phone: 805-585-2110 Ext: Call back: ANYTIME 8-5
Formn: LUCAS BUDNY Phone: 805-365-5042
Email: ISHAO@OTIE.COM

State: CA County: LOS ANGELES Place: CANOGA PARK
Delineated: Y
Delineated Method: WHITEPAINT
Address: Street:FALLBROOK AVE
X/ST 1 : SCHOENBORN ST
MPM 1: MPM 2:
Locat: FRONT OF 8356 FALLBROOK AVE X/ST SCHOENBORN ST; FRONT OF 8344 FALLBROOK
 : AVE X/ST SCHOENBORN ST; S/SIDE OF SCHOENBORN ST AT APPROX 90FT W/OF THE
 : CENTERLINE MAYNARD AVE;

Excav Enters Into St/Sidewalk: N

Grids: 0529H0213
Lat/Long : 34.222908/-118.624750 34.223393/-118.623194
 : 34.219834/-118.623793 34.220319/-118.622236

Caller GPS:
Boring: Y Explosives: N Vacuum: N
Re-Mark: N

Work : FOR CONE PENETRATION TESTING
Wkend: N Night: N
Work date: 05/30/12 Time: 09:00 Priority: 2
Instruct : MARK BY Permit: 8904387-7-12
Done for : RYTHERON CORP

Tkt Exp: 06/18/12

COMMENTS

RESENDCORRECT E-MAIL ADDRESS PER IRIS--[CJD 05/21/12 11:09]
RESENDCORRECT LAST NAME OF FOREMAN FRM BUTLEE TO BUDNY PER IRIS--[CJD
05/21/12 11:19]

Mbrs :
ATTD14LAN AT&T - DISTRIBUTION SBC DAMAGE PREVENTION HO 510-645-2929
CITYLA C/OF LA-STREET LIGHTING FRONT OFFICE STAFF 323-913-4744
LAWP2 LA DEPT WTR & PWR-WTR,E,FIB O JEFF HOVEY 818-771-4068
SCG4U2 SC GAS - CANOGA GAS CO CALL CENTER 800-427-2200
UACWHI UTILIQUEST 4 AIRTOUCH AIRTOUCH CELLULAR REP 562-802-9443
UTWCNC10 UTILIQUEST/TIME WARNER-W CN SHAWN RIGGS 818-407-3152
Thank you for calling Underground Service Alert of Southern California. This is an automatically generated confirmation of your DigAlert. For your safety, please respect and protect the marks, and excavate carefully around the marked utility lines.

This email comes from an automated program that is NOT MONITORED. DO NOT REPLY BACK TO THIS EMAIL.

Ticket : A21510963 Date: 05/30/12 Time: 14:01 Oper: LLF Chan: 100
Old Tkt: A21510963 Date: 05/30/12 Time: 14:01 Oper: LLF Revision: 01A

Company: GREGG DRILLING Caller: IRIS SHAO - OTIE
Co Addr: 317 E MAIN ST
City&St: VENTURA, CA Zip: 93001 Fax: 805-585-2111
Phone: 805-585-2110 Ext: Call back: ANYTIME 8-5
Formn: LUCAS BUDNY Phone: 805-365-5042
Email: ISHAO@OTIE.COM

State: CA County: LOS ANGELES Place: CANOGA PARK
Delineated: Y
Delineated Method: WHITEPAINT
Address: Street: FALLBROOK AVE
X/ST 1: Schoenborn ST
MPM 1:
MPM 2:
Locat: CENTER OF STREET IN FRONT OF 8356 AND 8344 FALLBROOK AVE, CALLER STATES
: ADDRESSES ARE LOC N/OF SCHOENBORN ST

Excav Enters Into St/Sidewalk: Y

Grids: 0529H0213
Lat/Long : 34.223295/-118.623955 34.223273/-118.622961
: 34.220081/-118.624026 34.220059/-118.623032

Caller GPS:

Boring: Y Explosives: N Vacuum: N
Re-Mark: N

Work: CPT CONE PENETRATION TESTING
Wkend: N Night: N
Work date: 05/30/12 Time: 15:00 Priority: 2
Instruct: MARK BY Permit: 8904387-7-12
Done for: RAYTHEON CORPORATION

Tkt Exp: 06/27/12

COMMENTS

RESEND CHANGING START DATE AND TIME FROM 5/31 @ 9:00AM TO 5/30 @ 3:00PM
PER IRIS--[LLF 05/30/12 14:02]

Mbrs:
ATTD14LAN AT&T - DISTRIBUTION SBC DAMAGE PREVENTION HO 510-645-2929
CITYLA C/O LA-STREET LIGHTING FRONT OFFICE STAFF 323-913-4744
LAWP2 LA DEPT WTR & PWR-WTR,E,FIB O JEFF HOVEY 818-771-4068
SCG4U2 SC GAS - CANOGA GAS CO CALL CENTER 800-427-2200
UACWHI UTILIQUEST 4 AIRTOUCH AIRTOUCH CELLULAR REP 562-802-9443
UTWCNC10 UTILIQUEST/TIME WARNER-W CN SHAWN RIGGS 818-407-3152
WELL PERMIT APPLICATION - NON PRODUCTION WELLS

WATER QUALITY PROGRAM - ENVIRONMENTAL HEALTH DIVISION

5500 COMMERCE DRIVE, BALDWIN PARK, CA 91706 TELE (626) 340-5420 FAX (626) 813-3016

DATE: 4-4-2012

WELL LOCATION

<table>
<thead>
<tr>
<th>Site Address</th>
<th>City</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8433 Fallback Ave., Canoga Park, CA, 91304</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nearest Intersection</th>
<th>Thomas Guide Map Book/Page/Grid</th>
<th>Number of Wells in Each Parcel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallbrook Ave & Eccles St</td>
<td>529/G</td>
<td>6</td>
</tr>
</tbody>
</table>

WELL STRUCTURE

<table>
<thead>
<tr>
<th>Total Depth of Well</th>
<th>Depth of Well Casing</th>
<th>Sanitary / Annular Sealing Material</th>
<th>Depth of Sanitary / Annular Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maximum depth of CPT is 90 feet below grade and backfill boring with a cement-bentonite grout. No well constructed.</td>
<td>Conductor Casing Seal</td>
</tr>
</tbody>
</table>

OWNER INFORMATION

<table>
<thead>
<tr>
<th>Owner's Name</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raytheon Company (Daniel S. Samorano)</td>
<td>520-794-9026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1151 E. Hermans Rd., Bldg. 845, Tuscon, AZ 85706</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRILLER INFORMATION

<table>
<thead>
<tr>
<th>Driller's Name</th>
<th>Telephone Number</th>
<th>C-37 License Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregg Drilling and Testing, Inc.</td>
<td>562-427-6899, 562-485165</td>
<td>C-37 # 485165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2726 Walnut Ave., Signal Hill, CA 90755</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL DECOMMISSIONING INFORMATION

<table>
<thead>
<tr>
<th>Method of Assessment</th>
<th>Depth and Number of Perforations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type and Amount of Sealant</th>
<th>Type of Perforator</th>
<th>Size of Perforations</th>
<th>Method of Upper Seal Pressure Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSULTANT INFORMATION

<table>
<thead>
<tr>
<th>Company</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oneida Total Integrated Enterprises (OTIE), LLC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>317 East Main Street, Ventura, California 93001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Manager</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacques Marcillac</td>
<td>805-585-6382</td>
<td>805-585-2111</td>
</tr>
</tbody>
</table>

ATTENTION: WORK PLAN MODIFICATIONS MAY BE REQUIRED IF WELL AND GEOLOGIC CONDITIONS ENCOUNTERED AT THE SITE INSPECTION ARE FOUND TO DIFFER FROM THE SCOPE OF WORK PRESENTED TO THIS DEPARTMENT.

I hereby agree to comply in every respect with all the regulations of the County Environmental Health Division and with all ordinances and laws of the County of Los Angeles and the State of California pertaining to well construction, reconstruction, and decommissioning data deemed necessary by the County Environmental Health Division Of Los Angeles County.

Signature of Applicant: [Signature]

Printed Name: [Printed Name]

THIS PERMIT IS NOT COMPLETE UNTIL ALL OF THE FOLLOWING REQUIREMENTS ARE IDENTIFIED BY THE DEPUTY HEALTH OFFICER. WELL CONSTRUCTION OR DECOMMISSIONING CANNOT PROCEED WITHOUT A WORK PLAN APPROVAL FROM THIS DEPARTMENT.

WORK PLAN APPROVAL

This Approval is Valid for 180 Days

C113-06 DATE 04/17/12

Conditions:

- Permit # 890438-7-12 Observed work plan submitted.
- All field work must be conducted by or under a professional geologist in the state of Calif. Notify 48 hrs prior to start field work. A Juarez @ ph. location.

FINAL INSPECTION

The placement of the annular seal must be witnessed by a Deputy Health Officer for the permit to be valid. Contact this Department to arrange for an inspection

NOTICE

This well permit approval is limited to compliance with the California Well Standards and the Los Angeles County Code and does not grant any rights to construct, reconstruct, or decommission any well. The applicant is responsible for securing all other necessary permits such as: coastal commission, water rights, encroachment, utility lines detection, city public works division.

Revised: March 2012
APPLICATION / PERMIT FOR EXCAVATION IN OR ADJACENT TO PUBLIC STREETS UNDER CHAPTER 6, ARTICLE 2, LOS ANGELES MUNICIPAL CODE

JOB ADDRESS
8344 Fallbrook Ave, West Hill, CA

PROPERTY OWNER/CONTRACTOR/AGENT FOR
Oneida Total Integrated Enterprises, LLC

ADDRESS
317 E Main St

CITY
Ventura

STATE
CA

ZIP CODE
93001

TELEPHONE
805-585-2110

Purpose of Excavation
Soilboring

WORK ORDER NO.
LIAB. INS. C.A. NO. 20646

INSURANCE EXPIRES
2012-08-01 00:00:00.0

"A" PERMIT NO.
SURETY BOND C.A. NO. MISC. RECEIPT NO.

WAIVER REC. NO.
MISC. CASH BOND NO.

NOTICE TO PERMITTEE

PERMIT MUST BE ON JOB AT ALL TIMES.

THIS PERMIT EXPIRES 6 MONTHS FROM ISSUANCE UNLESS WORK HAS COMPLETED.

(LAMC 62.02)

KEEP SIDEWALKS AND GUTTERS CLEAR.

INFORMATION IS REQUIRED

I hereby agree to observe all requirements of the Municipal Code of the City of Los Angeles, all amendments therefor, and any special requirements made part of this permit.

Call Bureau of Contract Administration for inspection prior to commencing work: (213) 485-5080.

PRINT NAME
Oneida Total Integrated Enterprises, LLC

STREETS AFFECTED

GENERAL CONDITIONS:

WORK IN PUBLIC RIGHT OF WAY IS ALLOWED ONLY BETWEEN THE HOURS OF 9:00 A.M. AND 3:30 P.M.
PERMITTEE SHALL STOP WORK AND CONTACT THE PERMITTING AGENCY PRIOR TO CUTTING OR EXCAVATING ANY DECORATIVE SIDEWALK, PAVEMENT, OR CROSSWALK.

ANY DAMAGE TO DECORATIVE SIDEWALK, PAVEMENT, OR CROSSWALK MUST BE REPAIRED IN KIND OR RECONSTRUCTED IN KIND BY THE PERMITTEE, AS DIRECTED BY THE PERMITTING AGENCY, IN A MANNER SATISFACTORY TO THE CITY ENGINEER AND THE INSPECTOR OF PUBLIC WORKS.

INSPECTION

CALL BUREAU OF CONTRACT ADMINISTRATION FOR INSPECTION PRIOR TO COMMENCING WORK.

BUREAU OF CONTRACT ADMINISTRATION INSPECTION WORK MUST BE REQUESTED NO LATER THAN NOON OF PRECEDING WORK DAY. THE NUMBERS TO CALL FOR THE INSPECTION ARE:

JOB LOCATIONS IN SAN FERNANDO VALLEY: (818) 374-1188
JOB LOCATIONS NOT IN SAN FERNANDO VALLEY: (213) 485-5080

CALL FOR INSPECTION OF PERMANENT RESURFACING NO LATER THAN NOON OF THE PRECEDING WORK DAY.
APPENDIX D

Cone Penetration Testing Reports
April 17, 2012

OTIE
Attn: Lucas Budny

Subject: CPT Site Investigation
Canoga Park
California
GREGG Project Number: 12-731SH

Dear Mr. Budny:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cone Penetration Tests</td>
<td>(CPTU)</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Pore Pressure Dissipation Tests</td>
<td>(PPD)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Seismic Cone Penetration Tests</td>
<td>(SCPTU)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UVOST Laser Induced Fluorescence</td>
<td>(UVOST)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Sampling</td>
<td>(GWS)</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Soil Sampling</td>
<td>(SS)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vapor Sampling</td>
<td>(VS)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pressuremeter Testing</td>
<td>(PMT)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vane Shear Testing</td>
<td>(VST)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dilatometer Testing</td>
<td>(DMT)</td>
<td></td>
</tr>
</tbody>
</table>

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (562) 427-6899.

Sincerely,

Peter Robertson
Technical Director, Gregg Drilling & Testing, Inc.
Cone Penetration Test Sounding Summary

-Table 1-

<table>
<thead>
<tr>
<th>CPT Sounding Identification</th>
<th>Date</th>
<th>Termination Depth (Feet)</th>
<th>Depth of Groundwater Samples (Feet)</th>
<th>Depth of Soil Samples (Feet)</th>
<th>Depth of Pore Pressure Dissipation Tests (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT-AGW2011-1</td>
<td>4/12/12</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPT-AGW2011-2</td>
<td>4/12/12</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPT-AGW2011-3</td>
<td>4/12/12</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>49.9</td>
</tr>
<tr>
<td>CPT-BGW2011-1</td>
<td>4/17/12</td>
<td>42</td>
<td>56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPT-BGW2011-2</td>
<td>4/17/12</td>
<td>56</td>
<td>56</td>
<td>-</td>
<td>56.6</td>
</tr>
<tr>
<td>CPT-BGW2011-3</td>
<td>4/17/12</td>
<td>90</td>
<td>56, 72</td>
<td>-</td>
<td>89.7</td>
</tr>
</tbody>
</table>
Bibliography

Copies of ASTM Standards are available through www.astm.org
May 31, 2012

OTIE
Attn: Lucas Budny

Subject: CPT Site Investigation
Canoga Park
California
GREGG Project Number: 12-731SH – part 2

Dear Mr. Budny:

The following report presents the results of GREGG Drilling & Testing’s Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

<table>
<thead>
<tr>
<th></th>
<th>Cone Penetration Tests</th>
<th>(CPTU)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pore Pressure Dissipation Tests</td>
<td>(PPD)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Seismic Cone Penetration Tests</td>
<td>(SCPTU)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UVOST Laser Induced Fluorescence</td>
<td>(UVOST)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Sampling</td>
<td>(GWS)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Soil Sampling</td>
<td>(SS)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vapor Sampling</td>
<td>(VS)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pressuremeter Testing</td>
<td>(PMT)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vane Shear Testing</td>
<td>(VST)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dilatometer Testing</td>
<td>(DMT)</td>
<td></td>
</tr>
</tbody>
</table>

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (562) 427-6899.

Sincerely,

Peter Robertson
Technical Director, Gregg Drilling & Testing, Inc.
Cone Penetration Test Sounding Summary

-Table 1-

<table>
<thead>
<tr>
<th>CPT Sounding Identification</th>
<th>Date</th>
<th>Termination Depth (Feet)</th>
<th>Depth of Groundwater Samples (Feet)</th>
<th>Depth of Soil Samples (Feet)</th>
<th>Depth of Pore Pressure Dissipation Tests (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHBGW2012-CPT-3</td>
<td>5/30/12</td>
<td>80</td>
<td>48, 60</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Bibliography

Copies of ASTM Standards are available through www.astm.org
June 6, 2012

OTIE
Attn: Lucas Budny

Subject: CPT Site Investigation
Canoga Park
California
GREGG Project Number: 12-731SH – part 3

Dear Mr. Budny:

The following report presents the results of GREGG Drilling & Testing’s Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

<table>
<thead>
<tr>
<th></th>
<th>Cone Penetration Tests</th>
<th>(CPTU)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pore Pressure Dissipation Tests</td>
<td>(PPD)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Seismic Cone Penetration Tests</td>
<td>(SCPTU)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UVOST Laser Induced Fluorescence</td>
<td>(UVOST)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Sampling</td>
<td>(GWS)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Soil Sampling</td>
<td>(SS)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vapor Sampling</td>
<td>(VS)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pressuremeter Testing</td>
<td>(PMT)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vane Shear Testing</td>
<td>(VST)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dilatometer Testing</td>
<td>(DMT)</td>
<td></td>
</tr>
</tbody>
</table>

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (562) 427-6899.

Sincerely,

Peter Robertson
Technical Director, Gregg Drilling & Testing, Inc.
Cone Penetration Test Sounding Summary

-Table 1-

<table>
<thead>
<tr>
<th>CPT Sounding Identification</th>
<th>Date</th>
<th>Termination Depth (Feet)</th>
<th>Depth of Groundwater Samples (Feet)</th>
<th>Depth of Soil Samples (Feet)</th>
<th>Depth of Pore Pressure Dissipation Tests (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLBGW-2012-1</td>
<td>6/05/12</td>
<td>80</td>
<td>50, 64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FLBGW-2012-2</td>
<td>6/05/12</td>
<td>75</td>
<td>52, 62</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Bibliography

Copies of ASTM Standards are available through www.astm.org
The Cone Penetration Test (CPT) data collected from your site are presented in graphical form in the attached report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings extending greater than 50 feet, we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg Drilling & Testing Inc. do not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and do not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on field observations and/or CPT results, but should be verified by the user.

A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Note that it is not always possible to clearly identify a soil type based solely on \(q_t, f_s, \) and \(u_2 \). In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type.

(After Robertson, et al., 1986)
The Cone Penetration Test (CPT) data collected from your site are presented in graphical form in the attached report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings extending greater than 50 feet, we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg Drilling & Testing Inc. do not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and do not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on the field observations and/or CPT results, but should be verified by the user.

A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Note that it is not always possible to clearly identify a soil type based solely on \(q_t, f_s, \) and \(u_2 \). In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type.

![Figure SBTn](image)
Cone Penetration Testing Procedure (CPT)

Gregg Drilling carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, Figure CPT. The soundings were conducted using a 20 ton capacity cone with a tip area of 15 cm2 and a friction sleeve area of 225 cm2. The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.80.

The cone takes measurements of cone bearing (q_c), sleeve friction (f_s) and penetration pore water pressure (u_2) at 5-cm intervals during penetration to provide a nearly continuous log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2007) ASTM standards (D 5778-07).

The cone also contains a porous filter element located directly behind the cone tip (u_2). It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT’s) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with oil under vacuum pressure to ensure accurate and fast dissipation.

The cone has the following accuracy:
1 tsf for q_c, 0.02 tsf for f_s and 0.5 psi for u_2. In soft clays, a lower capacity cone should be used for improved accuracy.

When the soundings are complete, the test holes are grouted. The grouting procedures generally consist of pushing a hollow tremie pipe with a “knock out” plug to the termination depth of the CPT hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.
Cone Penetration Test (CPT) Interpretation

Gregg has recently updated their CPT interpretation and plotting software (2007). The software takes the CPT data and performs basic interpretation in terms of soil behavior type (SBT) and various geotechnical parameters using current published empirical correlations based on the comprehensive review by Lunne, Robertson and Powell (1997). The interpretation is presented in tabular format using MS Excel. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

The following provides a summary of the methods used for the interpretation. Many of the empirical correlations to estimate geotechnical parameters have constants that have a range of values depending on soil type, geologic origin and other factors. The software uses ‘default’ values that have been selected to provide, in general, conservatively low estimates of the various geotechnical parameters.

Input:
1. Units for display (Imperial or metric) (atm. pressure, pa = 0.96 tsf or 0.1 MPa)
2. Depth interval to average results, (ft or m). Data are collected at either 0.02 or 0.05m and can be averaged every 1, 3 or 5 intervals.
3. Elevation of ground surface (ft or m)
4. Depth to water table, zw (ft or m) – input required
5. Net area ratio for cone, a (default to 0.80)
6. Relative Density constant, CDr (default to 350)
7. Young’s modulus number for sands, α (default to 5)
8. Small strain shear modulus number
 a. for sands, SG (default to 180 for SBTn 5, 6, 7)
 b. for clays, CG (default to 50 for SBTn 1, 2, 3 & 4)
9. Undrained shear strength cone factor for clays, Nkt (default to 15)
10. Over Consolidation ratio number, kocr (default to 0.3)
11. Unit weight of water, (default to $\gamma_w = 62.4 \text{ lb/ft}^3$ or 9.81 kN/m3)

Column
1. Depth, z, (m) – CPT data is collected in meters
2. Depth (ft)
3. Cone resistance, qc (tsf or MPa)
4. Sleeve friction, fs (tsf or MPa)
5. Penetration pore pressure, u (psi or MPa), measured behind the cone (i.e. u2)
6. Other – any additional data, if collected, e.g. electrical resistivity or UVIF
7. Total cone resistance, qt (tsf or MPa) $q_t = qc + u (1-a)$
Friction Ratio, R_f (%)
$R_f = \left(\frac{f_s}{q_t}\right) \times 100\%$

Soil Behavior Type (non-normalized), SBT
see note

Unit weight, γ (pcf or kN/m3)
based on SBT, see note

Total overburden stress, σ_v (tsf)
$\sigma_{vo} = \gamma z$

Effective pore pressure, u_o (tsf)
$u_o = \gamma_w (z - z_w)$

Normalized overburden stress, σ'_vo (tsf)
$\sigma'_vo = \sigma_{vo} - u_o$

Normalized cone resistance, Q_{t1}
$Q_{t1} = \frac{(q_t - \sigma_{vo})}{\sigma'_vo}$

Normalized friction ratio, F_r (%)
$F_r = \frac{f_s}{(q_t - \sigma_{vo})} \times 100\%$

Normalized Pore Pressure ratio, B_q
$B_q = \frac{u - u_o}{(q_t - \sigma_{vo})}$

Soil Behavior Type (normalized), SBT$_n$
see note

SBT$_n$ Index, I_c
see note

Normalized Cone resistance, Q_{tn} (n varies with I_c) see note

Estimated permeability, k_{SBT} (cm/sec or ft/sec) see note

Equivalent SPT N_{60}, blows/ft
see note

Equivalent SPT $(N_1)_{60}$ blows/ft
see note

Estimated Relative Density, D_r, (%)
see note

Estimated Friction Angle, ϕ', (degrees)
see note

Estimated Young’s modulus, E_y (tsf)
see note

Estimated small strain Shear modulus, G_o (tsf) see note

Estimated Undrained shear strength, s_u (tsf) see note

Estimated Undrained strength ratio
s_u/σ_v'

Estimated Over Consolidation ratio, OCR see note

Notes:

1. Soil Behavior Type (non-normalized), SBT
 Lunne et al. (1997) listed below

2. Unit weight, γ either constant at 119 pcf or based on Non-normalized SBT
 (Lunne et al., 1997 and table below)

3. Soil Behavior Type (Normalized), SBT$_n$
 Lunne et al. (1997)

4. SBT$_n$ Index, I_c
 $I_c = \left(3.47 - \log Q_{t1}\right)^2 + \left(\log F_r + 1.22\right)^2 \times 0.5$

5. Normalized Cone resistance, Q_{tn} (n varies with I_c)

 $Q_{tn} = \left(\frac{q_t - \sigma_{vo}}{pa}\right) \left(\frac{pa}{\sigma'_vo}\right)^n$ and recalculate I_c, then iterate:

 - When $I_c < 1.64$,
 $n = 0.5$ (clean sand)
 - When $I_c > 3.30$,
 $n = 1.0$ (clays)
 - When $1.64 < I_c < 3.30$,
 $n = (I_c - 1.64) \times 0.3 + 0.5$

 Iterate until the change in n, $\Delta n < 0.01$
6 Estimated permeability, \(k_{SBT} \) (based on Normalized SBT\(_n\))
(Lunne et al., 1997 and table below)

7 Equivalent SPT \(N_{60} \), blows/ft

\[
\frac{(q/p_a)}{N_{60}} = 8.5 \left(1 - \frac{I_c}{4.6} \right)
\]

8 Equivalent SPT \((N_1)_{60}\) blows/ft

\[
(N_1)_{60} = N_{60} C_N,
\]

where \(C_N = (pa/\sigma'_{vo})^{0.5} \)

9 Relative Density, \(D_r \), (%)

\[
D_r^2 = \frac{Q_M}{C_D r}
\]

Only SBT\(_n\) 5, 6, 7 & 8

Show ‘N/A’ in zones 1, 2, 3, 4 & 9

10 Friction Angle, \(\phi' \), (degrees)

\[
\tan \phi' = \frac{1}{2.68} \left[\log \left(\frac{q_c}{\sigma'_{vo}} \right) + 0.29 \right]
\]

Only SBT\(_n\) 5, 6, 7 & 8

Show ‘N/A’ in zones 1, 2, 3, 4 & 9

11 Young’s modulus, \(E_s \)

\[
E_s = \alpha_q t
\]

Only SBT\(_n\) 5, 6, 7 & 8

Show ‘N/A’ in zones 1, 2, 3, 4 & 9

12 Small strain shear modulus, \(G_0 \)

\[G_0 = S_G (q_t \sigma'_{vo} pa)^{1/3}\]

\[G_0 = C_G q_t\]

For SBT\(_n\) 5, 6, 7

For SBT\(_n\) 1, 2, 3& 4

Show ‘N/A’ in zones 8 & 9

13 Undrained shear strength, \(s_u \)

\[
s_u = (q_t - \sigma_{vo}) / N_{kt}
\]

Only SBT\(_n\) 1, 2, 3, 4 & 9

Show ‘N/A’ in zones 5, 6, 7 & 8

14 Over Consolidation ratio, OCR

\[
OCR = k_{oc} Q_{t1}
\]

Only SBT\(_n\) 1, 2, 3, 4 & 9

Show ‘N/A’ in zones 5, 6, 7 & 8

SBT Zones

<table>
<thead>
<tr>
<th>SBT(_n) Zones</th>
<th>SBT(_n) Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sensitive fine grained</td>
<td>1 sensitive fine grained</td>
</tr>
<tr>
<td>2 organic soil</td>
<td>2 organic soil</td>
</tr>
<tr>
<td>3 clay</td>
<td>3 clay</td>
</tr>
<tr>
<td>4 clay & silty clay</td>
<td>4 clay & silty clay</td>
</tr>
<tr>
<td>5 clay & silty clay</td>
<td>5 clay & silty clay</td>
</tr>
<tr>
<td>6 sandy silt & clayey silt</td>
<td>6 sandy silt & clayey silt</td>
</tr>
<tr>
<td>7 silty sand & sandy silt</td>
<td>7 silty sand & sandy silt</td>
</tr>
<tr>
<td>8 sand & silty sand</td>
<td>8 sand & silty sand</td>
</tr>
<tr>
<td>9 sand</td>
<td>9 sand</td>
</tr>
<tr>
<td>10 sand</td>
<td>10 sand</td>
</tr>
</tbody>
</table>
very dense/stiff soil* very dense/stiff soil*
*heavily overconsolidated and/or cemented
Track when soils fall with zones of same description and print that description (i.e. if soils fall only within SBT zones 4 & 5, print ‘clays & silty clays’)

Estimated Permeability (see Lunne et al., 1997)

<table>
<thead>
<tr>
<th>SBT<sub>n</sub></th>
<th>Permeability (ft/sec)</th>
<th>(m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3x 10<sup>-8</sup></td>
<td>1x 10<sup>-8</sup></td>
</tr>
<tr>
<td>2</td>
<td>3x 10<sup>-7</sup></td>
<td>1x 10<sup>-7</sup></td>
</tr>
<tr>
<td>3</td>
<td>3x 10<sup>-6</sup></td>
<td>3x 10<sup>-10</sup></td>
</tr>
<tr>
<td>4</td>
<td>3x 10<sup>-8</sup></td>
<td>1x 10<sup>-8</sup></td>
</tr>
<tr>
<td>5</td>
<td>3x 10<sup>-6</sup></td>
<td>1x 10<sup>-6</sup></td>
</tr>
<tr>
<td>6</td>
<td>3x 10<sup>-4</sup></td>
<td>1x 10<sup>-4</sup></td>
</tr>
<tr>
<td>7</td>
<td>3x 10<sup>-2</sup></td>
<td>1x 10<sup>-2</sup></td>
</tr>
<tr>
<td>8</td>
<td>3x 10<sup>-6</sup></td>
<td>1x 10<sup>-6</sup></td>
</tr>
<tr>
<td>9</td>
<td>1x 10<sup>-8</sup></td>
<td>3x 10<sup>-9</sup></td>
</tr>
</tbody>
</table>

Estimated Unit Weight (see Lunne et al., 1997)

<table>
<thead>
<tr>
<th>SBT</th>
<th>Approximate Unit Weight (lb/ft<sup>3</sup>)</th>
<th>(kN/m<sup>3</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111.4</td>
<td>17.5</td>
</tr>
<tr>
<td>2</td>
<td>79.6</td>
<td>12.5</td>
</tr>
<tr>
<td>3</td>
<td>111.4</td>
<td>17.5</td>
</tr>
<tr>
<td>4</td>
<td>114.6</td>
<td>18.0</td>
</tr>
<tr>
<td>5</td>
<td>114.6</td>
<td>18.0</td>
</tr>
<tr>
<td>6</td>
<td>114.6</td>
<td>18.0</td>
</tr>
<tr>
<td>7</td>
<td>117.8</td>
<td>18.5</td>
</tr>
<tr>
<td>8</td>
<td>120.9</td>
<td>19.0</td>
</tr>
<tr>
<td>9</td>
<td>124.1</td>
<td>19.5</td>
</tr>
<tr>
<td>10</td>
<td>127.3</td>
<td>20.0</td>
</tr>
<tr>
<td>11</td>
<td>130.5</td>
<td>20.5</td>
</tr>
<tr>
<td>12</td>
<td>120.9</td>
<td>19.0</td>
</tr>
</tbody>
</table>
APPENDIX E

Field Documentation
Notes:
1) = feet; " = inches; bgs = below ground surface
GROUND SURFACE

Top of Dry Granular Bentonite (4.0)

Top of Filter Sand (5.0)

Bottom of Soil Vapor Implant (5.6)

Top of Hydrated Granular Bentonite (6.1)

Top of Dry Granular Bentonite (12.9)

Top of Filter Sand (13.9)

Bottom of Soil Vapor Implant (14.6)

Bottom of Boring (15.2)

Hydrated Granular Bentonite (Spec: WJOBEN)

Dry Granular Bentonite (Spec: WJOBEN)

Filter Sand (Spec: CEMEX #2/12)

Screen Implant (Spec: Steel) 14.45

NOT TO SCALE

Figure # S62011-1
Temporary Soil Vapor Implant
Schematic (Hole B)

Notes:
1) ' = feet; " = inches; bgs = below ground surface
Figure # 562 a1-2
Temporary Soil Vapor Implant
Schematic
(Hole A)

NOT TO SCALE

Notes:
1) ' = feet; " = inches; bgs = below ground surface
NOT TO SCALE

Figure # S6-2011-2
Temporary Soil Vapor Implant
Schematic (Hole B)

Date: 04-16-12

Notes:
1) `" = feet; " = inches; bgs = below ground surface

Project Site
Street Address, City, State
2007025-06-0620

OTIE
Ottawa Total Integrated Enterprises

File: well_schematics.dwg
NOT TO SCALE

Figure # SG 2011-3
Temporary Soil Vapor Implant Schematic (Hole A)

Project Site Caroga Park
Street Address, City, State
2009025-06-0620

Notes:
1) ’ = feet; * = inches; bgs = below ground surface
NOT TO SCALE

Temporary Soil Vapor Implant Schematic (Hok-B)

Notes:
1) ' = feet; " = inches; bgs = below ground surface
Soil Gas Sampling Log

Sample ID	Probe Installation Date/Time	Depth of Probe (ft)	Diameter of Boring (in)	Distance of Filter Pack (ft)	Top of Filter Pack (ft)	Distance of Dry Gasometer (ft)	Top of Dry Gasometer (ft)	Length of Dry Gasometer (ft)	Volume of Filter Pack and Dry Gasometer (cu ft)	Length of Tailing (ft)	Diameter of Tailing (ft)	Volume of Tailing (cu ft)	Total Porc Volumes (cu ft)	Porc Flow Rate (cu ft/min)	Pump Volume	Total Pump Time (min)	Natural Gas Meter Number	Flow Control Valve Number	Sample Flow Rate (gpm)	監测日期 Reading (in Hg)	Wind Pressure Reading (in Hg)	Topography	Boring Advance (ft)							
S6-2011-1-5	4/11/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-14-4	4/11/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-22-3	4/11/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-23-3	4/11/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-23-3	4/12/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-23-3	4/12/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-23-3	4/12/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-23-3	4/12/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
S6-2011-1-23-3	4/12/2011 08:27	10.0	3.00	2.00	9.0	1.0	9.0	8.0	0.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	4	8.0	5.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1

Notes
- **LEB**: TPV
- **CFT**: Core removed failed test
- **DPT**: Drill port taken
- **Tori**: Burst is 70% Isopropyl
MONITORING WELL PURGE/SAMPLE LOG

<table>
<thead>
<tr>
<th>Well Inspection Checklist:</th>
<th>Well Number: CM-10</th>
<th>Date: 4-30-12</th>
<th>Project No: 2009025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vault Cover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vault Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vault Lock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Completion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Lock/Seal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Depth to water: 44.78 feet
B. Total depth of well: 52 feet
C. Standing water in casing:
D. PID: ppm
Screened interval: to ft bgs
Inlet Timer: sec
Discharge Timer: sec
Pressure: psi

<table>
<thead>
<tr>
<th>Gallons/total purged volume (gal)</th>
<th>DTW (ft below casing)</th>
<th>Time</th>
<th>pH</th>
<th>Conduct. (µs/cm)</th>
<th>Turbidity (NTU)</th>
<th>DO (mg/L)</th>
<th>Temp (°C)</th>
<th>Salinity (%)</th>
<th>TDS (mg/L or g/L)</th>
<th>ORP (+/- mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.93</td>
<td>36.5</td>
<td>107.0</td>
<td>1.90</td>
<td>22.9</td>
<td>.2</td>
<td>2.3</td>
<td>+193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.91</td>
<td>36.0</td>
<td>96.8</td>
<td>9.6</td>
<td>.2</td>
<td>2.3</td>
<td>+195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 gals</td>
<td>7.91</td>
<td>36.0</td>
<td>93.2</td>
<td>9.5</td>
<td>.2</td>
<td>2.3</td>
<td>+196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.91</td>
<td>36.0</td>
<td>89.7</td>
<td>9.3</td>
<td>.2</td>
<td>2.3</td>
<td>+196</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stabilization Readings

- Bladder Pump
- Peristaltic
- Monsoon
- Other

Purging Device:
Sampling Device:
QA/QC Sample Collected Here:
QA/QC Sample ID:
Date/Time of QC Sample:
Sample ID:
Water Meter Used:
U-22-TN-01
U-22-TN-02
Troll
Other:

Additional Comments: Field blank = 1.245 hrs. crook in well, must be careful not to stick tools!
<table>
<thead>
<tr>
<th>Gallons/total purged volume (gal)</th>
<th>DTW (ft below casing)</th>
<th>Time</th>
<th>pH</th>
<th>Conduct. (mS/cm, µS/cm)</th>
<th>Turbidity (NTU)</th>
<th>DO (mg/L)</th>
<th>Temp (°C)</th>
<th>Salinity (%)</th>
<th>TDS (mg/L or g/L)</th>
<th>ORP (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8.06</td>
<td>3.77</td>
<td>49.8</td>
<td>78</td>
<td>22.9</td>
<td>3</td>
<td>2.4</td>
<td>-94</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8.01</td>
<td>3.79</td>
<td>46.2</td>
<td>1.69</td>
<td></td>
<td>3</td>
<td>2.4</td>
<td>-101</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8.00</td>
<td>3.79</td>
<td>44.3</td>
<td>1.67</td>
<td></td>
<td>3</td>
<td>2.6</td>
<td>-104</td>
<td></td>
</tr>
<tr>
<td>2'9'6'5</td>
<td>12.05</td>
<td>7.99</td>
<td>3.80</td>
<td>40.6</td>
<td>1.63</td>
<td></td>
<td>2</td>
<td>2.6</td>
<td>-128</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7.97</td>
<td>3.81</td>
<td>36.7</td>
<td>1.59</td>
<td></td>
<td>2</td>
<td>2.6</td>
<td>-129</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7.97</td>
<td>3.81</td>
<td>32.4</td>
<td>1.57</td>
<td></td>
<td>2</td>
<td>2.6</td>
<td>-129</td>
<td></td>
</tr>
</tbody>
</table>

Purging Device: □ Bladder Pump □ Peristaltic
Sampling Device: □ Bladder Pump □ Peristaltic
QA/QC Sample Collected Here? □ Duplicate □ Matrix Spike □ Equip. Blank □ No QA/QC Sample
QA/QC Sample ID:
Water Meter Used: U-22-TN-01 □ U-22-TN-02 □ Troll Other:
Date/Time of QC Sample: __________________________ Sample ID: __________________________
Additional Comments: ____________________________

OTIE
APPENDIX F

Analytical Laboratory Reports
Supplemental Report 1

CALSCIENCE
WORK ORDER NUMBER: 12-04-1150

The original report has been revised/corrected.

Analytical Report For

Client: OTIE

Client Project Name: Canoga Park / 2009025

Attention: Sarah Van Middlesworth
317 East Main Street
Ventura, CA 93001-2624

Virendra Patel
Project Manager

Approved for release on 04/25/2012 by:
Virendra Patel
Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the samples tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-33.3</td>
<td>Benzene</td>
<td>14</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>9.9</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>110</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>19</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>46000</td>
<td>500</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>88</td>
<td>24</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>69</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>11</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>33000</td>
<td>400</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>78</td>
<td>19</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-1-14.6</td>
<td>Tetrachloroethene</td>
<td>31</td>
<td>20</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>40000</td>
<td>1000</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-1-5.6</td>
<td>Acetone</td>
<td>120</td>
<td>25</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>9.0</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>21</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>31000</td>
<td>400</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>71</td>
<td>19</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-3-45.5</td>
<td>Acetone</td>
<td>180</td>
<td>20</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Butanone</td>
<td>11</td>
<td>1.5</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane</td>
<td>1.1</td>
<td>0.50</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>0.69</td>
<td>0.50</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>0.72</td>
<td>0.50</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>14</td>
<td>1.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

MDL is shown.
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-3-35.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>85</td>
<td>40</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>20</td>
<td>10</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>40</td>
<td>10</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>22</td>
<td>10</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>30000</td>
<td>500</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>100</td>
<td>30</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2011-3-25.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>73</td>
<td>32</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>22</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>51</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>27000</td>
<td>400</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>99</td>
<td>24</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2011-3-15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>83</td>
<td>16</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>24</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>15</td>
<td>12</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>5.7</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>71</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>5.6</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>27000</td>
<td>500</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>110</td>
<td>12</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG2011-3-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>160</td>
<td>32</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>20</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>36</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>19</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>24000</td>
<td>400</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>100</td>
<td>24</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MDL is shown.
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-2-47.1</td>
<td>Acetone</td>
<td>150</td>
<td>32</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>13</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>94</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>19</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>25000</td>
<td>500</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>58</td>
<td>24</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-35.1</td>
<td>Acetone</td>
<td>190</td>
<td>25</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>75</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>19000</td>
<td>250</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>43</td>
<td>19</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-25.0</td>
<td>Acetone</td>
<td>170</td>
<td>32</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>13</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>58</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>21</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>18000</td>
<td>500</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>52</td>
<td>24</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-14.9</td>
<td>Acetone</td>
<td>160</td>
<td>16</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>23</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>17</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o-Xylene</td>
<td>6.5</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p/m-Xylene</td>
<td>17</td>
<td>16</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>84</td>
<td>4.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>15000</td>
<td>200</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>47</td>
<td>12</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-6.0</td>
<td>Acetone</td>
<td>280</td>
<td>32</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>14</td>
<td>8.0</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>1600</td>
<td>16</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

MDL is shown.
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>160</td>
<td>25</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>9.5</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>90</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>13</td>
<td>6.2</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>38000</td>
<td>400</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>72</td>
<td>19</td>
<td>ppb (v/v)</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Subcontracted analyses, if any, are not included in this summary.

*MDL is shown.
Client Sample Number

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-33.3</td>
<td>12-04-1150-1-A</td>
<td>04/17/12 14:06</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/20/12 22:53</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>T-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>14</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>T-1,3-Dichloropropene</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>9.9</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromof orm</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>110</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Toluene</td>
<td>19</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>46000</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>88</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogates</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>87</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>96</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-24.5</td>
<td>12-04-1150-2-A</td>
<td>04/17/12 14:07</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/20/12 23:41</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>t-1,2-Dichloroethene</td>
<td>Benzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Ethylbenzene</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>t-1,3-Dichloropropene</td>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Hexachloro-1,3-Butadiene</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>t-1,3-Dichloropropene</td>
<td>Bromomethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>2-Hexanone</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>4-Ethyltoluene</td>
<td>2-Butanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Methylene Chloride</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>4-Methyl-2-Pentanone</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>o-Xylene</td>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Styrene</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>p/m-Xylene</td>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Styrene</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Tetrachloroethene</td>
<td>Chloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Toluene</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Trichloroethene</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Trichlorofluoromethane</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Trichlorofluoromethane</td>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>33000 400 400</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2,3-Trichloro-1,2,2-Trifluoroethane</td>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>78 19 12.5</td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,2-Dichloroethene</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,3,5-Trimethylbenzene</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2-Chloroethene</td>
<td>1,2-Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,1,2,2-Tetrachloroethane</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2-Dichloroethene</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2-Chloroethene</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2-Chloroethane</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2,4-Trichlorobenzene</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2-Dichloroethane</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2-Chloroethene</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
<td>C-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>m-Butyl Alcohol</td>
</tr>
<tr>
<td>C-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>m-Butyl Alcohol</td>
<td>C-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Isopropanol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogates:</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogates:</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>92</td>
<td>57-129</td>
<td>Qual</td>
<td>1,2-Dichloroethane-d4</td>
<td>100</td>
<td>47-137</td>
<td>Qual</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>92</td>
<td>78-156</td>
<td>Qual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>80</td>
<td>40</td>
<td></td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1-1,3-Dichloropropene</td>
<td>ND</td>
<td>40</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>60</td>
<td>40</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>60</td>
<td>40</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>80</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>80</td>
<td>40</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>200</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>80</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Tetrachloroethene</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>40000</td>
<td>1000</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1,1,1-Trichloroethylene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>80</td>
<td>40</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>1,2-Dichloroethylene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1,1,2,2-Tetrachloroethene</td>
<td>ND</td>
<td>40</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>80</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>80</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>20</td>
<td>40</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>200</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>113</td>
<td>57-129</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>96</td>
<td>78-156</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene-d4</td>
<td>100</td>
<td>47-137</td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>120</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>9.0</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>12</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>62</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>21</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>31000</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>71</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>12</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>62</td>
<td>12.5</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

- **REC (%):**
 - 1,4-Bromofluorobenzene: 106, Control Limits: 57-129
 - Toluene-d8: 97, Control Limits: 78-156

- **Qual:**
 - 1,2-Dichloroethane-d4: 102, Qual Limits: 47-137
<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-3-45.5</td>
<td>12-04-150-5-A</td>
<td>04/17/12 16:08</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 17:00</td>
<td>120421L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>180</td>
<td>20</td>
<td>10</td>
<td>Qual</td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.1</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>0.72</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.69</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>14</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluorohane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:
- 1,4-Bromofluorobenzene
 - REC (%): 96
 - Control Limits: 57-129
 - Qualifiers:

- Toluene-d8
 - REC (%): 97
 - Control Limits: 78-156
 - Qualifiers:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>85</td>
<td>40</td>
<td>20</td>
<td></td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>100</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Tetrachloroethene</td>
<td>40</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Toluene</td>
<td>22</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>10000</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td></td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>10</td>
<td>20</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>100</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>94</td>
<td>57-129</td>
<td></td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td>47-137</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Report

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-3-25.2</td>
<td>12-04-1150-7-A</td>
<td>04/17/12 15:29</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 03:39</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>73</td>
<td>32</td>
<td>16</td>
<td>1-1,2-Dichloroethene</td>
<td>Benzene</td>
<td>22</td>
<td>8.0</td>
<td>16</td>
<td>1-1,3-Dichloropropene</td>
</tr>
<tr>
<td>Benzene</td>
<td>22</td>
<td>8.0</td>
<td>16</td>
<td>Ethylbenzene</td>
<td>Benzyld Chloride</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>4-Ethyltoluene</td>
<td>Bromoform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Hexachloro-1,3-Butadiene</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>2-Hexanone</td>
<td>Bromomethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>Methylene Chloride</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>4-Methyl-2-Pentanone</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>p/m-Xylene</td>
<td>Chloroform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Styrene</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Tetrachloroethene</td>
<td>Chloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Toluene</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Trichloroethene</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Trichloroethane</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>99</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,1,1-Trichloroethane</td>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1,1,2-Trichloroethane</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,3,5-Trimethylbenzene</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,2,2-Tetrachloroethane</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,2,4-Trimethylbenzene</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,2,4-Trichlorobenzene</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Vinyl Acetate</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Vinyl Chloride</td>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>112</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td>47-137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>98</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>---------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>Acetone</td>
<td>16</td>
<td></td>
<td>8</td>
<td>7-1,2-Dichloroethene</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>4.0</td>
<td></td>
<td>8</td>
<td>1,1,1-Trichloroethane</td>
<td>27000</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>15</td>
<td></td>
<td>8</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>o-Xylene</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Styrene</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Tetrachloroethene</td>
<td>71</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Toluene</td>
<td>5.6</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>5.7</td>
<td></td>
<td>8</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Trichlorofluoromethane</td>
<td>110</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,1,1-Trichloroethane</td>
<td>27000</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>4.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td></td>
<td>8</td>
<td>Isopropanol</td>
<td>ND</td>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates: REC (%) Control Limits Qual

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>97</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>97</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

OTIE 04/18/12

Date Received: 04/18/12

Work Order No: 12-04-1150

Preparation: N/A

Method: EPA TO-15

Units: ppb (v/v)

Project: Canoga Park / 2009025

Client Sample Number

<table>
<thead>
<tr>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-3-6.0</td>
<td>12-04-1150-9-A</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 06:58</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>160</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>20</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Benzyldichloride</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>36</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Toluene</td>
<td>19</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>24000</td>
<td>400</td>
<td>400</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>100</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,2,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates:	REC (%)	Control Limits	Qual		Surrogates:	REC (%)	Control Limits	Qual	
-------------	---------	----------------	------						
1,4-Bromofluorobenzene	97	57-129	ND		1,2-Dichloroethane-d4	102	47-137	ND	
Toluene-d8	98	78-156	ND						

RL - Reporting Limit
DF - Dilution Factor
Qual - Qualifiers
Analytical Report

OTIE 04/18/12

Date Received: 04/18/12

Work Order No: 12-04-1150

Preparation: N/A

Method: EPA TO-15

Units: ppb (v/v)

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-2-47.1</td>
<td>12-04-1150-10-A</td>
<td>04/17/12 16:34</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 07:46</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>150</td>
<td>32</td>
<td>16</td>
<td>1</td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>13</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>1</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>1</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>o-Xylene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Styrene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Tetrachloroethene</td>
<td>94</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Toluene</td>
<td>19</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Trichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>58</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,2,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>1,2,4-Trichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1</td>
<td>Isopropanol</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogates:</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>105</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>95</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

Date Received: 04/18/12
Work Order No: 12-04-1150
Preparation: N/A
Method: EPA TO-15
Units: ppb (v/v)

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-2-35.1</td>
<td>12-04-1150-11-A</td>
<td>04/17/12 16:17</td>
<td>Air</td>
<td>GC/MS YY</td>
<td>N/A</td>
<td>04/23/12 15:02</td>
<td>120423L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>190</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>12</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>62</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>o-Xylene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Styrene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Tetrachloroethene</td>
<td>75</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Toluene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Trichlorofluoromethane</td>
<td>19000</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>43</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>12</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Isopropanol</td>
<td>ND</td>
<td>62</td>
<td>12.5</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>102</td>
<td>57-129</td>
<td>1,2-Dichloroethane-d4</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>99</td>
<td>78-156</td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

OTIE 04/18/12

Date Received: 04/18/12
Work Order No: 12-04-1150
Preparation: N/A
Method: EPA TO-15
Units: ppb (v/v)

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-2-25.0</td>
<td>12-04-1150-12-A</td>
<td>04/17/12 16:27</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 17:50</td>
<td>120421L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>170</td>
<td>32</td>
<td>16</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>13</td>
<td>8.0</td>
<td>16</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>o-Xylene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Styrene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Tetrachloroethene</td>
<td>58</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Toluene</td>
<td>21</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Trichlorofluoromethane</td>
<td>18000</td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,1,1-Trichloro-1,2,2-Trifluorothane</td>
<td>52</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1,1,2,2-Tetrafluoroethane</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>8.0</td>
<td>16</td>
<td>Isopropanol</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:
- **REC (%):** Control Limits
- **Qual:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>107</td>
<td>74-129</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>99</td>
<td>78-156</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>100</td>
<td>47-137</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:
- **REC (%):** Control Limits
- **Qual:**
Client Sample Number: SG2011-2-14.9

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>160</td>
<td>16</td>
<td>8</td>
<td>1,1,2-Dichloroethene ND 4.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>23</td>
<td>4</td>
<td>8</td>
<td>1,1,3-Dichloropropene ND 8.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td>Ethylbenzene 17</td>
<td>4.0</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>4-Ethyltoluene ND 4.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Hexachloro-1,3-Butadiene ND 12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>2-Hexanone ND 12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>12</td>
<td>8</td>
<td>Methyl-1-Butyl Ether (MTBE) ND 16</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td>Methylene Chloride ND 40</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>4-Methyl-2-Pentanone ND 12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>o-Xylene 6.5</td>
<td>4.0</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>p/m-Xylene ND 17</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorofrom</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Styrene ND 12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Tetrachloroethene ND 84</td>
<td>4.0</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichromochloromethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Toluene ND 4.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Trichloroethene ND 4.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Trichlorofluoromethane ND 15000</td>
<td>200</td>
<td>200</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane ND 47</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>1,1,1-Trichloroethane ND 40</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td>1,1,2-Trichloroethane ND 4.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>1,3,5-Trimethylbenzene ND 40</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>1,1,2,2-Tetrachloroethane ND 8.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>1,2,4-Trimethylbenzene ND 12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>1,2,4-Trichlorobenzene ND 16</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Vinyl Acetate ND 16</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Vinyl Chloride ND 4.0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>4</td>
<td>8</td>
<td>Isopropanol ND 40</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>102</td>
<td>57-129</td>
<td>Qual</td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>99</td>
<td>78-156</td>
<td>Qual</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- RL - Reporting Limit
- DF - Dilution Factor
- Qual - Qualifiers

Location Information:
- 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501
Client Sample Number

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>280</td>
<td>32</td>
<td>16</td>
<td></td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Tetrachloroethene</td>
<td>14</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>1600</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoaethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>8</td>
<td>16</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>80</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Parameter</th>
<th>REC (%)</th>
<th>Control Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-1,3-Dibromofluorobenzene</td>
<td>107</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>98</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Client Sample Number

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>160</td>
<td>25</td>
<td>12.5</td>
<td>Qual</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>9.5</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>12</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td>Qual</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Qual</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>62</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>o-Xylene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Styrene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>90</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Toluene</td>
<td>13</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Trichlorofluoromethane</td>
<td>38000</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>72</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Qual</td>
<td>1,1,2-Trichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>12</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>19</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>6.2</td>
<td>12.5</td>
<td>Qual</td>
<td>Isopropanol</td>
<td>ND</td>
<td>62</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control</td>
<td>Qual</td>
<td></td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control</td>
<td>Qual</td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>101</td>
<td>57-129</td>
<td>7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client Sample Number</td>
<td>Lab Sample Number</td>
<td>Date/Time Collected</td>
<td>Matrix</td>
<td>Instrument</td>
<td>Date Prepared</td>
<td>Date/Time Analyzed</td>
<td>QC Batch ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method Blank</td>
<td>095-01-021-10,002</td>
<td>N/A</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 15:45</td>
<td>120421L01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:
- 1,4-Bromofluorobenzene: REC (%) 105, Control Limits 57-129, Qual 1,2-Dichloroethene-d4: REC (%) 102, Control Limits 47-137
- Toluene-d8: REC (%) 99, Control Limits 78-156

Units: ppb (v/v)

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>0</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Styrene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Toluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoromethane</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>0</td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>Isopropanol</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates:
- **REC (%)**: Control Limits
- **Qual**: Qualifiers
- **Surrogates**:
 - 1,2-Dichloroethane-d4: 98 (47-137)
 - 1,4-Bromofluorobenzene: 95 (57-129)
 - Toluene-d8: 94 (78-156)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Styrene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Toluene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>Isopropanol</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Surrogates: REC (%) Control Limits Qual

1,4-Bromofluorobenzene 91 57-129 1,2-Dichloroethane-d4 98 47-137
Toluene-d8 94 78-156

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-33.3</td>
<td>Benzene</td>
<td>46</td>
<td>26</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>43</td>
<td>35</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>780</td>
<td>54</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>71</td>
<td>30</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>260000</td>
<td>2800</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>670</td>
<td>180</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-1-24.5</td>
<td>Tetrachloroethene</td>
<td>470</td>
<td>42</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>40</td>
<td>24</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>190000</td>
<td>2200</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>600</td>
<td>140</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-1-14.6</td>
<td>Tetrachloroethene</td>
<td>210</td>
<td>140</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>220000</td>
<td>5600</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-1-5.6</td>
<td>Acetone</td>
<td>300</td>
<td>59</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>29</td>
<td>20</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>140</td>
<td>42</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>170000</td>
<td>2200</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>550</td>
<td>140</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-3-45.5</td>
<td>Acetone</td>
<td>420</td>
<td>48</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Butanone</td>
<td>31</td>
<td>4.4</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane</td>
<td>2.3</td>
<td>1.0</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>3.4</td>
<td>2.5</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>2.7</td>
<td>1.9</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>81</td>
<td>5.6</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

MDL is shown.
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acetone</td>
<td>200</td>
<td>95</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>63</td>
<td>32</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>270</td>
<td>68</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>84</td>
<td>38</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>170000</td>
<td>2800</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>800</td>
<td>230</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>170</td>
<td>76</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>72</td>
<td>26</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>350</td>
<td>54</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>150000</td>
<td>2200</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>760</td>
<td>180</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>200</td>
<td>38</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>77</td>
<td>13</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2-Butanone</td>
<td>44</td>
<td>35</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>28</td>
<td>20</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>480</td>
<td>27</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>21</td>
<td>15</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>150000</td>
<td>2800</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>840</td>
<td>92</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>390</td>
<td>76</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>64</td>
<td>26</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>250</td>
<td>54</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>71</td>
<td>30</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>140000</td>
<td>2200</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>770</td>
<td>180</td>
<td>ug/m3</td>
<td></td>
<td>EPA TO-15</td>
<td>N/A</td>
</tr>
</tbody>
</table>

MDL is shown.
<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-2-47.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>350</td>
<td>76</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>41</td>
<td>26</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>640</td>
<td>54</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>73</td>
<td>30</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>140000</td>
<td>2800</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>440</td>
<td>180</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-35.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>460</td>
<td>59</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>510</td>
<td>42</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>110000</td>
<td>1400</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>330</td>
<td>140</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>400</td>
<td>76</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>41</td>
<td>26</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>390</td>
<td>54</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>79</td>
<td>30</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>100000</td>
<td>2800</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>400</td>
<td>180</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>390</td>
<td>38</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>74</td>
<td>13</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>74</td>
<td>17</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>28</td>
<td>17</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>p/m-Xylene</td>
<td>72</td>
<td>69</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>570</td>
<td>27</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>86000</td>
<td>1100</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>360</td>
<td>92</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SG2011-2-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>660</td>
<td>76</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>95</td>
<td>54</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>8900</td>
<td>90</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

*MDL is shown.
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1A-33.3</td>
<td>Acetone</td>
<td>380</td>
<td>59</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>31</td>
<td>20</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethene</td>
<td>610</td>
<td>42</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>49</td>
<td>24</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>220000</td>
<td>2200</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>550</td>
<td>140</td>
<td>ug/m3</td>
<td>EPA TO-15</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

*MDL is shown.

Subcontracted analyses, if any, are not included in this summary.
Analytical Report

OTIE 04/18/12

Date Received: 04/18/12
Work Order No: 12-04-1150
Preparation: N/A
Method: EPA TO-15
Units: ug/m³

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-33.3</td>
<td>12-04-1150-1-A</td>
<td>04/17/12 14:06</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/20/12 22:53</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>76</td>
<td>16</td>
<td>ND</td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>46</td>
<td>26</td>
<td>16</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>73</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>43</td>
<td>35</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>54</td>
<td>16</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>83</td>
<td>16</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>260</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>31</td>
<td>16</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>71</td>
<td>16</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>280</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>50</td>
<td>16</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>21</td>
<td>16</td>
<td>ND</td>
<td>P/m-Xylene</td>
<td>ND</td>
<td>140</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>17</td>
<td>16</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>780</td>
<td>54</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>68</td>
<td>16</td>
<td>ND</td>
<td>Toluene</td>
<td>71</td>
<td>30</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>40</td>
<td>16</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>43</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>260000</td>
<td>2800</td>
<td>500</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>670</td>
<td>180</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>61</td>
<td>16</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorotetrafluoromethane</td>
<td>ND</td>
<td>220</td>
<td>16</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>240</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>c1,3-Dichloropropene</td>
<td>ND</td>
<td>36</td>
<td>16</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>20</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>c1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>200</td>
<td>16</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>87</td>
<td>57-129</td>
<td>ND</td>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td>47-137</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>96</td>
<td>78-156</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit
DF - Dilution Factor
Qual - Qualifiers
Analytical Report

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-24.5</td>
<td>12-04-1150-2-A</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/20/12</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>59</td>
<td>12.5</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>20</td>
<td>12.5</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>57</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>97</td>
<td>12.5</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>42</td>
<td>12.5</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>65</td>
<td>12.5</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>200</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>24</td>
<td>12.5</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>55</td>
<td>12.5</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>90</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>78</td>
<td>12.5</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>220</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>39</td>
<td>12.5</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>o-Xylene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td>n-m-Xylene</td>
<td>ND</td>
<td>110</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>Styrene</td>
<td>ND</td>
<td>80</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>13</td>
<td>12.5</td>
<td>Tetrachloroethene</td>
<td>470</td>
<td>42</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>53</td>
<td>12.5</td>
<td>Toluene</td>
<td>40</td>
<td>24</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Trichloroethane</td>
<td>190000</td>
<td>2200</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>600</td>
<td>140</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromochloroethane</td>
<td>ND</td>
<td>48</td>
<td>12.5</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>170</td>
<td>12.5</td>
<td>1,1,2-Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>86</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>92</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>190</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>88</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>28</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Isopropanol</td>
<td>ND</td>
<td>150</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surrogates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>92</td>
<td>57-129</td>
<td>7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>92</td>
<td>78-156</td>
<td>7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>40</td>
<td></td>
<td></td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>40</td>
<td></td>
<td></td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>310</td>
<td>40</td>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td>87</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>130</td>
<td>40</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>210</td>
<td>40</td>
<td></td>
<td></td>
<td>2-Hexanone</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>78</td>
<td>40</td>
<td></td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>180</td>
<td>40</td>
<td></td>
<td></td>
<td>Methylene Chloride</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>250</td>
<td>40</td>
<td></td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>130</td>
<td>40</td>
<td></td>
<td></td>
<td>o-Xylene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>92</td>
<td>40</td>
<td></td>
<td></td>
<td>p/m-Xylene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>53</td>
<td>40</td>
<td></td>
<td></td>
<td>Styrene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td>Tetrachloroethene</td>
<td>210</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>41</td>
<td>40</td>
<td></td>
<td></td>
<td>Toluene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>170</td>
<td>40</td>
<td></td>
<td></td>
<td>Trichloroethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>99</td>
<td>40</td>
<td></td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>81</td>
<td>40</td>
<td></td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>79</td>
<td>40</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>150</td>
<td>40</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>560</td>
<td>40</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>120</td>
<td>40</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>81</td>
<td>40</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>92</td>
<td>40</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>120</td>
<td>40</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>120</td>
<td>40</td>
<td></td>
<td>Vinyl Acetate</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>91</td>
<td>40</td>
<td></td>
<td>Vinyl Chloride</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>79</td>
<td>40</td>
<td></td>
<td>Isopropanol</td>
<td>98</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Control Limits</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Control Limits</td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>113</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>100</td>
<td>47-137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>96</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>300</td>
<td>59</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>29</td>
<td>20</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,1-Trichloroethylene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>97</td>
<td>12.5</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>42</td>
<td>12.5</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>65</td>
<td>12.5</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>200</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>24</td>
<td>12.5</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>55</td>
<td>12.5</td>
<td>ND</td>
<td>Methyl-I-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>90</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>78</td>
<td>12.5</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>220</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>39</td>
<td>12.5</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td>ND</td>
<td>P/m-Xylene</td>
<td>ND</td>
<td>110</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>80</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>13</td>
<td>12.5</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>140</td>
<td>42</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>53</td>
<td>12.5</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>24</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>170000</td>
<td>2200</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>550</td>
<td>140</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>48</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,1-Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>170</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2-Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>86</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>92</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>ND</td>
<td>1,2,4-Trichloroethene</td>
<td>ND</td>
<td>190</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>39</td>
<td>12.5</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>88</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>28</td>
<td>12.5</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>57-129</td>
<td></td>
<td></td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>47-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>97</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

OTIE 04/18/12

Work Order No: 12-04-1150

Preparation: N/A

Method: EPA TO-15

Units: ug/m³

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-3-45.5</td>
<td>12-04-1150-5-A</td>
<td>04/17/12 16:08</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 17:00</td>
<td>120421L01</td>
</tr>
</tbody>
</table>

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>420</td>
<td>48</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>1.6</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>7.8</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.2</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>31</td>
<td>4.4</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.2</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>3.1</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>2.4</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>3.4</td>
<td>2.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>3.8</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>14</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates:

- **REC (%)**
- **Control Limits**
- **Qualifiers**

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>96</td>
<td>57-129</td>
<td>1</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>97</td>
<td>78-156</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Information

- RL - Reporting Limit
- DF - Dilution Factor
- Qual - Qualifiers
Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>200</td>
<td>95</td>
<td>20</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>63</td>
<td>32</td>
<td>20</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>91</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>160</td>
<td>20</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>43</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>67</td>
<td>20</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>49</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>100</td>
<td>20</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>320</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>39</td>
<td>20</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>120</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>88</td>
<td>20</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>140</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>120</td>
<td>20</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>350</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>63</td>
<td>20</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>120</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>46</td>
<td>20</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>43</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>26</td>
<td>20</td>
<td>ND</td>
<td>p,m-Xylene</td>
<td>ND</td>
<td>170</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>49</td>
<td>20</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>130</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>21</td>
<td>20</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>270</td>
<td>68</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>85</td>
<td>20</td>
<td>ND</td>
<td>Toluene</td>
<td>84</td>
<td>38</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>49</td>
<td>20</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>54</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>170000</td>
<td>2800</td>
<td>500</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td>ND</td>
<td>1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>800</td>
<td>230</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>77</td>
<td>20</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>55</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>280</td>
<td>20</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>55</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>60</td>
<td>20</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>49</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td>ND</td>
<td>1,1,2,2-Tetrafluoroethane</td>
<td>ND</td>
<td>140</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>46</td>
<td>20</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>150</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>60</td>
<td>20</td>
<td>ND</td>
<td>1,2,4-Trichloroethene</td>
<td>ND</td>
<td>300</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>60</td>
<td>20</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>140</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>C-1,3-Dichloropropene</td>
<td>ND</td>
<td>45</td>
<td>20</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>26</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>C-1,2-Dichloroethene</td>
<td>ND</td>
<td>40</td>
<td>20</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>250</td>
<td>20</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>94</td>
<td>57-129</td>
<td>ND</td>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td>47-137</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>95</td>
<td>78-156</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Acetone</td>
<td>76</td>
<td>16</td>
<td></td>
<td></td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>26</td>
<td>16</td>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>120</td>
<td>16</td>
<td></td>
<td></td>
<td>2-Ethylhexane</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>54</td>
<td>16</td>
<td></td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>83</td>
<td>16</td>
<td></td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>31</td>
<td>16</td>
<td></td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>71</td>
<td>16</td>
<td></td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>100</td>
<td>16</td>
<td></td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50</td>
<td>16</td>
<td></td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>37</td>
<td>16</td>
<td></td>
<td></td>
<td>1-Benzene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>21</td>
<td>16</td>
<td></td>
<td></td>
<td>2-Methyl-2-Pentanone</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>39</td>
<td>16</td>
<td></td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>17</td>
<td>16</td>
<td></td>
<td></td>
<td>Tetrachloroethene</td>
<td>350</td>
<td>54</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>68</td>
<td>16</td>
<td></td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>40</td>
<td>16</td>
<td></td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td>Trichloroethane</td>
<td>150000</td>
<td>2200</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>760</td>
<td>180</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>61</td>
<td>16</td>
<td></td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>220</td>
<td>16</td>
<td></td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>48</td>
<td>16</td>
<td></td>
<td></td>
<td>1,1,3-Trichlorobenzene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td>1,2,2,2-Tetrachloroethane</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>37</td>
<td>16</td>
<td></td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>48</td>
<td>16</td>
<td></td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>48</td>
<td>16</td>
<td></td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>36</td>
<td>16</td>
<td></td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
<td>1,2-Dichloroethene-d4</td>
<td>102</td>
<td>47-137</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>112</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethene-d4</td>
<td>102</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>98</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Client Sample Number

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>200</td>
<td>38</td>
<td>8</td>
<td></td>
<td>I-1,2-Dichloroethene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>77</td>
<td>13</td>
<td>8</td>
<td></td>
<td>I-1,3-Dichloropropene</td>
<td>ND</td>
<td>36</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Benzy1 Chloride</td>
<td>ND</td>
<td>62</td>
<td>8</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>27</td>
<td>8</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>41</td>
<td>8</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>130</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>49</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>44</td>
<td>35</td>
<td>8</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>58</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>50</td>
<td>8</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>140</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>25</td>
<td>8</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>49</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>18</td>
<td>8</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>11</td>
<td>8</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>69</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>51</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.3</td>
<td>8</td>
<td></td>
<td>Tetrachloroethene</td>
<td>480</td>
<td>27</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>34</td>
<td>8</td>
<td></td>
<td>Toluene</td>
<td>21</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>28</td>
<td>20</td>
<td>8</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>21</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>150000</td>
<td>2800</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>840</td>
<td>92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>31</td>
<td>8</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>110</td>
<td>8</td>
<td>8</td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>24</td>
<td>8</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>55</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>18</td>
<td>8</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>59</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>24</td>
<td>8</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>120</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>24</td>
<td>8</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>56</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>18</td>
<td>8</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>98</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>DF Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>DF Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>97</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethene-d4</td>
<td>101</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>97</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client Sample Number</td>
<td>Lab Sample Number</td>
<td>Date/Time Collected</td>
<td>Matrix</td>
<td>Instrument</td>
<td>Date Prepared</td>
<td>Date/Time Analyzed</td>
<td>QC Batch ID</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SG2011-3-6.0</td>
<td>12-04-1150-9-A</td>
<td>04/17/12 15:32</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 06:58</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>390</td>
<td>76</td>
<td>16</td>
<td></td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>64</td>
<td>26</td>
<td>16</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>73</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>54</td>
<td>16</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>83</td>
<td>16</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>260</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>31</td>
<td>16</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>71</td>
<td>16</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>280</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>50</td>
<td>16</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>21</td>
<td>16</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>140</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>17</td>
<td>16</td>
<td></td>
<td>Tetrachloroethene</td>
<td>250</td>
<td>54</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>68</td>
<td>16</td>
<td></td>
<td>Toluene</td>
<td>71</td>
<td>30</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>40</td>
<td>16</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>43</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>140000</td>
<td>2200</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>770</td>
<td>180</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>ND</td>
<td>61</td>
<td>16</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>220</td>
<td>16</td>
<td></td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>240</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>36</td>
<td>16</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>20</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>200</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates: REC (%) Control Limits Qual
1,4-Bromofluorobenzene 97 57-129 Qual
Toluene-d8 98 78-156

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>350</td>
<td>76</td>
<td>16</td>
<td>1-1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>41</td>
<td>26</td>
<td>16</td>
<td>1-1,3-Dichloropropene</td>
<td>ND</td>
<td>73</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND 120</td>
<td>16</td>
<td>16</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND 54</td>
<td>16</td>
<td>16</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND 83</td>
<td>16</td>
<td>16</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>260</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND 31</td>
<td>16</td>
<td>16</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND 71</td>
<td>16</td>
<td>16</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND 100</td>
<td>16</td>
<td>16</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>280</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND 50</td>
<td>16</td>
<td>16</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND 37</td>
<td>16</td>
<td>16</td>
<td>o-Xylene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND 21</td>
<td>16</td>
<td>16</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>140</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND 39</td>
<td>16</td>
<td>16</td>
<td>Styrene</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND 17</td>
<td>16</td>
<td>16</td>
<td>Tetrachloroethene</td>
<td>640</td>
<td>54</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND 68</td>
<td>16</td>
<td>16</td>
<td>Toluene</td>
<td>73</td>
<td>30</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND 40</td>
<td>16</td>
<td>16</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>43</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND 32</td>
<td>16</td>
<td>16</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>140000</td>
<td>2800</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND 32</td>
<td>16</td>
<td>16</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>440</td>
<td>180</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND 61</td>
<td>16</td>
<td>16</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND 220</td>
<td>16</td>
<td>16</td>
<td>1,1,2,2-Tetrafluoroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND 48</td>
<td>16</td>
<td>16</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND 32</td>
<td>16</td>
<td>16</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND 37</td>
<td>16</td>
<td>16</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND 48</td>
<td>16</td>
<td>16</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>240</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND 48</td>
<td>16</td>
<td>16</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1,3-Dichloropropene</td>
<td>ND 36</td>
<td>16</td>
<td>16</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>20</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1,2-Dichloroethene</td>
<td>ND 32</td>
<td>16</td>
<td>16</td>
<td>Isopropanol</td>
<td>ND</td>
<td>200</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>105</td>
<td>57-129</td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>95</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, **DF** - Dilution Factor, **Qual** - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>460</td>
<td>59</td>
<td>12.5</td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>20</td>
<td>12.5</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>57</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>97</td>
<td>12.5</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>42</td>
<td>12.5</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>65</td>
<td>12.5</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>200</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>24</td>
<td>12.5</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>55</td>
<td>12.5</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>90</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>78</td>
<td>12.5</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>220</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>39</td>
<td>12.5</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>o-Xylene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>110</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>Styrene</td>
<td>ND</td>
<td>80</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>13</td>
<td>12.5</td>
<td>Tetrachloroethene</td>
<td>510</td>
<td>42</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorochloromethane</td>
<td>ND</td>
<td>53</td>
<td>12.5</td>
<td>Toluene</td>
<td>ND</td>
<td>24</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Trichlorofluoromethane</td>
<td>110000</td>
<td>1400</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>330</td>
<td>140</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>48</td>
<td>12.5</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoromethane</td>
<td>ND</td>
<td>170</td>
<td>12.5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>86</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>92</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>190</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>88</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>28</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Isopropanol</td>
<td>ND</td>
<td>150</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>102</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>92</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>99</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

Date Received: 04/18/12
Work Order No: 12-04-1150
Preparation: N/A
Method: EPA TO-15
Units: ug/m3

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-2-25.0</td>
<td>12-04-1150-12-A</td>
<td>04/17/12 16:27</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12 17:50</td>
<td>120421L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>400</td>
<td>76</td>
<td>16</td>
<td>t-1,2-Dichloroethene</td>
</tr>
<tr>
<td>Benzene</td>
<td>41</td>
<td>26</td>
<td>16</td>
<td>1,1,3-Dichloropropene</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td>Ethylbenzene</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>54</td>
<td>16</td>
<td>4-Ethyltoluene</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>83</td>
<td>16</td>
<td>Hexachloro-1,3-Butadiene</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>31</td>
<td>16</td>
<td>2-Hexanone</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>71</td>
<td>16</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td>Methylene Chloride</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>50</td>
<td>16</td>
<td>4-Methyl-2-Pentanone</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td>o-Xylene</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>21</td>
<td>16</td>
<td>p/m-Xylene</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td>Styrene</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>17</td>
<td>16</td>
<td>Tetrachloroethene</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>68</td>
<td>16</td>
<td>Toluene</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>40</td>
<td>16</td>
<td>Trichloroethene</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>Trichlorofluoromethane</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>61</td>
<td>16</td>
<td>1,1,1-Trichloroethene</td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>220</td>
<td>16</td>
<td>1,1,2,2-Tetrachloroethane</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>1,3,5-Trimethylbenzene</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1,1,2,2-Tetrachloroethane</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td>1,2,4-Trimethylbenzene</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>1,2,4-Trichlorobenzene</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>Vinyl Acetate</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>36</td>
<td>16</td>
<td>Vinyl Chloride</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>Isopropanol</td>
</tr>
</tbody>
</table>

Surrogates: 1,4-Bromofluorobenzene: REC (%) = 107, Control Limits = 57-129
Toluene-d8: REC (%) = 99, Control Limits = 78-156

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>390</td>
<td>38</td>
<td>8</td>
<td></td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>74</td>
<td>13</td>
<td>8</td>
<td></td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>36</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>62</td>
<td>8</td>
<td></td>
<td>Ethylbenzene</td>
<td>74</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>27</td>
<td>8</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>41</td>
<td>8</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>130</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>49</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>35</td>
<td>8</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>58</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>50</td>
<td>8</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>140</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>25</td>
<td>8</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>49</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>18</td>
<td>8</td>
<td></td>
<td>o-Xylene</td>
<td>28</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>11</td>
<td>8</td>
<td></td>
<td>p/m-Xylene</td>
<td>72</td>
<td>69</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>51</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>8.3</td>
<td>8</td>
<td></td>
<td>Tetrachloroethene</td>
<td>570</td>
<td>27</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>34</td>
<td>8</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>21</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>86000</td>
<td>1100</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>360</td>
<td>92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>31</td>
<td>8</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>ND</td>
<td>110</td>
<td>8</td>
<td></td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>24</td>
<td>8</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>55</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>18</td>
<td>8</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>59</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>24</td>
<td>8</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>120</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>24</td>
<td>8</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>56</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>18</td>
<td>8</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>16</td>
<td>8</td>
<td></td>
<td>Isopropanol</td>
<td>ND</td>
<td>98</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>102</td>
<td>57-129</td>
<td></td>
<td>Isopropanol</td>
<td>101</td>
<td>47-137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>99</td>
<td>78-156</td>
<td></td>
<td>Isopropanol</td>
<td>101</td>
<td>47-137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>---------------</td>
<td>------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>Acetone</td>
<td>660</td>
<td>76</td>
<td>16</td>
<td></td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>26</td>
<td>16</td>
<td></td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>73</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>54</td>
<td>16</td>
<td></td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>83</td>
<td>16</td>
<td></td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>260</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>31</td>
<td>16</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>71</td>
<td>16</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>280</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>50</td>
<td>16</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>98</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>21</td>
<td>16</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>140</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>17</td>
<td>16</td>
<td></td>
<td>Tetrachloroethene</td>
<td>95</td>
<td>54</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>68</td>
<td>16</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>30</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>40</td>
<td>16</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>43</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>8900</td>
<td>90</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>180</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>61</td>
<td>16</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>44</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>220</td>
<td>16</td>
<td>1,1,2-Trichloroethane</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>39</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>37</td>
<td>16</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>120</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>240</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>48</td>
<td>16</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>110</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>36</td>
<td>16</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>20</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>32</td>
<td>16</td>
<td>Isopropanol</td>
<td>ND</td>
<td>200</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogates: REC (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surrogates: REC (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>107</td>
<td>57-129</td>
<td></td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>98</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Client Sample Number: SG2011-1A-33.3

Date/Time Collected: 04/17/12 16:22

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>380</td>
<td>59</td>
<td>12.5</td>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>31</td>
<td>20</td>
<td>12.5</td>
<td>t-1,2-Dichloropropene</td>
<td>ND</td>
<td>57</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>97</td>
<td>12.5</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>42</td>
<td>12.5</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>65</td>
<td>12.5</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>200</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>24</td>
<td>12.5</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>55</td>
<td>12.5</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>90</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>78</td>
<td>12.5</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>220</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>39</td>
<td>12.5</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>77</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>o-Xylene</td>
<td>ND</td>
<td>27</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>110</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>Styrene</td>
<td>ND</td>
<td>80</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>13</td>
<td>12.5</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>610</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>53</td>
<td>12.5</td>
<td>Toluene</td>
<td>ND</td>
<td>49</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Trichlorofluoromethane</td>
<td>220000</td>
<td>2200</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>550</td>
<td>140</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>48</td>
<td>12.5</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoromethane</td>
<td>ND</td>
<td>170</td>
<td>12.5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>34</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>31</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>86</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>29</td>
<td>12.5</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>92</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>190</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>38</td>
<td>12.5</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>88</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>28</td>
<td>12.5</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>16</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>25</td>
<td>12.5</td>
<td>Isopropanol</td>
<td>ND</td>
<td>150</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>REC (%)</th>
<th>Ctrl Limits</th>
<th>Qual</th>
<th>Surrogates</th>
<th>REC (%)</th>
<th>Ctrl Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>101</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>98</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OTIE 04/18/12
Date Received:
317 East Main Street 12-04-1150
Work Order No:
Ventura, CA 93001-2624
Preparation:
Method: EPA TO-15
Units: ug/m3

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>4.8</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>1.6</td>
<td>1</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>4.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>7.8</td>
<td>1</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>2.2</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.2</td>
<td>1</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>16</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>6.1</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>4.4</td>
<td>1</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>7.2</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.2</td>
<td>1</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>17</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>3.1</td>
<td>1</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>6.1</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>2.2</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>8.7</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>2.4</td>
<td>1</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>6.4</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.3</td>
<td>1</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.6</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>11</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>3.8</td>
<td>1</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorotetrafluoromethane</td>
<td>ND</td>
<td>14</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>7.4</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>15</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>7.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>12</td>
<td>1</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates: REC (%) Control Limits Qual
1,4-Bromofluorobenzene 105 57-129 1,2-Dichloroethane-d4 102 47-137
Toluene-d8 99 78-156

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>4.8</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>1.6</td>
<td>1</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>4.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>7.8</td>
<td>1</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>2.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.2</td>
<td>1</td>
<td>ND</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>6.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>4.4</td>
<td>1</td>
<td>ND</td>
<td>Methyl-2-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>7.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.2</td>
<td>1</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>3.1</td>
<td>1</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>6.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>2.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>8.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>2.4</td>
<td>1</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>6.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.3</td>
<td>1</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluorothene</td>
<td>ND</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>3.8</td>
<td>1</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>14</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,3-Trichloroethane</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>7.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>7.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>ND</td>
<td>Isopropanol</td>
<td>ND</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>95 77-129</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>98 47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>94 78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

OTIE 04/18/12
317 East Main Street
Ventura, CA 93001-2624

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>095-01-021-10,010</td>
<td>N/A</td>
<td>Air</td>
<td>GC/MS YY</td>
<td>N/A</td>
<td>04/23/12 14:17</td>
<td>120423L01</td>
</tr>
</tbody>
</table>

Method Blank

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>4.8</td>
<td>1</td>
<td>1</td>
<td>1-1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
<td>1-1,3-Dichloropropene</td>
<td>ND</td>
<td>4.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>7.8</td>
<td>1</td>
<td>1</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>2.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td>1</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>5.2</td>
<td>1</td>
<td>1</td>
<td>Hexachloro-1,3-Butadiene</td>
<td>ND</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td>1</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>6.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>4.4</td>
<td>1</td>
<td>1</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>7.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.2</td>
<td>1</td>
<td>1</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>3.1</td>
<td>1</td>
<td>1</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>6.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>1</td>
<td>o-Xylene</td>
<td>ND</td>
<td>2.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>8.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>2.4</td>
<td>1</td>
<td>1</td>
<td>Styrene</td>
<td>ND</td>
<td>6.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>3.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>4.3</td>
<td>1</td>
<td>1</td>
<td>Toluene</td>
<td>ND</td>
<td>1.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>5.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>3.8</td>
<td>1</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluorothane</td>
<td>ND</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1,1,2,2-Trichloroethane</td>
<td>ND</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>1</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>2.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>6.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>1</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>7.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>3.0</td>
<td>1</td>
<td>1</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>7.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>2.3</td>
<td>1</td>
<td>1</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>Isopropanol</td>
<td>ND</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogates:</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogates:</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>91</td>
<td>57-129</td>
<td></td>
<td>1,2-Dichloroethene-d4</td>
<td>98</td>
<td>47-137</td>
<td></td>
</tr>
<tr>
<td>Toluene-d8</td>
<td>94</td>
<td>78-156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Quality Control - LCS/LCS Duplicate

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>095-01-021-10,009</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/20/12</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>59.39</td>
<td>94</td>
<td>94</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>79.87</td>
<td>114</td>
<td>116</td>
<td>60-156</td>
<td>44-172</td>
<td>1</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>129.4</td>
<td>131</td>
<td>130</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>167.5</td>
<td>113</td>
<td>113</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>258.4</td>
<td>117</td>
<td>119</td>
<td>62-134</td>
<td>50-146</td>
<td>2</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>97.08</td>
<td>121</td>
<td>112</td>
<td>50-150</td>
<td>33-167</td>
<td>7</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>73.73</td>
<td>122</td>
<td>121</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>77.85</td>
<td>135</td>
<td>134</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>157.3</td>
<td>113</td>
<td>112</td>
<td>64-154</td>
<td>49-169</td>
<td>0</td>
<td>0-32</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>115.1</td>
<td>115</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>65.96</td>
<td>124</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>6</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>122.1</td>
<td>111</td>
<td>111</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>51.63</td>
<td>127</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>6</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>213.0</td>
<td>118</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>123.6</td>
<td>117</td>
<td>108</td>
<td>50-150</td>
<td>33-167</td>
<td>8</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Disisopropyl Ether (DIPE)</td>
<td>104.5</td>
<td>104</td>
<td>104</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>101.2</td>
<td>114</td>
<td>114</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>99.12</td>
<td>115</td>
<td>113</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td>192.1</td>
<td>119</td>
<td>121</td>
<td>54-144</td>
<td>39-159</td>
<td>2</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>174.8</td>
<td>102</td>
<td>94</td>
<td>50-150</td>
<td>33-167</td>
<td>8</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>150.3</td>
<td>113</td>
<td>112</td>
<td>34-160</td>
<td>13-181</td>
<td>0</td>
<td>0-47</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>101.2</td>
<td>113</td>
<td>112</td>
<td>69-153</td>
<td>55-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>115.5</td>
<td>118</td>
<td>118</td>
<td>67-157</td>
<td>52-172</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>150.3</td>
<td>118</td>
<td>118</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>150.3</td>
<td>118</td>
<td>117</td>
<td>36-156</td>
<td>16-176</td>
<td>0</td>
<td>0-47</td>
<td></td>
</tr>
<tr>
<td>c-1,1-Dichloropropene</td>
<td>113.5</td>
<td>118</td>
<td>120</td>
<td>61-157</td>
<td>45-173</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>99.12</td>
<td>112</td>
<td>114</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>99.12</td>
<td>109</td>
<td>109</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>t-1,3-Dichloropropene</td>
<td>113.5</td>
<td>129</td>
<td>130</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>188.4</td>
<td>91</td>
<td>90</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethyl-Butyl Ether (ETBE)</td>
<td>104.5</td>
<td>120</td>
<td>121</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>108.6</td>
<td>117</td>
<td>119</td>
<td>52-154</td>
<td>35-171</td>
<td>2</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td>122.9</td>
<td>116</td>
<td>118</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
</tbody>
</table>

RPD - Relative Percent Difference , CL - Control Limit
Quality Control - LCS/LCS Duplicate

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>095-01-201-10,009</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/20/12</td>
<td>120420L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexachloro-1,3-Butadiene</td>
<td>266.6</td>
<td>111</td>
<td>113</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>102.4</td>
<td>120</td>
<td>121</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>90.13</td>
<td>116</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>86.84</td>
<td>116</td>
<td>118</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-Pentanone</td>
<td>102.4</td>
<td>116</td>
<td>116</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>108.6</td>
<td>117</td>
<td>119</td>
<td>52-148</td>
<td>36-164</td>
<td>2</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>p/m-Xylene</td>
<td>217.1</td>
<td>121</td>
<td>122</td>
<td>42-156</td>
<td>23-175</td>
<td>1</td>
<td>0-41</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>106.5</td>
<td>115</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tert-Amyl-Methyl Ether (TAME)</td>
<td>104.5</td>
<td>119</td>
<td>121</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tert-Butyl Alcohol (TBA)</td>
<td>151.6</td>
<td>117</td>
<td>116</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>169.6</td>
<td>121</td>
<td>123</td>
<td>56-152</td>
<td>40-168</td>
<td>2</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>94.21</td>
<td>119</td>
<td>121</td>
<td>56-146</td>
<td>41-161</td>
<td>2</td>
<td>0-43</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>134.3</td>
<td>115</td>
<td>115</td>
<td>63-159</td>
<td>47-175</td>
<td>0</td>
<td>0-34</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>140.5</td>
<td>132</td>
<td>151</td>
<td>50-150</td>
<td>33-167</td>
<td>14</td>
<td>0-35</td>
<td>ME</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>191.6</td>
<td>115</td>
<td>114</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>136.4</td>
<td>112</td>
<td>113</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>136.4</td>
<td>112</td>
<td>116</td>
<td>65-149</td>
<td>51-163</td>
<td>1</td>
<td>0-37</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>122.9</td>
<td>117</td>
<td>119</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>171.6</td>
<td>119</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>122.9</td>
<td>119</td>
<td>119</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>185.5</td>
<td>114</td>
<td>115</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>88.03</td>
<td>111</td>
<td>110</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>63.91</td>
<td>118</td>
<td>109</td>
<td>45-177</td>
<td>23-199</td>
<td>8</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>1,1-Difluoroethane</td>
<td>67.54</td>
<td>119</td>
<td>119</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td>61.45</td>
<td>140</td>
<td>146</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 58
Total number of ME compounds : 1
Total number of ME compounds allowed : 3
LCS ME CL validation result : Pass

RPD - Relative Percent Difference, **CL** - Control Limit
Quality Control - LCS/LCS Duplicate

OTIE
317 East Main Street
Ventura, CA 93001-2624

Date Received: N/A
Work Order No: 12-04-1150
Preparation: N/A
Method: EPA TO-15

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>095-01-021-10,002</td>
<td>Air</td>
<td>GC/MS HH</td>
<td>N/A</td>
<td>04/21/12</td>
<td>120421L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>59.39</td>
<td>101</td>
<td>99</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>79.87</td>
<td>118</td>
<td>118</td>
<td>60-156</td>
<td>44-172</td>
<td>0</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>129.4</td>
<td>125</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>167.5</td>
<td>117</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>258.4</td>
<td>127</td>
<td>126</td>
<td>62-134</td>
<td>50-146</td>
<td>1</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>97.08</td>
<td>133</td>
<td>131</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>73.73</td>
<td>127</td>
<td>126</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>77.85</td>
<td>140</td>
<td>137</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>157.3</td>
<td>117</td>
<td>115</td>
<td>64-154</td>
<td>49-169</td>
<td>1</td>
<td>0-32</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>115.1</td>
<td>122</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloroethene</td>
<td>65.96</td>
<td>137</td>
<td>133</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>122.1</td>
<td>113</td>
<td>110</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>51.63</td>
<td>142</td>
<td>141</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>213.0</td>
<td>128</td>
<td>125</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>123.6</td>
<td>125</td>
<td>127</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Disisopropyl Ether (DIPE)</td>
<td>104.5</td>
<td>110</td>
<td>108</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>101.2</td>
<td>116</td>
<td>115</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>99.12</td>
<td>119</td>
<td>115</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>192.1</td>
<td>129</td>
<td>125</td>
<td>54-144</td>
<td>39-159</td>
<td>3</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>174.8</td>
<td>112</td>
<td>110</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>150.3</td>
<td>105</td>
<td>101</td>
<td>34-160</td>
<td>13-181</td>
<td>5</td>
<td>0-47</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>101.2</td>
<td>112</td>
<td>112</td>
<td>69-153</td>
<td>55-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>115.5</td>
<td>121</td>
<td>122</td>
<td>67-157</td>
<td>52-172</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>150.3</td>
<td>113</td>
<td>109</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>150.3</td>
<td>110</td>
<td>106</td>
<td>36-156</td>
<td>16-176</td>
<td>4</td>
<td>0-47</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>113.5</td>
<td>121</td>
<td>123</td>
<td>61-157</td>
<td>45-173</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>99.12</td>
<td>114</td>
<td>112</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>99.12</td>
<td>110</td>
<td>109</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>t-1,3-Dichloropropene</td>
<td>113.5</td>
<td>132</td>
<td>133</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>188.4</td>
<td>99</td>
<td>97</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethyl-t-Buty Ether (ETBE)</td>
<td>104.5</td>
<td>121</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>108.6</td>
<td>125</td>
<td>123</td>
<td>52-154</td>
<td>35-171</td>
<td>1</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td>122.9</td>
<td>114</td>
<td>111</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
</tbody>
</table>

RPD - Relative Percent Difference , CL - Control Limit
<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexachloro-1,3-Butadiene</td>
<td>266.6</td>
<td>127</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>8</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>102.4</td>
<td>130</td>
<td>123</td>
<td>50-150</td>
<td>33-167</td>
<td>6</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Methyl-I-Butyl Ether (MTBE)</td>
<td>90.13</td>
<td>116</td>
<td>115</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>86.84</td>
<td>119</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-Pentanone</td>
<td>102.4</td>
<td>120</td>
<td>120</td>
<td>50-150</td>
<td>33-167</td>
<td>0</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>108.6</td>
<td>122</td>
<td>121</td>
<td>52-148</td>
<td>36-164</td>
<td>1</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>p/m-Xylene</td>
<td>217.1</td>
<td>130</td>
<td>128</td>
<td>42-156</td>
<td>23-175</td>
<td>2</td>
<td>0-41</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>106.5</td>
<td>119</td>
<td>118</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tert-Amyl-Methyl Ether (TAME)</td>
<td>104.5</td>
<td>121</td>
<td>119</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tert-Butyl Alcohol (TBA)</td>
<td>151.6</td>
<td>119</td>
<td>116</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>169.6</td>
<td>129</td>
<td>125</td>
<td>56-152</td>
<td>40-168</td>
<td>3</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>94.21</td>
<td>128</td>
<td>124</td>
<td>56-146</td>
<td>41-161</td>
<td>4</td>
<td>0-43</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>134.3</td>
<td>118</td>
<td>118</td>
<td>63-159</td>
<td>47-175</td>
<td>1</td>
<td>0-34</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>140.5</td>
<td>97</td>
<td>94</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>191.6</td>
<td>118</td>
<td>116</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>136.4</td>
<td>112</td>
<td>111</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>136.4</td>
<td>117</td>
<td>120</td>
<td>65-149</td>
<td>51-163</td>
<td>2</td>
<td>0-37</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>122.9</td>
<td>115</td>
<td>111</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>171.6</td>
<td>121</td>
<td>117</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>122.9</td>
<td>114</td>
<td>110</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>185.5</td>
<td>123</td>
<td>115</td>
<td>50-150</td>
<td>33-167</td>
<td>7</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>88.03</td>
<td>115</td>
<td>113</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>63.91</td>
<td>131</td>
<td>128</td>
<td>45-177</td>
<td>23-199</td>
<td>2</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>1,1-Difluoroethane</td>
<td>67.54</td>
<td>126</td>
<td>123</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td>61.45</td>
<td>89</td>
<td>88</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 58
Total number of ME compounds : 0
Total number of ME compounds allowed : 3
LCS ME CL validation result : Pass
Quality Control - LCS/LCS Duplicate

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>095-01-021-10,010</td>
<td>Air</td>
<td>GC/MS YY</td>
<td>N/A</td>
<td>04/23/12</td>
<td>120423L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>59.39</td>
<td>101</td>
<td>103</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>79.87</td>
<td>96</td>
<td>97</td>
<td>60-156</td>
<td>44-172</td>
<td>1</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>129.4</td>
<td>112</td>
<td>115</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>167.5</td>
<td>96</td>
<td>97</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>258.4</td>
<td>126</td>
<td>127</td>
<td>62-134</td>
<td>50-146</td>
<td>0</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>97.08</td>
<td>94</td>
<td>97</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>73.73</td>
<td>99</td>
<td>102</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>77.85</td>
<td>119</td>
<td>122</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>157.3</td>
<td>107</td>
<td>108</td>
<td>64-154</td>
<td>49-169</td>
<td>1</td>
<td>0-32</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>115.1</td>
<td>103</td>
<td>104</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chlooroethane</td>
<td>65.96</td>
<td>96</td>
<td>99</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>122.1</td>
<td>93</td>
<td>95</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>51.63</td>
<td>88</td>
<td>90</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>213.0</td>
<td>112</td>
<td>114</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>123.6</td>
<td>91</td>
<td>93</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Disisopropyl Ether (DIPE)</td>
<td>104.5</td>
<td>90</td>
<td>95</td>
<td>50-150</td>
<td>33-167</td>
<td>5</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>101.2</td>
<td>102</td>
<td>106</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichlorethane</td>
<td>99.12</td>
<td>100</td>
<td>103</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>192.1</td>
<td>105</td>
<td>107</td>
<td>54-144</td>
<td>39-159</td>
<td>2</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>Dichlorotetrafluoroethane</td>
<td>174.8</td>
<td>79</td>
<td>81</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>150.3</td>
<td>99</td>
<td>98</td>
<td>34-160</td>
<td>13-181</td>
<td>1</td>
<td>0-47</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>101.2</td>
<td>98</td>
<td>101</td>
<td>69-153</td>
<td>55-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>115.5</td>
<td>106</td>
<td>108</td>
<td>67-157</td>
<td>52-172</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>150.3</td>
<td>98</td>
<td>94</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>150.3</td>
<td>98</td>
<td>94</td>
<td>36-156</td>
<td>16-176</td>
<td>4</td>
<td>0-47</td>
<td></td>
</tr>
<tr>
<td>c-1,3-Dichloropropene</td>
<td>113.5</td>
<td>101</td>
<td>102</td>
<td>61-157</td>
<td>45-173</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>99.12</td>
<td>97</td>
<td>99</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>99.12</td>
<td>93</td>
<td>95</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>t-1,3-Dichloropropene</td>
<td>113.5</td>
<td>111</td>
<td>112</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>188.4</td>
<td>69</td>
<td>78</td>
<td>50-150</td>
<td>33-167</td>
<td>12</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>108.6</td>
<td>96</td>
<td>97</td>
<td>52-154</td>
<td>35-171</td>
<td>2</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td>122.9</td>
<td>94</td>
<td>92</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
</tbody>
</table>

RPD - Relative Percent Difference, CL - Control Limit
Quality Control - LCS/LCS Duplicate

 OTIE
 317 East Main Street
 Ventura, CA 93001-2624

 Date Received: N/A
 Work Order No: 12-04-1150
 Preparation: N/A
 Method: EPA TO-15

 Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>095-01-021-10,010</td>
<td>Air</td>
<td>GC/MS YY</td>
<td>N/A</td>
<td>04/23/12</td>
<td>120423L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexachloro-1,3-Butadiene</td>
<td>266.6</td>
<td>148</td>
<td>152</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td>ME</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>102.4</td>
<td>108</td>
<td>111</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride (MTBE)</td>
<td>90.13</td>
<td>96</td>
<td>100</td>
<td>50-150</td>
<td>33-167</td>
<td>4</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride Chloride</td>
<td>86.84</td>
<td>101</td>
<td>104</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-Pentanone</td>
<td>102.4</td>
<td>105</td>
<td>106</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>108.6</td>
<td>95</td>
<td>96</td>
<td>52-148</td>
<td>36-164</td>
<td>1</td>
<td>0-38</td>
<td></td>
</tr>
<tr>
<td>p/m-Xylene</td>
<td>217.1</td>
<td>99</td>
<td>100</td>
<td>42-156</td>
<td>23-175</td>
<td>2</td>
<td>0-41</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>106.5</td>
<td>99</td>
<td>100</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tert-Amyl-Methyl Ether (TAME)</td>
<td>104.5</td>
<td>94</td>
<td>97</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tert-Butyl Alcohol (TBA)</td>
<td>151.6</td>
<td>103</td>
<td>104</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>169.6</td>
<td>118</td>
<td>120</td>
<td>56-152</td>
<td>40-168</td>
<td>2</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>94.21</td>
<td>98</td>
<td>101</td>
<td>56-146</td>
<td>41-161</td>
<td>2</td>
<td>0-43</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>134.3</td>
<td>94</td>
<td>96</td>
<td>63-159</td>
<td>47-175</td>
<td>2</td>
<td>0-34</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>140.5</td>
<td>93</td>
<td>95</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>191.6</td>
<td>101</td>
<td>103</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>136.4</td>
<td>96</td>
<td>99</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>136.4</td>
<td>95</td>
<td>97</td>
<td>65-149</td>
<td>51-163</td>
<td>1</td>
<td>0-37</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>122.9</td>
<td>95</td>
<td>93</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>171.6</td>
<td>99</td>
<td>97</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>122.9</td>
<td>95</td>
<td>93</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>185.5</td>
<td>136</td>
<td>138</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>88.03</td>
<td>93</td>
<td>96</td>
<td>50-150</td>
<td>33-167</td>
<td>3</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>63.91</td>
<td>91</td>
<td>94</td>
<td>45-177</td>
<td>23-199</td>
<td>3</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>1,1-Difluoroethane</td>
<td>67.94</td>
<td>101</td>
<td>103</td>
<td>50-150</td>
<td>33-167</td>
<td>2</td>
<td>0-35</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td>61.45</td>
<td>101</td>
<td>100</td>
<td>50-150</td>
<td>33-167</td>
<td>1</td>
<td>0-35</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 58
Total number of ME compounds : 1
Total number of ME compounds allowed : 3
LCS ME CL validation result : Pass
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Vacuum In</th>
<th>Vacuum Out</th>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG2011-1-33.3</td>
<td>-6.00</td>
<td>-29.80</td>
<td>D715</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-1-24.5</td>
<td>-5.00</td>
<td>-29.80</td>
<td>D671</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-1-14.6</td>
<td>-5.00</td>
<td>-29.80</td>
<td>D407</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-1-5.6</td>
<td>-6.00</td>
<td>-29.80</td>
<td>D466</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-3-45.5</td>
<td>-5.00</td>
<td>-29.60</td>
<td>D246</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-3-35.5</td>
<td>-4.00</td>
<td>-29.60</td>
<td>D869</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-3-25.2</td>
<td>-4.00</td>
<td>-29.60</td>
<td>D807</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-3-15.4</td>
<td>-3.00</td>
<td>-29.80</td>
<td>D347</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-3-6.0</td>
<td>-3.00</td>
<td>-29.60</td>
<td>D548</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-2-47.1</td>
<td>-4.00</td>
<td>-29.70</td>
<td>D209</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-2-35.1</td>
<td>-5.00</td>
<td>-29.60</td>
<td>D307</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-2-25.0</td>
<td>-5.00</td>
<td>-29.60</td>
<td>D767</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-2-14.9</td>
<td>-4.00</td>
<td>-29.60</td>
<td>D404</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-2-6.0</td>
<td>-5.50</td>
<td>-29.80</td>
<td>D080</td>
<td>Summa Canister 6L</td>
</tr>
<tr>
<td>SG2011-1A-33.3</td>
<td>-4.00</td>
<td>-29.80</td>
<td>D648</td>
<td>Summa Canister 6L</td>
</tr>
</tbody>
</table>

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501
Glossary of Terms and Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>See applicable analysis comment.</td>
</tr>
<tr>
<td><</td>
<td>Less than the indicated value.</td>
</tr>
<tr>
<td>></td>
<td>Greater than the indicated value.</td>
</tr>
<tr>
<td>1</td>
<td>Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>2</td>
<td>Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>3</td>
<td>Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>4</td>
<td>The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>5</td>
<td>The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.</td>
</tr>
<tr>
<td>6</td>
<td>Surrogate recovery below the acceptance limit.</td>
</tr>
<tr>
<td>7</td>
<td>Surrogate recovery above the acceptance limit.</td>
</tr>
<tr>
<td>B</td>
<td>Analyte was present in the associated method blank.</td>
</tr>
<tr>
<td>BU</td>
<td>Sample analyzed after holding time expired.</td>
</tr>
<tr>
<td>E</td>
<td>Concentration exceeds the calibration range.</td>
</tr>
<tr>
<td>ET</td>
<td>Sample was extracted past end of recommended max. holding time.</td>
</tr>
<tr>
<td>HD</td>
<td>The chromatographic pattern was inconsistent with the profile of the reference fuel standard.</td>
</tr>
<tr>
<td>HDH</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>HDL</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>J</td>
<td>Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.</td>
</tr>
<tr>
<td>ME</td>
<td>LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.</td>
</tr>
<tr>
<td>ND</td>
<td>Parameter not detected at the indicated reporting limit.</td>
</tr>
<tr>
<td>Q</td>
<td>Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.</td>
</tr>
<tr>
<td>SG</td>
<td>The sample extract was subjected to Silica Gel treatment prior to analysis.</td>
</tr>
<tr>
<td>X</td>
<td>% Recovery and/or RPD out-of-range.</td>
</tr>
<tr>
<td>Z</td>
<td>Analyte presence was not confirmed by second column or GC/MS analysis.</td>
</tr>
</tbody>
</table>

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number
LABORATORY CLIENT:
- **OTIE**
- **317 E Main St**
- **Ventura**, **CA**
- **93001**
- **TEL**: 805-585-2110
- **E-MAIL**:
- **ZIP**: 93001

CLIENT PROJECT NAME / NUMBER:
- **Cannabic Labs 2005025**

PROJECT CONTACT:
- **Sara L. Middlesworth**
- **SP#: 12-04-1156**

SPECIAL INSTRUCTIONS:
- **OTIE Specific EDDs**
- **SLIC# SL2043 T1572**
- **Used Isopropanol as a swab solvent**

REQUESTED ANALYSES

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>FIELD POINT NAME (FOR COELT EDF)</th>
<th>SAMPLING</th>
<th>WATER</th>
<th>NO. OF CONT.</th>
<th>TRH (60) or (OCS-390) OR (OCS-CA)</th>
<th>TRH (60)</th>
<th>BTEX / MTBE (OCS-29) OR (CCH)</th>
<th>VOCs (OCS-29)</th>
<th>Organics (OCS-8)</th>
<th>Volatile Aromatics (OCS-8)</th>
<th>Pesticides (OCS-8)</th>
<th>PAHs (OCS-8)</th>
<th>Volatile Phenols (OCS-9)</th>
<th>TPH (OCS-8)</th>
<th>TRH (OCS-10)</th>
<th>TRH (OCS-11)</th>
<th>TPH (OCS-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>662011-1-33.3</td>
<td>4-17-12</td>
<td>1406</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>662011-1-21.5</td>
<td>4-17-12</td>
<td>1407</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>662011-1-17.6</td>
<td>4-17-12</td>
<td>1409</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>662011-1-6.6</td>
<td>4-17-12</td>
<td>1449</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>662011-3-45.5</td>
<td>4-17-12</td>
<td>1406</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>662011-3-35.5</td>
<td>4-17-12</td>
<td>1409</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>662011-3-25.2</td>
<td>4-17-12</td>
<td>1449</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>662011-3-15.4</td>
<td>4-17-12</td>
<td>1450</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>662011-3-6.0</td>
<td>4-17-12</td>
<td>1451</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>662011-2-47.1</td>
<td>4-17-12</td>
<td>1452</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION:
White with final report, Green and Yellow to Client.
Please note that pages 1 and 2 of our TICs are printed on the reverse side of the Green and Yellow copies respectively.
Calscience Environmental Laboratories, Inc.

Lab Quality Control (COC) received 04/25/2012 at 14:07

Calscience Environmental Laboratories, Inc.

Lab Quality Control (COC) received 04/25/2012 at 14:07

Chain of Custody Record

Date: 4-17-2012

Page: 2 of 2

Laboratory Project Name/Number:

Client Project Name/Number:

P.O. No.:

Sample(s) (Print):

CoELT Log Code:

Cooler Receipt:

Temp:

Requested Analyses

<table>
<thead>
<tr>
<th>Lab Use Only</th>
<th>Sample ID</th>
<th>Field Point Name (for CoELT EDF)</th>
<th>Sampling</th>
<th>Matrix</th>
<th>No. of Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>562011-2-35.1</td>
<td>4-17-21</td>
<td>1617</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>562011-2-25.0</td>
<td>1627</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>562011-2-14.9</td>
<td>1615</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>562011-2-6.0</td>
<td>1726</td>
<td>Y</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>562011-1A-33.3</td>
<td>4-17-21</td>
<td>1622</td>
<td>A</td>
<td>1</td>
</tr>
</tbody>
</table>

Relinquished by:

Received by:

Date: 4/17/12

Time: 13:30

Relinquished by:

Received by:

Date: 4/18/12

Time: 18:00

Distribution: White with final report, Green and Yellow to Client.

Please note that pages 1 and 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

Revision: 05/01/07
REQUESTED ANALYSES

<table>
<thead>
<tr>
<th>SAMPLE ID</th>
<th>FIELD POINT NAME</th>
<th>SAMPLING DATE</th>
<th>SAMPLING TIME</th>
<th>MATRIX</th>
<th>NO. OF CONT</th>
<th>TPH (g)</th>
<th>TPH (mg/L)</th>
<th>TPH (mg/L)</th>
<th>TPH (mg/L)</th>
<th>TPH (mg/L)</th>
<th>TPH (mg/L)</th>
<th>TPH (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S62011-1-33.3</td>
<td></td>
<td>4-17-12</td>
<td>1406</td>
<td>A</td>
<td>1</td>
<td>X</td>
<td>-6.0 A86</td>
<td>-5.0 A34</td>
<td>-5.0 A304</td>
<td>-4.0 A255</td>
<td>-5.0 A106</td>
<td>-4.0 A152</td>
</tr>
<tr>
<td>S62011-1-29.5</td>
<td></td>
<td></td>
<td>1407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-1-19.6</td>
<td></td>
<td></td>
<td>1409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-1-6.6</td>
<td></td>
<td></td>
<td>1449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-3-45.5</td>
<td></td>
<td></td>
<td>1608</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-3-35.5</td>
<td></td>
<td></td>
<td>1527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-3-25.2</td>
<td></td>
<td></td>
<td>1529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-3-15.4</td>
<td></td>
<td></td>
<td>1530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-3-6.0</td>
<td></td>
<td></td>
<td>1529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62011-2-47.1</td>
<td></td>
<td>4-17-12</td>
<td>1634</td>
<td>A</td>
<td>1</td>
<td>X</td>
<td>-6.0 A86</td>
<td>-5.0 A34</td>
<td>-5.0 A304</td>
<td>-4.0 A255</td>
<td>-5.0 A106</td>
<td>-4.0 A152</td>
</tr>
</tbody>
</table>

Reinstated by: (Signature)
Received by: (Signature/Affiliation)
Date: 4/18/12
Time: 1330
Laboratory Client: OTIE
Address: 317 E Main St.
City: Ventura
State: CA
ZIP: 93001
Tel: 805-585-2110
E-mail:

Client Project Name / Number:
P.O. No.:

Project Contact:
Lab Use Only: O4-1150
Sampler(s): (Print):
COELT Log Code:
Cooler Receipt:
Temp: °C
Requested Analyses:

<table>
<thead>
<tr>
<th>Lab Use Only</th>
<th>Sample ID</th>
<th>Field Point Name (For COELT EDF)</th>
<th>Sampling Date</th>
<th>Sampling Time</th>
<th>Matrix</th>
<th>No. of Cont.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>56.2011-2-35.1</td>
<td>4-17-2011 1617</td>
<td>A 1</td>
<td></td>
<td>-50.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>56.2011-2-25.0</td>
<td>1627</td>
<td></td>
<td></td>
<td>-50.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>56.2011-2-14.9</td>
<td>1615</td>
<td></td>
<td></td>
<td>-4.0A123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>56.2011-2-6.0</td>
<td>1726</td>
<td>V</td>
<td></td>
<td>-55.420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>56.2011-1A-33.3</td>
<td>4-17-2011 1622</td>
<td>A 1</td>
<td></td>
<td>-4.0A323</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relinquished by: (Signature)
Received by: (Signature/Affiliation)
Date: 4/17/12
Time: 13:30

Relinquished by: (Signature)
Received by: (Signature/Affiliation)
Date: 4/18/12
Time: 18:00

DISTRIBUTION: White with final report, Green and Yellow to Client.
Please note that pages 1 and 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.
CLIENT: OTIE

DATE: 04/18/12

TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0°C – 6.0°C, not frozen)

Temperature ____· ___°C - 0.3°C (CF) = ____· ___°C [] Blank [] Sample

☐ Sample(s) outside temperature criteria (PM/APM contacted by: _____).

☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.

☐ Received at ambient temperature, placed on ice for transport by Courier.

Ambient Temperature: [] Air [] Filter

Initial: __________

CUSTODY SEALS INTACT:

☐ Cooler ☐ __________ [] No (Not Intact) [] Not Present [] N/A Initial: __________

☐ Sample ☐ __________ [] No (Not Intact) [] Not Present Initial: __________

SAMPLE CONDITION:

☐ Yes ☐ No [] N/A

Chain-Of-Custody (COC) document(s) received with samples…[X] [] []

COC document(s) received complete…[X] [] []

☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.

☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.

Sampler’s name indicated on COC…[X] [] []

Sample container label(s) consistent with COC…[X] [] []

Sample container(s) intact and good condition…[X] [] []

Proper containers and sufficient volume for analyses requested…[X] [] []

Analyses received within holding time…[X] [] []

pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours…[X] [] []

Proper preservation noted on COC or sample container…[X] [] []

☐ Unpreserved vials received for Volatiles analysis

Volatile analysis container(s) free of headspace…[X] [] []

Tedlar bag(s) free of condensation…[X] [] []

CONTAINER TYPE:

Solid: ☐ 4ozCGJ ☐ 8ozCGJ ☐ 16ozCGJ ☐ Sleeve (_____)[X] [] []

☐ EnCores® ☐ TerraCores® []

Water: ☐ VOA ☐ VOAh ☐ VOA n2 ☐ 125 AGB ☐ 125 AGBh ☐ 125 AGBp ☐ 1AGB ☐ 1AGB n2 ☐ 1AGBs

☐ 500 AGB ☐ 500 AGBJ ☐ 500AGJs ☐ 250 AGB ☐ 250 CGB ☐ 250 CGBs ☐ 1PB ☐ 1PB n2 ☐ 500 PB

☐ 250PB ☐ 250PBn ☐ 125PB ☐ 125PB znna ☐ 100PJ ☐ 100PJ n2 [] [] []

Air: ☐ Tedlar® ☐ Summa® []

☐ Other: [] [] []

Trip Blank Lot#: [] [] []

Labeled/Checked by: [] [] []

Reviewed by: [] [] []

Preservative: h: HCL n: HNO3 n2: Na2SO3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAC2+NaOH f: Filtered Scanned by: [] [] []
Analytical Report For

Client: OTIE

Client Project Name: Canoga Park / 2009025

Attention: Sarah Van Middlesworth
317 East Main Street
Ventura, CA 93001-2624

WORK ORDER NUMBER: 12-04-1151

Virendra Patel
Project Manager

Approved for release on 04/25/2012 by:
Virendra Patel
Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detections Summary</td>
<td>3</td>
</tr>
<tr>
<td>Client Sample Data</td>
<td>4</td>
</tr>
<tr>
<td>2.1 EPA 8260B Volatile Organics (Aqueous)</td>
<td>4</td>
</tr>
<tr>
<td>Quality Control Sample Data</td>
<td>9</td>
</tr>
<tr>
<td>3.1 MS/MSD and/or Duplicate</td>
<td>9</td>
</tr>
<tr>
<td>3.2 LCS/LCSD</td>
<td>10</td>
</tr>
<tr>
<td>Glossary of Terms and Qualifiers</td>
<td>11</td>
</tr>
<tr>
<td>Chain of Custody/Sample Receipt Form</td>
<td>12</td>
</tr>
</tbody>
</table>
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGW2011-3-56</td>
<td>Trichlorofluoromethane</td>
<td>29</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
<tr>
<td>BGW2011-3-72</td>
<td>Trichlorofluoromethane</td>
<td>28</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
<tr>
<td>BGW2011-1-56</td>
<td>Chloroform</td>
<td>2.6</td>
<td>1.0</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
</tbody>
</table>

Subcontracted analyses, if any, are not included in this summary.

MDL is shown.
Analytical Report

OTIE 04/18/12

Date Received:
04/18/12

Work Order No:
12-04-1151

Preparation:
EPA 5030C

Method:
EPA 8260B

Units:
ug/L

Project:
Canoga Park / 2009025

Client Sample Number: BGW2011-3-56

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>n-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,3-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>29</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>95</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>103</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>91</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>102</td>
<td>80-120</td>
<td>Qual</td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGW2011-3-72</td>
<td>12-04-1151-3-A</td>
<td>04/16/12 10:10</td>
<td>Aqueous</td>
<td>GC/MS Q</td>
<td>04/19/12</td>
<td>04/20/12 09:56</td>
<td>120419L02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td></td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylnbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylnbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylnbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Chloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Chloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>28</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Surrogates:

- **REC (%)**
- **Control Limits**
- **Qual**

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>96</td>
<td>80-120</td>
<td></td>
<td>Dibromofluoromethane</td>
<td>102</td>
<td>80-126</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>88</td>
<td>80-134</td>
<td></td>
<td>Toluene-d8</td>
<td>103</td>
<td>80-120</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- RL - Reporting Limit
- DF - Dilution Factor
- Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trifluorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trifluorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>93</td>
<td>80-120</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>88</td>
<td>80-134</td>
<td></td>
</tr>
</tbody>
</table>
Lab Sample Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td></td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylnbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylnbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylnbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,2,3-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>2.6</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2,3,4-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4,5,6-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-1,3-butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>93</td>
<td>80-120</td>
<td></td>
<td>Dibromomethane</td>
<td>103</td>
<td>80-120</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>90</td>
<td>80-134</td>
<td></td>
<td>Toluene-d8</td>
<td>103</td>
<td>80-120</td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

OTIE 04/18/12

Work Order No: 12-04-1151

Preparation: EPA 5030C

Method: EPA 8260B

Client Sample Number: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>ND</td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>2,2-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>n-Propyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromopropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2-Chloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>94</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>97</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>87</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>102</td>
<td>80-120</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Units: ug/L

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>MS %REC</th>
<th>MSD %REC</th>
<th>%REC CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>50.00</td>
<td>108</td>
<td>108</td>
<td>78-120</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50.00</td>
<td>85</td>
<td>88</td>
<td>67-139</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50.00</td>
<td>100</td>
<td>100</td>
<td>80-120</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>50.00</td>
<td>108</td>
<td>106</td>
<td>80-123</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50.00</td>
<td>92</td>
<td>93</td>
<td>76-120</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>50.00</td>
<td>98</td>
<td>97</td>
<td>76-130</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50.00</td>
<td>92</td>
<td>92</td>
<td>70-130</td>
<td>0</td>
<td>0-27</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50.00</td>
<td>104</td>
<td>102</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>50.00</td>
<td>108</td>
<td>108</td>
<td>72-126</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50.00</td>
<td>111</td>
<td>110</td>
<td>74-122</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>50.00</td>
<td>97</td>
<td>96</td>
<td>65-131</td>
<td>1</td>
<td>0-24</td>
<td></td>
</tr>
<tr>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>50.00</td>
<td>84</td>
<td>87</td>
<td>69-123</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
</tbody>
</table>

RPD - Relative Percent Difference, CL - Control Limit
<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>099-14-001-7,571</td>
<td>Aqueous</td>
<td>GC/MS Q</td>
<td>04/19/12</td>
<td>04/20/12</td>
<td>120419L02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD_CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>50.00</td>
<td>108</td>
<td>109</td>
<td>80-120</td>
<td>73-127</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50.00</td>
<td>90</td>
<td>91</td>
<td>66-138</td>
<td>54-150</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50.00</td>
<td>101</td>
<td>100</td>
<td>80-120</td>
<td>73-127</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>50.00</td>
<td>110</td>
<td>109</td>
<td>80-120</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50.00</td>
<td>94</td>
<td>94</td>
<td>80-120</td>
<td>73-127</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>50.00</td>
<td>99</td>
<td>97</td>
<td>80-129</td>
<td>72-137</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50.00</td>
<td>96</td>
<td>96</td>
<td>71-131</td>
<td>61-141</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50.00</td>
<td>104</td>
<td>104</td>
<td>80-123</td>
<td>73-130</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>50.00</td>
<td>108</td>
<td>110</td>
<td>79-121</td>
<td>72-128</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50.00</td>
<td>110</td>
<td>109</td>
<td>80-120</td>
<td>73-127</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>50.00</td>
<td>97</td>
<td>98</td>
<td>70-136</td>
<td>59-147</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>50.00</td>
<td>89</td>
<td>87</td>
<td>72-126</td>
<td>63-135</td>
<td>2</td>
<td>0-22</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 12
Total number of ME compounds : 0
Total number of ME compounds allowed : 1
LCS ME CL validation result : Pass
<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>See applicable analysis comment.</td>
</tr>
<tr>
<td><</td>
<td>Less than the indicated value.</td>
</tr>
<tr>
<td>></td>
<td>Greater than the indicated value.</td>
</tr>
<tr>
<td>1</td>
<td>Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>2</td>
<td>Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>3</td>
<td>Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>4</td>
<td>The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>5</td>
<td>The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.</td>
</tr>
<tr>
<td>6</td>
<td>Surrogate recovery below the acceptance limit.</td>
</tr>
<tr>
<td>7</td>
<td>Surrogate recovery above the acceptance limit.</td>
</tr>
<tr>
<td>B</td>
<td>Analyte was present in the associated method blank.</td>
</tr>
<tr>
<td>BU</td>
<td>Sample analyzed after holding time expired.</td>
</tr>
<tr>
<td>E</td>
<td>Concentration exceeds the calibration range.</td>
</tr>
<tr>
<td>ET</td>
<td>Sample was extracted past end of recommended max. holding time.</td>
</tr>
<tr>
<td>HD</td>
<td>The chromatographic pattern was inconsistent with the profile of the reference fuel standard.</td>
</tr>
<tr>
<td>HDH</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>HDL</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>J</td>
<td>Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.</td>
</tr>
<tr>
<td>ME</td>
<td>LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.</td>
</tr>
<tr>
<td>ND</td>
<td>Parameter not detected at the indicated reporting limit.</td>
</tr>
<tr>
<td>Q</td>
<td>Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.</td>
</tr>
<tr>
<td>SG</td>
<td>The sample extract was subjected to Silica Gel treatment prior to analysis.</td>
</tr>
<tr>
<td>X</td>
<td>% Recovery and/or RPD out-of-range.</td>
</tr>
<tr>
<td>Z</td>
<td>Analyte presence was not confirmed by second column or GC/MS analysis.</td>
</tr>
</tbody>
</table>

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number
WORK ORDER #: 12-04-50

SAMPLE RECEIPT FORM

CLIENT: OTIE
DATE: 04/18/12

TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen)
Temperature 2.0 °C - 0.3 °C (CF) = 2.3 °C
- Sample(s) outside temperature criteria (PM/APM contacted by: ____).
- Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.
- Received at ambient temperature, placed on ice for transport by Courier.

Ambient Temperature: □ Air □ Filter
Initial: [Signature]

CUSTODY SEALS INTACT:
□ Cooler □ __________ □ No (Not Intact) □ Not Present □ N/A
Initial: [Signature]

SAMPLE CONDITION:
Yes □ No □ N/A

- Chain-Of-Custody (COC) document(s) received with samples................….◇
- COC document(s) received complete..◇

- Collection date/time, matrix, and/or # of containers logged in based on sample labels.
- No analysis requested. □ Not relinquished. □ No date/time relinquished.

- Sampler's name indicated on COC...◇
- Sample container label(s) consistent with COC.................................◇
- Sample container(s) intact and good condition.....................................◇

- Proper containers and sufficient volume for analyses requested.............◇
- Analyses received within holding time...◇
- pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours□
- Proper preservation noted on COC or sample container........................◇

- Unprotected vials received for Volatiles analyses
- Volatile analysis container(s) free of headspace...................................◇
- Tedlar bag(s) free of condensation..◇

CONTAINER TYPE:
Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve (____) □ EnCores® □ TerraCores® □ ______
Water: □ VOA □ VOAh □ VOAa2 □ 125AGB □ 125AGBh □ 125AGBp □ 1AGB □ 1AGBna2 □ 1AGBs
□ 500AGB □ 500AGJ □ 500AGJs □ 250AGB □ 250CGB □ 250CGBs □ 1PB □ 1PBna □ 500PB
□ 250PB □ 250PBn □ 125PB □ 125PBznna □ 100PJ □ 100PJna2 □ ______ □ ______

Air: □ Tedlar® □ Summa® Other: □ ______ Trip Blank Lot#: ______ Labeled/Checked by: [Signature]
SAMPLE ANOMALY FORM

SAMPLES - CONTAINERS & LABELS:

☐ Sample(s) NOT RECEIVED but listed on COC

☐ Sample(s) received but NOT LISTED on COC

☐ Holding time expired – list sample ID(s) and test

☐ Insufficient quantities for analysis – list test

☐ Improper container(s) used – list test

☐ Improper preservative used – list test

☐ No preservative noted on COC or label – list test & notify lab

☐ Sample labels illegible – note test/container type

☐ Sample label(s) do not match COC – Note in comments
 ☐ Sample ID
 ☐ Date and/or Time Collected
 ☐ Project Information
 ☐ # of Container(s)
 ☐ Analysis

☐ Sample container(s) compromised – Note in comments
 ☐ Water present in sample container
 ☐ Broken

☐ Sample container(s) not labeled

☑ Air sample container(s) compromised – Note in comments
 ☐ Flat
 ☐ Very low in volume
 ☐ Leaking (Not transferred - duplicate bag submitted)
 ☐ Leaking (transferred into Calscience Tedlar® Bag*)
 ☐ Leaking (transferred into Client's Tedlar® Bag*)

☐ Other:

HEADSPACE – Containers with Bubble > 6mm or ¼ inch:

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Container ID(s)</th>
<th># of Vials Received</th>
<th>Sample #</th>
<th>Container ID(s)</th>
<th># of Vials Received</th>
<th>Sample #</th>
<th>Container ID(s)</th>
<th># of Cont. received</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-B</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

*Transferred at Client's request.

Initial / Date: PT 04/18/12
Analytical Report For

Client: OTIE

Client Project Name: Raytheon Canoga Park / 2009.025/0620

Attention: Kim Sawyer
317 East Main Street
Ventura, CA 93001-2624

WORK ORDER NUMBER: 12-04-1844

Virendra Patel
Project Manager

Approved for release on 05/1/2012 by:
Virendra Patel
Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.
Contents

1 Detections Summary ... 3

2 Client Sample Data ... 4
 2.1 EPA 8260B Volatile Organics (Aqueous) 4

3 Quality Control Sample Data .. 8
 3.1 MS/MSD and/or Duplicate ... 8
 3.2 LCS/LCSD ... 9

4 Glossary of Terms and Qualifiers 10

5 Chain of Custody/Sample Receipt Form 11
DETECTIONS SUMMARY

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-10 (12-04-1844-1)</td>
<td>Chloroform</td>
<td>1.1</td>
<td>1.0</td>
<td>ug/L</td>
<td></td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>35</td>
<td>10</td>
<td>ug/L</td>
<td></td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
</tr>
<tr>
<td>MW-31 (12-04-1844-2)</td>
<td>Trichlorofluoromethane</td>
<td>120</td>
<td>20</td>
<td>ug/L</td>
<td></td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
</tr>
</tbody>
</table>

Subcontracted analyses, if any, are not included in this summary.

MDL is shown.
Lab Sample Number

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-10</td>
<td>12-04-1844-1-A</td>
<td>04/30/12 11:10</td>
<td>Aqueous</td>
<td>GC/MS RR</td>
<td>05/01/12</td>
<td>05/01/12 12:18</td>
<td>120501L01</td>
</tr>
</tbody>
</table>

Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>ND</td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>2,2-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,1-Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>35</td>
<td>10</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogates</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>100</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>105</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>102</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>102</td>
<td>80-120</td>
<td>Qual</td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----------------------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td></td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>t-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Choroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,2,4-TCB</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-TCB</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
<td></td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>102</td>
<td>80-120</td>
<td></td>
<td></td>
<td>Dibromofluoromethane</td>
<td>104</td>
<td>80-126</td>
</tr>
<tr>
<td>1,2-Dichloroethene-d4</td>
<td>102</td>
<td>80-134</td>
<td></td>
<td></td>
<td>Toluene-d8</td>
<td>101</td>
<td>80-120</td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Field Blank

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Naphthalene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5</td>
<td>Qual</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>Qual</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Surrogates

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>101</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>104</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>102</td>
<td>80-120</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Notes:
- **RL** - Reporting Limit
- **DF** - Dilution Factor
- **Qual** - Qualifiers

Return to Contents
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>n-Butylibenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>sec-Butylibenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>tert-Butylibenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Naphthalene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Chloroethane-1,2-Chloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>101</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>106</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>105</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>103</td>
<td>80-120</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Units: ug/L

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501
<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>MS %REC</th>
<th>MSD %REC</th>
<th>%REC CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>50.00</td>
<td>100</td>
<td>100</td>
<td>78-120</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50.00</td>
<td>98</td>
<td>97</td>
<td>67-139</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50.00</td>
<td>93</td>
<td>92</td>
<td>80-120</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>50.00</td>
<td>98</td>
<td>97</td>
<td>80-123</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50.00</td>
<td>93</td>
<td>94</td>
<td>76-120</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>50.00</td>
<td>93</td>
<td>92</td>
<td>76-130</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50.00</td>
<td>96</td>
<td>97</td>
<td>70-130</td>
<td>0</td>
<td>0-27</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50.00</td>
<td>102</td>
<td>100</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>50.00</td>
<td>101</td>
<td>101</td>
<td>72-126</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50.00</td>
<td>99</td>
<td>100</td>
<td>74-122</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>50.00</td>
<td>115</td>
<td>117</td>
<td>65-131</td>
<td>1</td>
<td>0-24</td>
<td></td>
</tr>
<tr>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>50.00</td>
<td>99</td>
<td>100</td>
<td>69-123</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
</tbody>
</table>

RPD - Relative Percent Difference , CL - Control Limit
Quality Control - LCS/LCS Duplicate

Method: EPA 8260B

Raytheon Canoga Park / 2009.025/0620

Project: Raytheon Canoga Park / 2009.025/0620

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>099-14-001-7,669</td>
<td>Aqueous</td>
<td>GC/MS RR</td>
<td>05/01/12</td>
<td>05/01/12</td>
<td>120501L01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS %REC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>50.00</td>
<td>105</td>
<td>102</td>
<td>80-120</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50.00</td>
<td>100</td>
<td>100</td>
<td>66-138</td>
<td>54-150</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50.00</td>
<td>96</td>
<td>94</td>
<td>80-120</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>50.00</td>
<td>104</td>
<td>103</td>
<td>80-120</td>
<td>73-127</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50.00</td>
<td>99</td>
<td>96</td>
<td>80-120</td>
<td>73-127</td>
<td>4</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>50.00</td>
<td>97</td>
<td>95</td>
<td>80-129</td>
<td>72-137</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50.00</td>
<td>100</td>
<td>100</td>
<td>71-131</td>
<td>61-141</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50.00</td>
<td>106</td>
<td>102</td>
<td>80-123</td>
<td>73-130</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>50.00</td>
<td>106</td>
<td>103</td>
<td>79-121</td>
<td>72-128</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50.00</td>
<td>104</td>
<td>104</td>
<td>80-120</td>
<td>73-127</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>50.00</td>
<td>119</td>
<td>119</td>
<td>70-136</td>
<td>59-147</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>50.00</td>
<td>106</td>
<td>106</td>
<td>72-126</td>
<td>63-135</td>
<td>0</td>
<td>0-22</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 12
Total number of ME compounds : 0
Total number of ME compounds allowed : 1
LCS ME CL validation result : Pass
Glossary of Terms and Qualifiers

Work Order Number: 12-04-1844

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>See applicable analysis comment.</td>
</tr>
<tr>
<td><</td>
<td>Less than the indicated value.</td>
</tr>
<tr>
<td>></td>
<td>Greater than the indicated value.</td>
</tr>
<tr>
<td>1</td>
<td>Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>2</td>
<td>Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>3</td>
<td>Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>4</td>
<td>The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>5</td>
<td>The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.</td>
</tr>
<tr>
<td>6</td>
<td>Surrogate recovery below the acceptance limit.</td>
</tr>
<tr>
<td>7</td>
<td>Surrogate recovery above the acceptance limit.</td>
</tr>
<tr>
<td>B</td>
<td>Analyte was present in the associated method blank.</td>
</tr>
<tr>
<td>BU</td>
<td>Sample analyzed after holding time expired.</td>
</tr>
<tr>
<td>E</td>
<td>Concentration exceeds the calibration range.</td>
</tr>
<tr>
<td>ET</td>
<td>Sample was extracted past end of recommended max. holding time.</td>
</tr>
<tr>
<td>HD</td>
<td>The chromatographic pattern was inconsistent with the profile of the reference fuel standard.</td>
</tr>
<tr>
<td>HDH</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>HDL</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>J</td>
<td>Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.</td>
</tr>
<tr>
<td>ME</td>
<td>LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.</td>
</tr>
<tr>
<td>ND</td>
<td>Parameter not detected at the indicated reporting limit.</td>
</tr>
<tr>
<td>Q</td>
<td>Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.</td>
</tr>
<tr>
<td>SG</td>
<td>The sample extract was subjected to Silica Gel treatment prior to analysis.</td>
</tr>
<tr>
<td>X</td>
<td>% Recovery and/or RPD out-of-range.</td>
</tr>
<tr>
<td>Z</td>
<td>Analyte presence was not confirmed by second column or GC/MS analysis.</td>
</tr>
</tbody>
</table>

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number
** OTIE SPECIFIC EDD/COELT EDF **

24 HR. TURNAROUND TIME

<table>
<thead>
<tr>
<th>LAB USE ONLY</th>
<th>SAMPLE ID</th>
<th>Field Point Name</th>
<th>SAMPLING DATE</th>
<th>SAMPLING TIME</th>
<th>MATRIX</th>
<th>EC OF CONT.</th>
<th>CONTAINER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CM-10</td>
<td>CM-10</td>
<td>04/30/12</td>
<td>110</td>
<td>GW</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>MW-31</td>
<td>MW-31</td>
<td>04/30/12</td>
<td>1205</td>
<td>GW</td>
<td>3</td>
<td>X</td>
</tr>
</tbody>
</table>

4/30/12 H20 3

Reiniquished by: (Signature)
Received by: (Signature)
Date: 4/30/12
Time: 14:00

Page 11 of 12
SAMPLE RECEIPT FORM

WORK ORDER #: 12-04-844

CLIENT: O Tie
DATE: 04/30/12

TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen)

- Temperature $\frac{V}{2} \cdot 7°C - 0.3°C (CF) = \frac{V}{2} \cdot 4°C$
- **☐ Blank**
- **☐ Sample**

- **☐** Sample(s) outside temperature criteria (PM/APM contacted by: _____).
- **☐** Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.
- **☐** Received at ambient temperature, placed on ice for transport by Courier.

Ambient Temperature:
- **☐ Air**
- **☐ Filter**

Initial:

CUSTODY SEALS INTACT:

- **☐ Cooler**
- **☐** Sample
- **☐ No (Not Intact)**
- **☐ Not Present**
- **☐ N/A**

Initial:

SAMPLE CONDITION:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

- **☐** Chain-Of-Custody (COC) document(s) received with samples.
- **☐** COC document(s) received complete.

- **☐** Collection date/time, matrix, and/or # of containers logged in based on sample labels.
- **☐** No analysis requested.
- **☐** Not relinquished.
- **☐** No date/time relinquished.

- **☐** Sampler’s name indicated on COC.
- **☐** Sample container label(s) consistent with COC.
- **☐** Sample container(s) intact and good condition.

- **☐** Proper containers and sufficient volume for analyses requested.
- **☐** Analyses received within holding time.
- **☐** pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours.

- **☐** Proper preservation noted on COC or sample container.
- **☐** Unpreserved vials received for Volatiles analysis.
- **☐** Volatile analysis container(s) free of headspace.
- **☐** Tedlar bag(s) free of condensation.

CONTAINER TYPE:

- **Solid:**
 - **☐** 4ozCGJ
 - **☐** 8ozCGJ
 - **☐** 16ozCGJ
 - **☐** Sleeve (____)
 - **☐** EnCores®
 - **☐** TerraCores®

- **Water:**
 - **☐** VOA
 - **☐** VOAa2
 - **☐** 125AGB
 - **☐** 125AGBh
 - **☐** 125AGBp
 - **☐** 1AGB
 - **☐** 1AGBna2
 - **☐** 1AGBs

 - **☐** 500AGB
 - **☐** 500AGJ
 - **☐** 500AGJs
 - **☐** 250AGB
 - **☐** 250CGB
 - **☐** 250CGBs
 - **☐** 1PB
 - **☐** 1PBna
 - **☐** 500PB

 - **☐** 250PB
 - **☐** 250PBn
 - **☐** 125PB
 - **☐** 125PBznna
 - **☐** 100PJ
 - **☐** 100PJna2

- **Air:**
 - **☐** Tedlar®
 - **☐** Summa®
 - **☐** Other: ____

- **Trip Blank Lot#:**

Labeled/Checked by:

Reviewed by:

- **Container:** C: Clear
 A: Amber
 P: Plastic
 G: Glass
 J: Jar
 B: Bottle
 Z: Ziploc/Resealable Bag
 E: Envelope

- **Preservative:** h: HCL
 n: HNO3
 na2Na2S2O3
 na: NaOH
 p: H3PO4
 s: H2SO4
 u: Ultra-pure znna: ZnAC2+NaOH
 f: Filtered
 S: Scanned

SOP T100_090 (12/06/11)
CALSCIENCE
WORK ORDER NUMBER: 12-05-2127

Analytical Report For
Client: OTIE
Client Project Name: Raytheon Canoga Park / 2009025
Attention: Sarah Van Middlesworth
317 East Main Street
Ventura, CA 93001-2624

Approved for release on 06/7/2012 by:
Virendra Patel
Project Manager

The difference is service

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Detections Summary</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Client Sample Data</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>EPA 8260B Volatile Organics (Aqueous)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Quality Control Sample Data</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>MS/MSD and/or Duplicate</td>
<td>9</td>
</tr>
<tr>
<td>3.2</td>
<td>LCS/LCSD</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Glossary of Terms and Qualifiers</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Chain of Custody/Sample Receipt Form</td>
<td>12</td>
</tr>
</tbody>
</table>
DETECTIONS SUMMARY

Client Sample ID

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichlorofluoromethane</td>
<td>11</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
</tbody>
</table>

Subcontracted analyses, if any, are not included in this summary.

MDL is shown.
<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCTB20120530</td>
<td>12-05-2127-1-A</td>
<td>05/30/12 12:00</td>
<td>Aqueous</td>
<td>GC/MS Q</td>
<td>06/01/12</td>
<td>06/02/12 02:55</td>
<td>120601L03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Naphthalene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4,Trifluorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>99</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>109</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>105</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>101</td>
<td>80-120</td>
<td>Qual</td>
</tr>
</tbody>
</table>

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers
Parameter	**Result**	**RL**	**DF**	**Qual**	**Parameter**	**Result**	**RL**	**DF**	**Qual**
Acetone | ND | 20 | 1 | ND | 1,3-Dichloropropane | ND | 1.0 | 1 |
Benzen | ND | 0.50 | 1 | ND | 2,2-Dichloropropane | ND | 1.0 | 1 |
Bromobenzene | ND | 1.0 | 1 | ND | 1,1-Dichloropropane | ND | 1.0 | 1 |
Bromochloromethane | ND | 1.0 | 1 | ND | c-1,3-Dichloropropene | ND | 0.50 | 1 |
Bromodichloromethane | ND | 1.0 | 1 | ND | t-1,3-Dichloropropene | ND | 0.50 | 1 |
Bromofluor | ND | 1.0 | 1 | ND | Ethylbenzene | ND | 1.0 | 1 |
Bromomethane | ND | 1.0 | 1 | ND | 2-Hexanone | ND | 1.0 | 1 |
2-Butanone | ND | 10 | 1 | ND | Isopropylbenzene | ND | 1.0 | 1 |
n-Butylbenzene | ND | 1.0 | 1 | ND | p-Isopropyltoluene | ND | 1.0 | 1 |
sec-Butylbenzene | ND | 1.0 | 1 | ND | Methylene Chloride | ND | 10 | 1 |
tert-Butylbenzene | ND | 1.0 | 1 | ND | Tetrachloroethene | ND | 10 | 1 |
Carbon Disulfide | ND | 0.50 | 1 | ND | n-Propylbenzene | ND | 1.0 | 1 |
Carbon Tetrachloride | ND | 1.0 | 1 | ND | Styrene | ND | 1.0 | 1 |
Chlorobenzene | ND | 1.0 | 1 | ND | 1,1,2-Tetrachloroethane | ND | 1.0 | 1 |
Chloroethane | ND | 5.0 | 1 | ND | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 1 |
Chloroform | ND | 1.0 | 1 | ND | Toluene | ND | 1.0 | 1 |
Chloromethane | ND | 10 | 1 | ND | Tetrachloroethene | ND | 1.0 | 1 |
2-Chlorotoluene | ND | 1.0 | 1 | ND | Vinyl Chloride | ND | 0.50 | 1 |
4-Chlorotoluene | ND | 1.0 | 1 | ND | 1,2,3-Trichlorobenzene | ND | 1.0 | 1 |
Dibromochloromethane | ND | 1.0 | 1 | ND | 1,2,4-Trichlorobenzene | ND | 1.0 | 1 |
1,2-Dibromo-3-Chloropropane | ND | 1.0 | 1 | ND | 1,1-Trichloroethane | ND | 1.0 | 1 |
1,2-Dibromoethane | ND | 5.0 | 1 | ND | 1,1,2-Trichloroethane | ND | 1.0 | 1 |
Dibromomethane | ND | 1.0 | 1 | ND | 1,2-Trichloroethane | ND | 1.0 | 1 |
1,2-Dichlorobenzene | ND | 1.0 | 1 | ND | Trichloroethene | ND | 1.0 | 1 |
1,3-Dichlorobenzene | ND | 1.0 | 1 | ND | Trichlorofluoromethane | 11 | 10 | 1 |
1,4-Dichlorobenzene | ND | 1.0 | 1 | ND | 1,2,3-Trichloropropane | ND | 5.0 | 1 |
Dichlorodifluoromethane | ND | 1.0 | 1 | ND | 1,2,4-Trifluoromethane | ND | 1.0 | 1 |
1,1-Dichloroethane | ND | 1.0 | 1 | ND | 1,3,5-Trimethylbenzene | ND | 1.0 | 1 |
1,2-Dichloroethene | ND | 0.50 | 1 | ND | Vinyl Acetate | ND | 10 | 1 |
1,1-Dichloroethene | ND | 1.0 | 1 | ND | Vinyl Chloride | ND | 0.50 | 1 |
c-1,2-Dichloroethene | ND | 1.0 | 1 | ND | p-m-Xylene | ND | 1.0 | 1 |
t-1,2-Dichloroethene | ND | 1.0 | 1 | ND | o-Xylene | ND | 1.0 | 1 |
1,2-Dichloropropane | ND | 1.0 | 1 | ND | Methyl-t-Butyl Ether (MTBE) | ND | 1.0 | 1 |
Surrogates: | REC (%) | Control | Qual | Surrogates: | REC (%) | Control | Qual
--- | --- | --- | --- | --- | --- | --- | ---
1,4-Bromofluorobenzene | 97 | 80-120 | 80-120 | Dibromo - fluoromethane | 114 | 80-126 |
1,2-Dichloroethane-d4 | 108 | 80-134 | 80-120 | Toluene-d8 | 102 | 80-120 |

RL - Reporting Limit, **DF** - Dilution Factor, **Qual** - Qualifiers
Parameter Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td></td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surrogates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>97</td>
<td>80-120</td>
<td></td>
<td></td>
<td>Dibromofluoromethane</td>
<td>113</td>
<td>80-126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>107</td>
<td>80-134</td>
<td></td>
<td></td>
<td>Toluene-d8</td>
<td>102</td>
<td>80-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
<td>Parameter</td>
<td>Result</td>
<td>RL</td>
<td>DF</td>
<td>Qual</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>ND</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1-Propyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2-Propanediol</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,2,4-Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c,1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t,1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ND</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>80-120</td>
<td>Qual</td>
<td></td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>80-120</td>
<td>Qual</td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>97</td>
<td>80-120</td>
<td></td>
<td>1,4-Bromofluorobenzene</td>
<td>115</td>
<td>80-120</td>
<td></td>
<td>Dibromofluoromethane</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene-d4</td>
<td>113</td>
<td>80-134</td>
<td></td>
<td>1,2-Dichloroethene-d4</td>
<td>102</td>
<td>80-120</td>
<td></td>
<td>Toluene-d8</td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit; DF - Dilution Factor; Qual - Qualifiers
Analytical Report

OTIE 05/31/12

Work Order No: 12-05-2127

Preparation: EPA 5030C

Method: EPA 8260B

Units: ug/L

Date Received: 05/31/12

Location: 317 East Main Street, Ventura, CA 93001-2624

Project: Raytheon Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Blank</td>
<td>099-14-001-7,946</td>
<td>N/A</td>
<td>Aqueous</td>
<td>GC/MS Q</td>
<td>06/01/12</td>
<td>06/02/12 02:27</td>
<td>120601L03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-1,1-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p-m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>99</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>113</td>
<td>80-126</td>
<td>Qual</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>107</td>
<td>80-134</td>
<td>Qual</td>
<td>Toluene-d8</td>
<td>102</td>
<td>80-120</td>
<td>Qual</td>
</tr>
</tbody>
</table>

RL - Reporting Limit, **DF - Dilution Factor**, **Qual - Qualifiers**

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501
Quality Control - Spike/Spike Duplicate

Work Order No: 12-05-2127
Method: EPA 8260B

<table>
<thead>
<tr>
<th>OTIE</th>
<th>317 East Main Street</th>
<th>Ventura, CA 93001-2624</th>
</tr>
</thead>
</table>

Project: Raytheon Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>MS/MSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-05-2101-2</td>
<td>Aqueous</td>
<td>GC/MS Q</td>
<td>06/01/12</td>
<td>06/02/12</td>
<td>120601S01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SAMPLE CONC</th>
<th>SPIKE CONC</th>
<th>MS CONC</th>
<th>MS %REC</th>
<th>MSD CONC</th>
<th>MSD %REC</th>
<th>%REC CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>50.00</td>
<td>52.16</td>
<td>104</td>
<td>52.88</td>
<td>106</td>
<td>78-120</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>50.00</td>
<td>59.56</td>
<td>119</td>
<td>61.54</td>
<td>123</td>
<td>67-139</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>50.00</td>
<td>55.91</td>
<td>112</td>
<td>57.09</td>
<td>114</td>
<td>80-120</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>50.00</td>
<td>53.84</td>
<td>108</td>
<td>53.43</td>
<td>107</td>
<td>80-123</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>50.00</td>
<td>50.88</td>
<td>102</td>
<td>50.92</td>
<td>102</td>
<td>76-120</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>50.00</td>
<td>55.15</td>
<td>110</td>
<td>55.28</td>
<td>111</td>
<td>76-130</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>50.00</td>
<td>44.06</td>
<td>88</td>
<td>44.57</td>
<td>89</td>
<td>70-130</td>
<td>1</td>
<td>0-27</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>50.00</td>
<td>55.35</td>
<td>111</td>
<td>55.45</td>
<td>111</td>
<td>73-127</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>50.00</td>
<td>58.15</td>
<td>116</td>
<td>58.40</td>
<td>117</td>
<td>72-126</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>50.00</td>
<td>55.15</td>
<td>110</td>
<td>56.39</td>
<td>113</td>
<td>74-122</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>50.00</td>
<td>52.00</td>
<td>104</td>
<td>53.25</td>
<td>107</td>
<td>65-131</td>
<td>2</td>
<td>0-24</td>
<td></td>
</tr>
<tr>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>50.00</td>
<td>50.38</td>
<td>101</td>
<td>50.13</td>
<td>100</td>
<td>69-123</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
</tbody>
</table>

Note: RPD - Relative Percent Difference, CL - Control Limit
Quality Control - LCS/LCS Duplicate

Project: Raytheon Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>LCS/LCSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>099-14-001-7,946</td>
<td>Aqueous</td>
<td>GC/MS Q</td>
<td>06/01/12</td>
<td>06/02/12</td>
<td>120601L03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE</th>
<th>LCS CONC</th>
<th>LCS %REC</th>
<th>LCSD CONC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>50.00</td>
<td>51.57</td>
<td>103</td>
<td>52.29</td>
<td>105</td>
<td>80-120</td>
<td>73-127</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50.00</td>
<td>58.52</td>
<td>117</td>
<td>60.49</td>
<td>121</td>
<td>66-138</td>
<td>54-150</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50.00</td>
<td>55.79</td>
<td>112</td>
<td>56.66</td>
<td>113</td>
<td>80-120</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td>50.00</td>
<td>53.69</td>
<td>107</td>
<td>54.17</td>
<td>108</td>
<td>80-120</td>
<td>73-127</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50.00</td>
<td>50.69</td>
<td>101</td>
<td>51.15</td>
<td>102</td>
<td>80-120</td>
<td>73-127</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>50.00</td>
<td>54.30</td>
<td>109</td>
<td>54.12</td>
<td>108</td>
<td>80-129</td>
<td>72-137</td>
<td>0</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50.00</td>
<td>44.15</td>
<td>88</td>
<td>44.54</td>
<td>89</td>
<td>71-131</td>
<td>61-141</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50.00</td>
<td>54.82</td>
<td>110</td>
<td>55.70</td>
<td>111</td>
<td>80-123</td>
<td>73-130</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>50.00</td>
<td>57.89</td>
<td>116</td>
<td>58.27</td>
<td>117</td>
<td>79-121</td>
<td>72-128</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50.00</td>
<td>54.96</td>
<td>110</td>
<td>56.53</td>
<td>113</td>
<td>80-120</td>
<td>73-127</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>50.00</td>
<td>52.73</td>
<td>105</td>
<td>53.02</td>
<td>106</td>
<td>70-136</td>
<td>59-147</td>
<td>1</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>50.00</td>
<td>49.75</td>
<td>100</td>
<td>50.75</td>
<td>101</td>
<td>72-126</td>
<td>63-135</td>
<td>2</td>
<td>0-22</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 12
Total number of ME compounds : 0
Total number of ME compounds allowed : 1
LCS ME CL validation result : Pass

RPD - Relative Percent Difference , CL - Control Limit
Table of Qualifiers:

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>See applicable analysis comment.</td>
</tr>
<tr>
<td><</td>
<td>Less than the indicated value.</td>
</tr>
<tr>
<td>></td>
<td>Greater than the indicated value.</td>
</tr>
<tr>
<td>1</td>
<td>Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>2</td>
<td>Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>3</td>
<td>Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>4</td>
<td>The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>5</td>
<td>The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.</td>
</tr>
<tr>
<td>6</td>
<td>Surrogate recovery below the acceptance limit.</td>
</tr>
<tr>
<td>7</td>
<td>Surrogate recovery above the acceptance limit.</td>
</tr>
<tr>
<td>B</td>
<td>Analyte was present in the associated method blank.</td>
</tr>
<tr>
<td>BU</td>
<td>Sample analyzed after holding time expired.</td>
</tr>
<tr>
<td>E</td>
<td>Concentration exceeds the calibration range.</td>
</tr>
<tr>
<td>ET</td>
<td>Sample was extracted past end of recommended max. holding time.</td>
</tr>
<tr>
<td>HD</td>
<td>The chromatographic pattern was inconsistent with the profile of the reference fuel standard.</td>
</tr>
<tr>
<td>HDH</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>HDL</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>J</td>
<td>Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.</td>
</tr>
<tr>
<td>ME</td>
<td>LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.</td>
</tr>
<tr>
<td>ND</td>
<td>Parameter not detected at the indicated reporting limit.</td>
</tr>
<tr>
<td>Q</td>
<td>Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.</td>
</tr>
<tr>
<td>SG</td>
<td>The sample extract was subjected to Silica Gel treatment prior to analysis.</td>
</tr>
<tr>
<td>X</td>
<td>% Recovery and/or RPD out-of-range.</td>
</tr>
<tr>
<td>Z</td>
<td>Analyte presence was not confirmed by second column or GC/MS analysis.</td>
</tr>
</tbody>
</table>

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number
CHAIN OF CUSTODY RECORD

Date: 30 May 2012

W.O. # / LAB USE ONLY: 12-05-2127

CHAIR PROJECT NAME / NUMBER:

PROJECT CONTACT: Sarah Van Middlesworth

SAMPLER(S): (PRINT) Lucas Buday

LABORATORY CLIENT:

OTIE

ADDRESS: 317 E Main St

CITY: Ventura

STATE: CA

ZIP: 93001

TEL: 805-585-2110

E-MAIL:

TURNAROUND TIME:

- **SAME DAY**
- **24 HR**
- **48 HR**
- **72 HR**
- **STANDARD**

SPECIAL INSTRUCTIONS:

- OTIE
- Specific EPDs
- SLICE 2013
- 7/15
- 72

REQUESTED ANALYSES

<table>
<thead>
<tr>
<th>LAB USE ONLY</th>
<th>SAMPLE ID</th>
<th>SAMPLING DATE</th>
<th>TIME</th>
<th>MATRIX</th>
<th>NO. OF CONT.</th>
<th>Unpreserved</th>
<th>Preserved</th>
<th>Field Filtered</th>
<th>LOG CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QCIS2012-0530</td>
<td>5-30-12</td>
<td>1200</td>
<td>W</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SH2EW2012-3-48</td>
<td>5-30-12</td>
<td>1312</td>
<td>W</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SH2EW2012-3-60</td>
<td>5-30-12</td>
<td>1400</td>
<td>W</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SH2EW2012-3-60</td>
<td>5-30-12</td>
<td>1420</td>
<td>W</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reinforced by: (Signature)

Received by (Signature/Affiliation): CEL

Date: 5/31/12

Time: 13:45

Reinforced by: (Signature)

Received by (Signature/Affiliation): CEL

Date: 5/31/12

Time: 13:45

Reinforced by: (Signature)

Received by (Signature/Affiliation): CEL

Date: 5/31/12

Time: 13:45

RETURN TO CONTENTS

DISTRIBUTION: White with final report, Green and Yellow to Client.

Please note that pages 1 and 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

06/01/10 Revision
WORK ORDER #: 12-0127

SAMPLE RECEIPT FORM

CLIENT: OT[e]
DATE: 5/31/12

TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0°C – 6.0°C, not frozen)

Temperature 2.7 °C - 0.3 °C (CF) = 2.4 °C
☐ Blank
☐ Sample

☐ Sample(s) outside temperature criteria (PM/APM contacted by: ________).

☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.

☐ Received at ambient temperature, placed on ice for transport by Courier.

Ambient Temperature:
☐ Air
☐ Filter
Initial: [Signature]

CUSTODY SEALS INTACT:

☐ Cooler
☐ Sample
☐ No (Not Intact)
☐ Not Present
☐ N/A
Initial: [Signature]

SAMPLE CONDITION:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Chain-Of-Custody (COC) document(s) received with samples...
- COC document(s) received complete...
- Collection date/time, matrix, and/or # of containers logged in based on sample labels.
- No analysis requested.
- No date/time relinquished.

-Sampler’s name indicated on COC.
- Sample container label(s) consistent with COC.
- Sample container(s) intact and good condition.
- Proper containers and sufficient volume for analyses requested.
- Analyses received within holding time.
- pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours...
- Proper preservation noted on COC or sample container...
- Unpreserved vials received for Volatiles analysis
- Volatile analysis container(s) free of headspace...
- Tedlar bag(s) free of condensation...

CONTAINER TYPE:

- Solid:
- Water:
- Air:
- Container:
- Preservative: h: HCL
- Trip Blank Lot#: [Signature]

Labeled/Checked by: [Signature]
Reviewed by: [Signature]
Scanned by: [Signature]
CALSCIENCE
WORK ORDER NUMBER: 12-06-0341

Analytical Report For
Client: OTIE
Client Project Name: Canoga Park / 2009025
Attention: Sarah Van Middlesworth
317 East Main Street
Ventura, CA 93001-2624

Virendra Patel
Project Manager

Approved for release on 06/13/2012 by:
Virendra Patel
Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.
Contents

1 Detections Summary .. 3

2 Client Sample Data .. 4
 2.1 EPA 8260B Volatile Organics (Aqueous) 4

3 Quality Control Sample Data 10
 3.1 MS/MSD and/or Duplicate 10
 3.2 LCS/LCSD ... 11

4 Glossary of Terms and Qualifiers 12

5 Chain of Custody/Sample Receipt Form 13
<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Analyte</th>
<th>Result</th>
<th>Qualifiers</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Method</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLBGW2012-1-50 (12-06-0341-2)</td>
<td>Trichlorofluoromethane</td>
<td>12</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
<tr>
<td>FLBGW2012-1-64 (12-06-0341-3)</td>
<td>Trichlorofluoromethane</td>
<td>15</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
<tr>
<td>FLBGW2012-2-52 (12-06-0341-4)</td>
<td>Trichlorofluoromethane</td>
<td>11</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
<tr>
<td>FLBGW2012-2-62 (12-06-0341-5)</td>
<td>Trichlorofluoromethane</td>
<td>11</td>
<td>10</td>
<td>ug/L</td>
<td>EPA 8260B</td>
<td>EPA 5030C</td>
<td></td>
</tr>
</tbody>
</table>

Subcontracted analyses, if any, are not included in this summary.

*MDL is shown.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td></td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropylyltoluene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>80-120</td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>80-126</td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>99</td>
<td>80-120</td>
<td>100</td>
<td></td>
<td>Dibromofluoromethane</td>
<td>100</td>
<td>80-126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene-d4</td>
<td>94</td>
<td>80-134</td>
<td>99</td>
<td></td>
<td>Toluene-d8</td>
<td>99</td>
<td>80-120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- RL - Reporting Limit
- DF - Dilution Factor
- Qual - Qualifiers

Project: Canoga Park / 2009025

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlortoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Surrogates: REC (%) Control Limits Qual
1,4-Bromofluorobenzene 99 80-120 Dibromofluoromethane 100 80-126
1,2-Dichloroethane-d4 96 80-134 Toluene-d8 100 80-120

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Client Sample Number

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>1,3-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>2,2-Dichloropropene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1-Dichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>c-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>t-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Trichlorofluoromethane</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Methyl-1-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>99</td>
<td>80-120</td>
<td></td>
<td>Dibromofluoromethane</td>
<td>100</td>
<td>80-126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>92</td>
<td>80-134</td>
<td></td>
<td>Toluene-d8</td>
<td>99</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>c-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>t-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Naphthalene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>99</td>
<td>80-120</td>
<td></td>
<td>1,4-Bromofluorobenzene</td>
<td>100</td>
<td>80-126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>93</td>
<td>80-134</td>
<td></td>
<td>1,2-Dichloroethane-d4</td>
<td>101</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>Qual</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1-Dichloropropane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>c-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>t-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Naphthalene</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2,3-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td>Qual</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Trichlorofluoromethane</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,2,4-Trichloro-1,2,2-Trifluoroethane</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Qual</td>
<td>Methyl-1,Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td>Surrogates:</td>
<td>REC (%)</td>
<td>Control Limits</td>
<td>Qual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>97</td>
<td>80-120</td>
<td></td>
<td>Dibromofluoromethane</td>
<td>96</td>
<td>80-126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>90</td>
<td>80-134</td>
<td></td>
<td>Toluene-d8</td>
<td>101</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Analytical Report

OTIE 06/06/12

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Client Sample Number</th>
<th>Lab Sample Number</th>
<th>Date/Time Collected</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date/Time Analyzed</th>
<th>QC Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Blank</td>
<td>099-14-001-7,982</td>
<td>N/A</td>
<td>Aqueous</td>
<td>GC/MS RR</td>
<td>06/07/12</td>
<td>06/08/12 00:03</td>
<td>120607L02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
<th>Parameter</th>
<th>Result</th>
<th>RL</th>
<th>DF</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>ND</td>
<td>20</td>
<td>1</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>1,1-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>c-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td>t-1,3-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>4-Methyl-2-Pentanone</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Naphthalene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>p/m-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogates:

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
<th>Qual</th>
<th>Surrogate</th>
<th>REC (%)</th>
<th>Control Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Bromofluorobenzene</td>
<td>99</td>
<td>80-120</td>
<td>Qual</td>
<td>Dibromofluoromethane</td>
<td>100</td>
<td>80-126</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d4</td>
<td>94</td>
<td>80-134</td>
<td></td>
<td>Toluene-d8</td>
<td>101</td>
<td>80-120</td>
</tr>
</tbody>
</table>

RL - Reporting Limit, DF - Dilution Factor, Qual - Qualifiers
Quality Control - Spike/Spike Duplicate

Work Order No: 12-06-0341
Method: EPA 8260B

Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Quality Control Sample ID</th>
<th>Matrix</th>
<th>Instrument</th>
<th>Date Prepared</th>
<th>Date Analyzed</th>
<th>MS/MSD Batch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-06-0243-5</td>
<td>Aqueous</td>
<td>GC/MS RR</td>
<td>06/07/12</td>
<td>06/08/12</td>
<td>120607S02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SAMPLE CONC</th>
<th>SPIKE CONC</th>
<th>MS %REC</th>
<th>MS CONC</th>
<th>MSD %REC</th>
<th>MSD CONC</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>ND</td>
<td>50.00</td>
<td>48.50</td>
<td>97</td>
<td>49.29</td>
<td>99</td>
<td>78-120</td>
<td>2</td>
<td>0-20</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>50.00</td>
<td>48.32</td>
<td>97</td>
<td>48.56</td>
<td>97</td>
<td>69-139</td>
<td>0</td>
<td>0-20</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>50.00</td>
<td>50.51</td>
<td>101</td>
<td>50.97</td>
<td>102</td>
<td>70-130</td>
<td>1</td>
<td>0-20</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>50.00</td>
<td>50.31</td>
<td>101</td>
<td>50.58</td>
<td>101</td>
<td>80-123</td>
<td>1</td>
<td>0-20</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>50.00</td>
<td>50.37</td>
<td>101</td>
<td>50.73</td>
<td>101</td>
<td>76-120</td>
<td>1</td>
<td>0-20</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>50.00</td>
<td>46.31</td>
<td>93</td>
<td>48.16</td>
<td>96</td>
<td>76-130</td>
<td>4</td>
<td>0-20</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>18.02</td>
<td>50.00</td>
<td>53.87</td>
<td>72</td>
<td>54.25</td>
<td>72</td>
<td>70-130</td>
<td>1</td>
<td>0-27</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>50.00</td>
<td>50.89</td>
<td>102</td>
<td>50.70</td>
<td>101</td>
<td>73-127</td>
<td>0</td>
<td>0-20</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>50.00</td>
<td>49.34</td>
<td>99</td>
<td>50.27</td>
<td>101</td>
<td>72-126</td>
<td>2</td>
<td>0-20</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>11.87</td>
<td>50.00</td>
<td>57.98</td>
<td>92</td>
<td>60.49</td>
<td>97</td>
<td>74-122</td>
<td>4</td>
<td>0-20</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>96.48</td>
<td>50.00</td>
<td>137.1</td>
<td>81</td>
<td>138.9</td>
<td>85</td>
<td>65-131</td>
<td>1</td>
<td>0-24</td>
</tr>
<tr>
<td>Methyl-I-Butyl Ether (MTBE)</td>
<td>ND</td>
<td>50.00</td>
<td>45.84</td>
<td>92</td>
<td>47.11</td>
<td>94</td>
<td>69-123</td>
<td>3</td>
<td>0-20</td>
</tr>
</tbody>
</table>

RPD - Relative Percent Difference, CL - Control Limit
Quality Control - LCS/LCS Duplicate
Method: EPA 8260B
12-06-0341
Canoga Park / 2009025

Project: Canoga Park / 2009025

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPIKE ADDED</th>
<th>LCS CONC</th>
<th>LCS %REC</th>
<th>LCSD CONC</th>
<th>LCSD %REC</th>
<th>%REC CL</th>
<th>ME_CL</th>
<th>RPD</th>
<th>RPD CL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>50.00</td>
<td>48.96</td>
<td>98</td>
<td>50.86</td>
<td>102</td>
<td>80-120</td>
<td>73-127</td>
<td>4</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>50.00</td>
<td>48.78</td>
<td>98</td>
<td>50.35</td>
<td>101</td>
<td>66-138</td>
<td>54-150</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>50.00</td>
<td>50.62</td>
<td>101</td>
<td>52.69</td>
<td>105</td>
<td>80-120</td>
<td>73-127</td>
<td>4</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>50.00</td>
<td>52.09</td>
<td>104</td>
<td>53.25</td>
<td>107</td>
<td>80-120</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>50.00</td>
<td>51.72</td>
<td>103</td>
<td>52.96</td>
<td>106</td>
<td>80-120</td>
<td>73-127</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>50.00</td>
<td>48.15</td>
<td>96</td>
<td>48.98</td>
<td>98</td>
<td>80-129</td>
<td>72-137</td>
<td>2</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>50.00</td>
<td>38.12</td>
<td>76</td>
<td>39.31</td>
<td>79</td>
<td>71-131</td>
<td>61-141</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>50.00</td>
<td>50.27</td>
<td>101</td>
<td>52.65</td>
<td>105</td>
<td>80-123</td>
<td>73-130</td>
<td>5</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>50.00</td>
<td>49.92</td>
<td>100</td>
<td>51.77</td>
<td>104</td>
<td>79-121</td>
<td>72-128</td>
<td>4</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>50.00</td>
<td>48.32</td>
<td>97</td>
<td>50.23</td>
<td>100</td>
<td>80-120</td>
<td>73-127</td>
<td>4</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>50.00</td>
<td>50.57</td>
<td>101</td>
<td>52.10</td>
<td>104</td>
<td>70-136</td>
<td>59-147</td>
<td>3</td>
<td>0-20</td>
<td></td>
</tr>
<tr>
<td>Methyl-t-Butyl Ether (MTBE)</td>
<td>50.00</td>
<td>47.78</td>
<td>96</td>
<td>48.13</td>
<td>96</td>
<td>72-126</td>
<td>63-135</td>
<td>1</td>
<td>0-22</td>
<td></td>
</tr>
</tbody>
</table>

Total number of LCS compounds : 12
Total number of ME compounds : 0
Total number of ME compounds allowed : 1
LCS ME CL validation result : Pass
Glossary of Terms and Qualifiers

Work Order Number: 12-06-0341

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>See applicable analysis comment.</td>
</tr>
<tr>
<td><</td>
<td>Less than the indicated value.</td>
</tr>
<tr>
<td>></td>
<td>Greater than the indicated value.</td>
</tr>
<tr>
<td>1</td>
<td>Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>2</td>
<td>Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>3</td>
<td>Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>4</td>
<td>The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.</td>
</tr>
<tr>
<td>5</td>
<td>The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.</td>
</tr>
<tr>
<td>6</td>
<td>Surrogate recovery below the acceptance limit.</td>
</tr>
<tr>
<td>7</td>
<td>Surrogate recovery above the acceptance limit.</td>
</tr>
<tr>
<td>B</td>
<td>Analyte was present in the associated method blank.</td>
</tr>
<tr>
<td>BU</td>
<td>Sample analyzed after holding time expired.</td>
</tr>
<tr>
<td>E</td>
<td>Concentration exceeds the calibration range.</td>
</tr>
<tr>
<td>ET</td>
<td>Sample was extracted past end of recommended max. holding time.</td>
</tr>
<tr>
<td>HD</td>
<td>The chromatographic pattern was inconsistent with the profile of the reference fuel standard.</td>
</tr>
<tr>
<td>HDH</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>HDL</td>
<td>The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).</td>
</tr>
<tr>
<td>J</td>
<td>Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.</td>
</tr>
<tr>
<td>ME</td>
<td>LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.</td>
</tr>
<tr>
<td>ND</td>
<td>Parameter not detected at the indicated reporting limit.</td>
</tr>
<tr>
<td>Q</td>
<td>Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.</td>
</tr>
<tr>
<td>SG</td>
<td>The sample extract was subjected to Silica Gel treatment prior to analysis.</td>
</tr>
<tr>
<td>X</td>
<td>% Recovery and/or RPD out-of-range.</td>
</tr>
<tr>
<td>Z</td>
<td>Analyte presence was not confirmed by second column or GC/MS analysis.</td>
</tr>
</tbody>
</table>

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number
Calscience Environmental Laboratories, Inc.

Laboratory Client: OTIE

Address: 317 E Main St, Ventura, CA 93001

City: Ventura

State: CA

ZIP: 93001

Telephone: 805-585-2110

Email:

Laboratory Use Only:

Sample ID

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Matrix</th>
<th>No. of Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCTB20120605</td>
<td>6-5-12</td>
<td>1000</td>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td>FL6G2012-1-50</td>
<td>6-5-12</td>
<td>1155</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>FL6G2012-1-64</td>
<td>6-5-12</td>
<td>1225</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>FL6G2012-2-52</td>
<td>6-5-12</td>
<td>1524</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>FL6G2012-2-62</td>
<td>6-5-12</td>
<td>1430</td>
<td>W</td>
<td>3</td>
</tr>
</tbody>
</table>

Requested Analyses

- TPH (g) or GRQ
- TPH (d) or DRO or (C5-C19) or (C6-C44)
- TPH (i) or DRO or (C5-C19) or (C6-C44)
- BVSC or MTBE (6260) or (6260)
- VOCs (6260)
- Oxygenates (6260)
- SVOCs (6270)
- Pesticides (6391)
- PCBs (6392)
- T22 Methes (6910/7447X)
- Ar-VOCs (7410-A, or TO-15)
- Ar-TPH (g) or (9)

Chain of Custody Record

- **Date:** 5 June 2012
- **WO #: Lab Use Only:** 12-06-0341
- **Page:** 1 of 1

Requested Analyses

- TPH (g) or GRQ
- TPH (d) or DRO or (C5-C19) or (C6-C44)
- TPH (i) or DRO or (C5-C19) or (C6-C44)
- BVSC or MTBE (6260) or (6260)
- VOCs (6260)
- Oxygenates (6260)
- SVOCs (6270)
- Pesticides (6391)
- PCBs (6392)
- T22 Methes (6910/7447X)
- Ar-VOCs (7410-A, or TO-15)
- Ar-TPH (g) or (9)

Special Instructions: OTIE, specific, EDDs, SLIC# 2043 T1572

Relinquished by:

- Signature

Received by:

- Signature

Date: 6/6/12

Time: 13:30

Date: 6/6/12

Time: 17:50

Date: 6/6/12

Time: 17:50

DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of our TICs are printed on the reverse side of the Green and Yellow copies respectively.
SAMPLE RECEIPT FORM

CLIENT: O

DATE: 06/6/12

TEMPERATURE:
Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen)
Temperature \(2.2 \pm 0.3 ^\circ C \) (CF) = \(2.4 ^\circ C \)

☐ Blank
☐ Sample

☐ Sample(s) outside temperature criteria (PM/APM contacted by: _____).
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.

☐ Received at ambient temperature, placed on ice for transport by Courier.

Ambient Temperature: ☐ Air ☐ Filter

Initial:

CUSTODY SEALS INTACT:

☐ Cooler ☐ ____________ ☐ No (Not Intact) ☐ Not Present ☐ N/A

Initial:

☐ Sample ☐ ____________ ☐ No (Not Intact) ☐ Not Present

Initial:

SAMPLE CONDITION:

☐ Yes ☐ No ☐ N/A

Chain-Of-Custody (COC) document(s) received with samples.

COC document(s) received complete.

☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.

☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.

Sampler’s name indicated on COC.

Sample container label(s) consistent with COC.

Sample container(s) intact and good condition.

Proper containers and sufficient volume for analyses requested.

Analyses received within holding time.

Proper preservation noted on COC or sample container.

☐ Unpreserved vials received for Volatiles analysis.

Volatile analysis container(s) free of headspace.

Tedlar bag(s) free of condensation.

CONTAINER TYPE:

Solid: ☐ 4oz CGJ ☐ 8oz CGJ ☐ 16oz CGJ ☐ Sleeve (_____)

☐ EnCores® ☐ TerraCores®

Water: ☐ VOA ☐ VOAh ☐ VOA\(n_a \) ☐ 125AGB ☐ 125AGBh ☐ 125AGBp ☐ 1AGB ☐ 1AGB\(n_a \) ☐ 1AGB\(s \)

☐ 500AGB ☐ 500AGJ ☐ 500AGJs ☐ 250AGB ☐ 250CGB ☐ 250CGBs ☐ 1PB ☐ 1PB\(n_a \) ☐ 500PB

☐ 250PB ☐ 250PB\(n_a \) ☐ 125PB ☐ 125PB\(n_a \) ☐ 100PB ☐ 100PB\(n_a \)

Air: ☐ Tedlar® ☐ Summa®

Other: ☐ Trip Blank Lot#: 116122A Labeled/Checked by:

Preservative: h: HCL n: HNO\(_3\) \(n_a \): Na\(_2\)S\(_2\)O\(_3\) na: NaOH p: H\(_2\)PO\(_4\) s: H\(_2\)SO\(_4\) u: Ultra-pure \(z \)na: Zn\(_2\)O\(_4\) NaOH f: Filtered Scanned by:

SOP T100_090 (12/06/11)
SAMPLE ANOMALY FORM

SAMPLES - CONTAINERS & LABELS:

- [] Sample(s) NOT RECEIVED but listed on COC
- [] Sample(s) received but NOT LISTED on COC
- [] Holding time expired – list sample ID(s) and test
- [] Insufficient quantities for analysis – list test
- [] Improper container(s) used – list test
- [] Improper preservative used – list test
- [] No preservative noted on COC or label – list test & notify lab
- [] Sample labels illegible – note test/container type
- [] Sample label(s) do not match COC – Note in comments
 - [] Sample ID
 - [] Date and/or Time Collected
 - [] Project Information
 - [] # of Container(s)
 - [] Analysis
- [] Sample container(s) compromised – Note in comments
 - [] Water present in sample container
 - [] Broken
- [] Sample container(s) not labeled
- [] Air sample container(s) compromised – Note in comments
 - [] Flat
 - [] Very low in volume
 - [] Leaking (Not transferred - duplicate bag submitted)
 - [] Leaking (transferred into Calscience Tedlar® Bag*)
 - [] Leaking (transferred into Client’s Tedlar® Bag*)
- [] Other:

HEADSPACE – Containers with Bubble > 6mm or ⅛ inch:

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Container ID(s)</th>
<th># of Vials Received</th>
<th>Sample #</th>
<th>Container ID(s)</th>
<th># of Vials Received</th>
<th>Sample #</th>
<th>Container ID(s)</th>
<th># of Cont. received</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Comments:

Transferred at Client’s request.

Initial / Date: [MP] 06/06/12

SOP T100_090 (08/31/11)
APPENDIX G

Calculated Environmental Screening Levels for Freon 11
Calculated Environmental Screening Level (ESL) for Shallow Soil Vapor Intrusion - Commercial/Industrial Air Scenario

Formula for converting ESL

\[\text{ESL}_{\text{soil vapor industrial}} = \frac{(\text{RSL}_{\text{soil vapor industrial}} \times \text{Cf})}{\text{AF}_{\text{industrial air}}} \]

- \(\text{ESL}_{\text{soil vapor industrial}} = \) Calculated Environmental Screening Level for shallow soil vapor in a industrial setting
- \(\text{RSL}_{\text{soil vapor industrial}} = \) US EPA Region IX Regional Screening Level (RSL) for industrial Air
- \(\text{AF}_{\text{soil vapor industrial}} = \) DTSC-Cal/EPA Attenuating Factor for Future commercial Air
- \(\text{Cf} = \) Conversion factor

source: \(SFRWQCB, \) November 2007 (Revised May 2008).

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Freon 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSL(_{\text{industrial air}})</td>
<td>3,100</td>
</tr>
<tr>
<td>Cf</td>
<td>0.001</td>
</tr>
<tr>
<td>AF(_{\text{industrial air}})</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Enter the US EPA Region IX RSL for Freon 11 for industrial Air (ug/m\(^3\))

Enter factor (1 liter = 0.001 cubic meters)

Enter the DTSC-Cal/EPA attenuating factor for Future Commercial Air as a dimensionless unit

\[\text{ESL}_{\text{soil vapor industrial}} = \frac{(\text{RSL}_{\text{soil vapor industrial}} \times \text{Cf})}{\text{AF}_{\text{industrial air}}} \]

\[= \frac{(3,100 \times 0.001)}{0.0005} \]

ESL\(_{\text{soil vapor industrial}}\) = 6,200 micrograms per liter

Sources:
1. US EPA Region IX Regional Screening Level (RSL) Summary Table dated April 2012.
2. Final Guidance For The Evaluation And Mitigation Of Subsurface Vapor Intrusion To Indoor Air (Vapor Intrusion Guidance). Department of Toxic Substances Control, California Environmental Protection Agency. October 2011.

Notes:
- \(\text{ug/m}^3 \) - micrograms per cubic meter; Freon 11 - trichlorofluoromethane; Cal/EPA - California Environmental Protection Agency; DTSC - Department of Toxic Substances Control; SFRWQCB - California Regional Water Quality Control Board San Francisco Bay Region; US EPA - United States Environmental Protection Agency
Calculated Environmental Screening Level (ESL) for Shallow Soil Vapor Intrusion - Residential Air Scenario

Formula for converting ESL

\[ESL_{\text{soil vapor residential}} = \frac{(RSL_{\text{soil vapor residential}} \times Cf)}{AF_{\text{residential air}}} \]

- **ESL**_{soil vapor residential} = Calculated Environmental Screening Level for shallow soil vapor in a residential setting
- **RSL**_{soil vapor residential} = US EPA Region IX Regional Screening Level (RSL) for Residential Air
- **AF**_{soil vapor residential} = DTSC-Cal/EPA Attenuating Factor for Future Residential Air
- **Cf** = Conversion factor

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Freon 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSL<sub>residential air</sub></td>
<td>730</td>
</tr>
<tr>
<td>Cf</td>
<td>0.001</td>
</tr>
<tr>
<td>AF<sub>residential air</sub></td>
<td>0.001</td>
</tr>
</tbody>
</table>

Enter the US EPA Region IX RSL for Freon 11 for Residential Air (\(\mu g/m^3\))

Conversion factor (1 liter = 0.001 cubic meters)

Enter the DTSC-Cal/EPA attenuating factor for Future Residential Air as a dimensionless unit

\[
ESL_{\text{soil vapor residential}} = \frac{(730 \times 0.001)}{0.001} = 730 \text{ micrograms per liter}
\]

Sources:
1. US EPA Region IX Regional Screening Level (RSL) Summary Table dated April 2012.
2. Final Guidance For The Evaluation And Mitigation Of Subsurface Vapor Intrusion To Indoor Air (Vapor Intrusion Guidance). Department of Toxic Substances Control, California Environmental Protection Agency. October 2011.

Notes:
- \(\mu g/m^3\) - micrograms per cubic meter; Freon 11 - trichlorofluoromethane; Cal/EPA - California Environmental Protection Agency; DTSC - Department of Toxic Substances Control; SFRWQCB - California Regional Water Quality Control Board San Francisco Bay Region; US EPA - United States Environmental Protection Agency
Calculated Screening Level for Deep Soil Gas Using Henry's Law Conversion

Groundwater to Soil Gas

Henry's Law Conversion

\[C_{\text{soil gas}} = C_{\text{groundwater}} \times H_c \times C_f \]

- \(C_{\text{soil gas}} \) concentration in soil gas
- \(C_{\text{groundwater}} \) concentration in groundwater
- \(H_c \) Henry's Law Constant
- \(C_f \) Conversion factor

For Freon 11

\[H_c = 4.58 \] Enter the unitless Henry's Law Constant for your organic compound (as dimensionless value)

\[C_{\text{groundwater}} = 150 \] Enter the concentration of your organic compound as micrograms per liter (Freon 11 MCL of 150 ug/L used)

\[C_f = 1,000 \] Conversion factor (1 cubic meter = 1,000 Liters)

\[C_{\text{soil gas}} = C_{\text{groundwater}} \times H_c \times C_f \]

= 150 * 4.58 * 1,000

\[C_{\text{soil gas}} = 687,000 \text{ micrograms per cubic meter} \quad \text{or} \quad 687 \text{ micrograms per liter} \]

Sources:
1. Final Guidance For The Evaluation And Mitigation Of Subsurface Vapor Intrusion To Indoor Air (Vapor Intrusion Guidance). Department of Toxic Substances Control, California Environmental Protection Agency. October 2011.

2. Henry's Law Constant of 0.11 atm-\(m^3/mol \) at 20 degrees C is from Pesticide and Environmental Toxicology Section, Office of Environmental Health Hazard Assessment, Cal/EPA. Public Health Goal for Trichlorofluoromethane (FC-11) in Drinking Water. December 1997.

4. Concentration of Freon 11 in groundwater is the California maximum contaminant level of 150 ug/L, per California Department of Public Health MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants table dated July 27, 2011.

Notes:

DTSC = Department of Toxic Substance Control; Cal/EPA = California Environmental Protection Agency; Freon 11 = trichlorofluoromethane; atm-\(m^3/mol \) = atmosphere-cubic meter per mole; C = Celsius; ug/L = micrograms per liter.
Henry’s law coefficients can be expressed in at least four sets of units. Two of these are nominally dimensionless, but because they represent either ratios of concentrations or ratios of mass fractions their values differ greatly.

Units for Henry’s Law Constant Conversions

- H_{cc} = Concentration/Concentration (dimensionless)
- H_{yx} = Mole Fraction Y / Mole Fraction X (dimensionless)
- H_{px} = Partial Pressure / Mole Fraction X (atmospheres)
- H_{pc} = Partial Pressure / Concentration (atm m³/mol)