MEARNS CONSULTING LLC

ENVIRONMENTAL CONSULTANTS RISK ASSESSORS 738 Ashland Avenue, Santa Monica, California 90405 Cell 310.403.1921 Tel 310.396.9606 Fax 310.396.6878 Mearns@MearnsConsulting.com www.MearnsConsulting.com

Human Health Risk Assessment 712 Baker Street Long Beach, California 90806

January 14, 2016

Prepared for:

Integral Communities 888 San Clemente, Suite100 Newport Beach, California 92660

Prepared by:

Mearns Consulting LLC 738 Ashland Avenue Santa Monica, California 90405

MEARNS CONSULTING LLC

ENVIRONMENTAL CONSULTANTS RISK ASSESSORS 738 Ashland Avenue, Santa Monica, California 90405 Cell 310.403.1921 Tel 310.396.9606 Fax 310.396.6878 Mearns@MearnsConsulting.com www.MearnsConsulting.com

January 14, 2016

<u>via email</u>

Mr. Erik Weeks Vice President – Land Acquisition Integral Communities 888 San Clemente, Suite 100 Newport Beach, California 92660

RE: Human Health Risk Assessment 712 Baker Street, Long Beach, California 90806

Dear Mr. Weeks:

I am pleased to present this Human Health Risk Assessment (HRA) for the 20-acre property located at 712 Baker Street in Long Beach, California (the site) pursuant to your authorization. The site is planned for development of 275 residential units.

This HRA followed the guidance in the Department of Toxic Substances Control (DTSC) *Preliminary Endangerment Assessment* (PEA) guidance manual (DTSC 2013), U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009), the Massachusetts Department of Environmental Protection (MADEP) *Characterizing Risks posed by Petroleum Contaminated Sites* manual (MADEP October 31, 2002), the DTSC LeadSpread 8.0 Model, the DTSC modified Johnson & Ettinger soil gas screen, USEPA version 2.0 model (April 2003), and the DTSC modified Johnson & Ettinger groundwater screen, USEPA version 3.0 model (April 2003), both modified by DTSC Office of Human and Ecological Risk (HERO) December 2014.

This human health risk assessment assessed the potential risk and hazard attributable to exposure to 83 constituents, including lead.

DTSC's LeadSpread 8.0 Model results indicate that lead poses an unacceptable hazard to adults and children in a residential exposure scenario; therefore removal of soil to a depth of 10-feet below ground surface (bgs) is necessary at locations that exceed lead concentrations of 80 milligrams per kilogram (mg/kg).

The Johnson & Ettinger soil gas screen and groundwater screen model results indicate that VOCs detected in soil vapor at 5-feet and 15-feet bgs and in groundwater at 47-feet bgs pose an unacceptable risk and hazard to adults and children in a residential exposure scenario. Methane was measured in the subsurface at concentrations that require a methane mitigation system be installed subslab.

The methane mitigation system subslab of all buildings (and paved parking greater than 5000square feet) will consist, at a minimum, of an impermeable barrier beneath which will be either a 4-inch or 6-inch gravel blanket within which will be slotted horizontal piping runs connected to vertical vent pipe risers. Although designed to

capture and vent methane to the atmosphere, other VOCs in the subsurface also will be captured and vented by this system.

Even though the noncarcinogenic constituents impact different target organs the estimated hazard quotients of each constituent detected in soil at 5-feet and 10-feet bgs were summed to provide a hazard index. The results of the risk assessment indicate that the estimated summed hazard index of the noncarcinogenic constituents in soil did exceed the target hazard threshold for the residential child. The estimated hazard to the metals cadmium and arsenic via the ingestion and dermal contact exposure routes contributed the greatest hazard to the residential child. The estimated hazard to the residential child. The estimated hazard to the residential child hazard to the residential child. The estimated hazard to the residential child hazard index of the noncarcinogenic constituents detected in soil did not exceed the target threshold for the residential adult, commercial worker and construction worker scenarios.

The estimated risk of each carcinogenic constituent detected in soil at 5-feet and 10-feet bgs were summed to provide a summed risk. The results of the risk assessment indicate the summed risk of the carcinogenic constituents in soil did exceed the target threshold 1×10^{-6} for the residential child and residential adult and the target threshold of 1×10^{-5} for the commercial worker. The estimated risks due to exposure to arsenic and hexavalent chromium via ingestion and dermal contact pathways for the residential child and due to exposure to arsenic via ingestion and dermal contact pathways for the residential adult and commercial worker contributed the risks.

Therefore removal of soil to a depth of 10-feet bgs containing concentrations of arsenic greater than 16mg/kg is necessary.

The results of the risk assessment indicate that soil removal to a depth of 10-feet bgs, the maximum depth at which residential occupants, construction workers and commercial workers potentially may be exposed to constituents in site soils, at locations with concentrations of lead greater than 80mg/kg and arsenic greater than 16mg/kg is necessary prior to development; additionally subslab methane mitigation will be required during development.

Should you have any questions or desire additional information, please do not hesitate to contact me at 310.403.1921.

Sincerely,

X Susan Mearns

Susan L. Mearns, Ph.D.

Mearns Consulting LLC

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	3
2.0 SITE BACKGROUND	4
3.0 SUMMARY OF FIELD ACTIVITIES	6
4.0 CONCEPTUAL SITE MODEL	9
5.0 IDENTIFYING CHEMICALS OF CONCERN	10
6.0 TOXICITY ASSESSMENT	11
6.1 Types of Toxicity Values	11
6.1.1 Reference Doses and Reference Concentrations	
6.1.2 Cancer Slope Factors and Unit Risk Factors	13
7.0 EXPOSURE ASSESSMENT	
7.1 Average and Reasonable Maximum Exposures	15
8.0 RISK CHARACTERIZATION	16
8.1 Ingestion and Dermal Contact Exposure Pathways	
8.2 Inhalation Pathway Soil Matrix	
8.3 DTSC's Johnson & Ettinger Soil Gas Screen Model8.4 DTSC's Johnson & Ettinger Groundwater Screen Model	
8.4 DTSC s Johnson & Ettinger Groundwater Screen Model 8.5 DTSC LeadSpread 8.0 Model	
8.6 Noncancer Adverse Health Effects	
8.7 Lifetime Excess Cancer Risk	
8.8 Multipathway Cancer Risk	21
8.9 Estimation of Risks and Hazards	22
9.0 UNCERTAINTY ANALYSIS	24
9.1 Data Collection and Evaluation	
9.2 Exposure Assessment	
9.2.1 Exposure Pathways	
9.3 Toxicity Assessment 9.4 Risk Characterization	
9.5 Summary of Risk Assessment Uncertainties	
10.0 REFERENCES	
10.0 REFERENCES	20
TADLES	22
<u>TABLES</u> Table 1 - Soil Vapor Analytical Results	
Table 2 - TPH Soil Analytical Results	
Table 3 - Volatile Organic Compounds Soil Analytical Results	
Table 4 - Metals Soil Analytical Results	44
Table 5 - Volatile Organic Compounds Groundwater Analytical Results	
Table 6 - Semi-volatile Organic Compounds Soil Analytical Results Table 7 - Descipited Soil Analytical Describe	
Table 7 - Pesticides Soil Analytical Results Table 8 - Polychlorinated biphenyls Soil Analytical Results	
Table 8 - Polychiofinated opplenyls Son Analytical Results Table 9 - Toxicity Values and Exposure Point Concentrations	
Lucie / Tomony , undes und Emposure I onne concentrations manimum	

Table 10 - Exposure Parameters	5
Table 11 - Estimated Risk and Hazard Values Soil - Residential Child50	б
Table 12 - Estimated Risk and Hazard Values Soil - Residential Adult	7
Table 13 - Estimated Risk and Hazard Values Soil - Construction Worker58	8
Table 14 - Estimated Risk and Hazard Values Soil - Commercial Worker59	9
Table 15 - Summary Estimated Risk and Hazard 60	
Table 16 - LeadSpread Model Results	1
FIGURES	3
Figure 1 - Site Location64	
Figure 2 - Site Figure with All Data Points	5
Figure 3 - Remediated Soil Areas60	б
Figure 4 - Conceptual Architectural Site Plan 275 Units	
Figure 5 - Risk Assessment Conceptual Model	8
APPENDCIES	9
Appendix A - ProUCL Statistics Soil Matrix	
Appendix B - Tetra Tech Geologic Cross-Sections	
Appendix C - Johnson & Ettinger Soil Vapor Model Results	б
Appendix D - Johnson & Ettinger Groundwater Model Results	б

EXECUTIVE SUMMARY

The objectives of this Human Health Risk Assessment (HRA) are: (1) to evaluate potential health risks to human receptors posed by concentrations of constituents detected at least one time in the soil matrix, soil vapor and shallow groundwater underlying the 20-acre property located at 712 Baker Street in Long Beach California 90806 (the site), and (2) to determine risk-based clean-up goals and/or mitigation measures protective of human health.

This HRA followed the guidance in the Department of Toxic Substances Control (DTSC) *Preliminary Endangerment Assessment* (PEA) guidance manual (DTSC 2013), U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009), the DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, October 2011), the Massachusetts Department of Environmental Protection (MADEP) *Characterizing Risks posed by Petroleum Contaminated Sites* manual (MADEP October 31, 2002), the DTSC LeadSpread 8.0 Model, the DTSC modified Johnson & Ettinger soil gas screen, USEPA version 2.0 model (April 2003), and the DTSC modified Johnson & Ettinger groundwater screen, USEPA version 3.0 model (April 2003) both modified by DTSC Office of Human and Ecological Risk (HERO) December 2014.

The property is to be developed as a mixture of 275 single family residences and townhomes with two recreation centers and a homeowners' association. The maximum detected concentration or the upper confidence level, whichever was lower pursuant to the ProUCL guidance (USEPA 2004), of the constituent detected in the top 10-feet was used as the exposure point concentration for the residential, commercial worker and construction worker scenarios. Those chemicals of concern that had both reference doses or reference concentrations and slope factors or unit risk factors available, were assessed as both noncarcinogenic and carcinogenic compounds.

DTSC's LeadSpread 8.0 Model estimates the hazard due to exposure to lead in air and onsite soils/dust for adults and children within a residential scenario. Typically lead concentrations in air are not measured onsite. Therefore the model extrapolates these concentrations from the measured concentrations of lead in onsite soils. The percentile blood lead concentration is estimated by the model to provide an estimate of the percentage of a population of children and adults that would be expected to have blood lead levels that exceed the threshold value for a residential exposure scenario.

DTSC's LeadSpread 8.0 Model results indicates that lead does pose an unacceptable hazard to children or adults in a residential exposure scenario; therefore removal of soil to a depth of 10-feet below ground surface (bgs) is necessary at locations that exceed lead concentrations of 80 milligrams per kilogram (mg/kg).

The Johnson & Ettinger soil gas screen model modified by DTSC HERO (December 2014) was used to assess the potential risks and hazards due to exposure to the maximum concentrations of 1,2,4-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene (cumene), naphthalene, n-butylbenzene, n-propylbenzene, toluene, xylenes and styrene detected in the vapor phase at 5-feet and/or 15-feet bgs for a residential exposure scenario. The Johnson & Ettinger model estimated a risk of 8.2×10^{-4} , greater than the threshold of 1×10^{-6} , and a hazard of 26 greater than the threshold of 1.

The Johnson & Ettinger groundwater screen model modified by DTSC HERO (December 2014) was used to assess the potential risks and hazards due to exposure to the maximum concentrations of 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,4-trimethylbenzene, 1,2-dibromoethane, 1,2-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethane, 1,3,5-trimethylbenzene, 2-butanone (MEK), acetone, benzene, chlorobenzene, chloroform, cis-1,2-dichloroethene, diisopropylether, ethylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, sec-butylbenzene, tert-butylbenzene, toluene, xylenes and vinyl chloride detected in the groundwater at 47-feet bgs for a residential exposure scenario. The Johnson & Ettinger model estimated a risk of 2.6×10^{-4} , greater than the threshold of 1×10^{-6} , and a hazard of 8.1 greater than the threshold of 1.

Due to the historic use of the site as a water treatment facility that treated produced water and wastewater recovered during oil well production in settling basins from 1926 to 1998 and the ongoing bioremediation (since 2004) methane is generated at concentrations that requires mitigation. The methane mitigation system subslab of all buildings (and paved parking greater than 5000square feet) will consist of an impermeable barrier beneath which will be either a 4-inch or 6-inch gravel blanket within which will be slotted horizontal piping runs connected to vertical vent pipe risers. Although designed to capture and vent methane to the atmosphere, other VOCs in the subsurface also will be captured and vented by this system.

Additionally the vapor extraction system operated by AECOM Technical Services, Inc. on behalf of Tesoro Logistic Operations, LLC remediating the volatile organic compounds (VOCs) released by Tesoro's pipelines adjacent contiguous to the site along the eastern site boundary with Golden Avenue will continue to operate.

Even though the noncarcinogenic constituents impact different target organs the estimated hazard quotients (HQ) of each constituent detected in soil at 5-feet and 10-feet bgs were summed to provide a hazard index. The results of the HRA indicate that the estimated summed hazard index (HI) of the noncarcinogenic constituents in soil did exceed the target hazard threshold for the residential child. The estimated hazards of the metals cadmium and arsenic via the ingestion and dermal contact exposure routes contributed the greatest hazard to the residential child. The estimated HI of the noncarcinogenic constituents detected in soil did not exceed the target threshold for the residential adult, commercial worker and construction worker scenarios.

The estimated risk of each carcinogenic constituent detected in soil at 5-feet and 10-feet bgs were summed to provide a summed risk. The results of the HRA indicate the summed risk of the carcinogenic constituents in soil did exceed the target threshold 1×10^{-6} for the residential child and residential adult and the target threshold of 1×10^{-5} for the commercial worker. The estimated risks due to exposure to arsenic and hexavalent chromium via ingestion and dermal contact pathways for the residential adult and commercial worker contributed the risks.

Therefore removal of soil to a depth of 10-feet bgs containing concentrations of arsenic greater than 16mg/kg is necessary.

The results of the HRA indicate that soil removal to a depth of 10-feet bgs at locations with concentrations of lead greater than 80mg/kg and arsenic greater than 16mg/kg is necessary prior to development; additionally subslab methane mitigation will be required during development.

1.0 INTRODUCTION

This report presents the results of a Human Health Risk Assessment (HRA) for the 20-acre property located at 712 Baker Street in Long Beach, California (the site) (Figure 1).

The purpose of this human health risk assessment is to evaluate the potential adverse health impacts due to exposure to concentrations of constituents detected in the soil matrix, soil vapor and shallow groundwater underlying the site. If a constituent was detected one time in soil sampled at 5-feet and 10-feet bgs, and/or one time in soil vapor at 5-feet or 15-feet bgs and/or groundwater at 47-feet bgs it was retained and quantitatively assessed in this human health risk assessment. The following constituents: 1,2,4-trimethylbenzene, benzene, ethylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene and m,p,o-xylenes were detected in all three media and assessed in the risk assessment in each medium. This human health risk assessment assessed the potential risk and hazard attributable to exposure to 13 carcinogenic constituents (including hexavalent chromium, derived by assuming 1/6th the detected concentration of total chromium was hexavalent chromium) and 37 noncarcinogenic constituents, including lead detected in soil at 5-feet and 10-feet bgs; to nine volatile organic compounds (VOCs) detected in soil vapor at 5-feet bgs; and to 24 VOCs detected in groundwater at 47-feet bgs.

This HRA followed the guidance in the Department of Toxic Substances Control (DTSC) *Preliminary Endangerment Assessment* (PEA) guidance manual (DTSC 2013), U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009), the DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, October 2011), the Massachusetts Department of Environmental Protection (MADEP) *Characterizing Risks posed by Petroleum Contaminated Sites* manual (MADEP October 31, 2002), and the DTSC LeadSpread 8.0 Model, the DTSC modified Johnson & Ettinger soil gas screen, USEPA version 2.0 model (April 2003), both modified by DTSC Office of Human and Ecological Risk (HERO) December 2014.

As the USEPA and the State of California Office of Environmental Health Hazard Assessment (OEHHA) have not published toxicity values, i.e., Reference Doses (RfDs), for total petroleum hydrocarbons (TPH) the guidance in the Massachusetts Department of Environmental Protection approach to characterizing risks posed by petroleum contaminated sites and in DTSC's PEA Manual (DTSC 2013) were used to obtain surrogate RfDs for C4-C12, C13-C22, C23-C32 and C33-C40 (MADEP 2002, DTSC 2013). As the source of TPH in site soils is from crude oil production and as VOCs and polycyclic aromatic hydrocarbons (PAHs), such as benzene, toluene, ethylbenzene, m,p,o-xylenes (BTEX), hexane, methyl tertbutyl ether, naphthalene and methylnaphthalene were analyzed in soil, soil vapor and groundwater, and BTEX and naphthalene were detected and assessed in this risk assessment in all three media, TPH was assigned aliphatic toxicity criteria. The potential adverse health impacts due to exposure to C4-C12, C13-C22, C23-C32 and C33-C40 and in onsite soils were then assessed by following the appropriate ingestion and dermal contact equations (DTSC 2013).

2.0 SITE BACKGROUND

Background

The 20-acre site located at 712 Baker Street in Long Beach, California 90806 has had historic addresses of 701 Baker Street and 3501, 3539, 3701 and 3801 Golden Avenue. Assessor parcel numbers (APNs) for the site are 7302-002-001, 7302-002-005, 7302-002-007, 7302-002-008, 7302-002-009, and 7302-002-010.

The site is adjacent south of an on-ramp for the I-405 freeway, east of the I-710 freeway and the Los Angeles River, west of Golden Avenue and north of Wardlow Road in Los Angeles County and the City of Long Beach (Figure 1) (Tetra Tech 2015).

The site operated as a water treatment facility that treated produced water and wastewater recovered during oil well production in settling basins from 1926 to 1998. Bioremediation of onsite soils has been ongoing since 2004. A vapor extraction system operated by AECOM Technical Services, Inc. on behalf of Tesoro Logistic Operations, LLC is remediating volatile organic compounds (VOCs) released by Tesoro's pipelines adjacent contiguous to the site along the eastern site boundary with Golden Avenue. The site currently is vacant, unpaved land (Tetra Tech 2015).

The water treatment process initially took place in settling basins. It was designed to remove oil and sediment from the produced water and then discharge the treated water to the Sanitation Districts of Los Angeles County (LACSD) sewer system under a permit issued by the LACSD. Crude oil was recovered for recycling as a by-product of the treatment process. A wastewater treatment plant was constructed onsite in 1959 that consisted of five circular concrete-walled skimming basins and associated pumps, aboveground storage tanks (ASTs), pipelines and related small buildings and facilities (Figure 2). The treatment plant was located north of the two rectangular-shaped, clay-lined settling basins in the southern portion of the site, south of Baker Street. These settling basins were referred to as Basins 1 and 2 (Brycon 2010, 2011).

Basin 1 received oily residual solids that settled out of the produced water. Basin 2 received relatively clean water, after the produced water had undergone retention, skimming, flocculation, and aeration. Treated water was held in Basin 2, until it was discharged offsite. Additional smaller basins were historically present south of Basins 1 and 2. These smaller basins were closed in 1986 and 1987 (Figure 2). The Los Angeles Regional Water Quality Control Board (LARWQCB) issued a waste discharge for land treatment operation related (WDR) Order No. 86-93. This WDR Order was for land treatment by bioremediation of the oily residual solids in Basins 1 and 2 and included monitoring requirements (Brycon 2010, 2011).

The water treatment facility ceased operations in 1988. The City of Long Beach Fire Department (LBFD 2000) directed that liquid hydrocarbon products, wastewater and sludge be removed from the site under a Site Remediation Permit issued by the City of Long Beach, coordinated with the LBFD and City of Long Beach Department of Health Human Services (LBDHHS), and that impacted soil and groundwater be remediated under the oversight of the LBDHHS and LARWQCB in 2002. Buildings, ASTs and related aboveground structures (except for the concrete-walled skimming basins and small, concrete-lined vaults with control valves) were cleaned, demolished and disposed offsite in 2000 and 2001. The August 28, 2002 Consent Decree directed that remediation of Basin 1 take place in accordance with the standards specified by LBDHHS.

Full scale bioremediation commenced in the first quarter 2004 (Brycon 2008) consistent with the LBDHHS approved corrective action plan. Basins 1 and 2 were reconfigured to be used for bioremediation of oil residual solids. Bioremediation activities include periodic disking of the upper 9-inches of oily residual solids and moisture level monitoring. Bioremediated soil, i.e., oily residual solids that conform to remediation standards have been placed in the southern and western portions of the site. The concrete-walled skimming basins were removed in 2011 and bioremediated soil also has been placed at this location. The approximate thickness of the bioremediated soil in these areas is 5-feet to 10-feet. Quarterly soil monitoring reports documenting bioremediation activities have been submitted by Brycon to the LBDHHS since the first quarter 2004.

Quarterly groundwater monitoring has been performed by Brycon since 2001. Prior to 2001, intermittent groundwater monitoring was performed by several consultants. There currently are 14 groundwater monitoring wells onsite. Groundwater monitoring reports are prepared by Brycon and submitted to the LARWQCB. Figure 2 depicts the former configuration of the treatment facility in addition to the groundwater monitoring wells, vapor extraction system and soil boring locations. Figure 3 depicts the bioremediated soil areas.

Previous Environmental Investigations

The site has been investigated extensively by a number of environmental consultants including Emcon Associates (Emcon 1981), Jaykim Engineers, Inc. (JEI 1986 to 1988c), Jack K. Bryant and Associates (JKB 1992), Environmental Science & Engineering, Inc., (ESE) and Brycon, LLC (Brycon 2001 to 2015).

Brycon operated a vapor extraction system in the eastern part of the site from 2012 to 2014 to initially remediate primarily vapor phase benzene adjacent to Golden Avenue (this was performed even though it has not been demonstrated that the benzene in soil gas and groundwater along Golden Avenue at the eastern side of the Site was related to onsite activities). AECOM Technical Services, Inc. on behalf of Tesoro Logistic Operations LLC has been operating a vapor extraction system in the northeastern part of the site since April 2015, and is expected to continue to perform characterization and remediation activities related to one or more Tesoro pipelines beneath Golden Avenue. The Tesoro related activities are in response to a Cleanup and Abatement Order No. R4-2013-0064 (LARWQCB September, 18 2014) (Tetra Tech 2015).

Proposed Development

Current plans are for residential development with a final grade that is expected to be 36 feet to 38 feet above mean sea level (Tetra Tech 2015). It is anticipated that clean fill and native soil on the eastern portion of the site will be excavated to lower the existing grade, and placed in the western part of the site as engineered fill to raise the existing grade.

Site development is planned for townhome-type residences that currently are envisioned to be two- to three stories in height with patio-sized backyards. Recreation centers are planned onsite north of Baker Street and in the southern portion of the site, south of Baker Street. A homeowner's association is expected to have overall responsibility for maintenance of common areas, the recreation centers, the stormwater detention basin and approving any changes to residences through an architectural review process Tetra Tech 2015). Figure 4 depicts the proposed development.

3.0 SUMMARY OF FIELD ACTIVITIES

Soil vapor 5-feet and 15-feet bgs

Tetra Tech collected soil gas samples from soil vapor probes placed at 5-feet and 15-feet bgs in 2015 (Tetra Tech 2015).

The following VOCs were detected in soil vapor underlying the site: 1,2,4-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene (cumene), naphthalene, n-butylbenzene, n-propylbenzene, toluene and m,p,o-xylenes (Tetra Tech 2015) (Table 1). The maximum concentrations of these VOCs was used at the exposure point concentration in the appropriate Johnson & Ettinger model.

Soil 10-feet bgs and shallower

Soil samples were collected in 2015 by Tetra Tech and submitted for analysis of total petroleum hydrocarbons (TPH), total threshold limit concentration metals, volatile organic compounds, semi-volatile organic compounds, chlorinated pesticides, chlorinated herbicides and polychlorinated biphenyls using the appropriate sampling, collection and analytical methods (Tetra Tech 2015).

Total petroleum hydrocarbons-gasoline range (C4-C12) were detected at concentrations up to 1,500mg/kg in the top 10-feet of soil sampled onsite (Table 2).

Total petroleum hydrocarbons-diesel range (C13-C22) were detected at concentrations up to 15,000mg/kg in the top 10-feet of soil sampled onsite (Table 2).

Total petroleum hydrocarbons-oil range (C23-C32) were detected at concentrations up to 13,000mg/kg in the top 10-feet of soil sampled onsite (Table 2).

Heavy-ends (C33-C40) were detected up to concentration of 8,900mg/kg in the top 10-feet of soil sampled onsite (Table 2).

The following VOCs were detected in the top 10-feet of soil sampled onsite: 1,1,2-trichloroethane, 1,2,4-trimethylbenzene, 1,2-dichlorobenzene, 1,3,5-trimethylbenzene, 2-butanone (MEK), acetone, benzene, cis-1,2-dichloroethene, ethylbenzene, isopropylbenzene, m,p,o-xylenes, naphthalene, n-butylbenzene, n-propylbenzene, p-isopropyltoluene, sec-butylbenzene and toluene (Table 3).

The following metals were detected in the top 10-feet of soil sampled onsite: arsenic, barium, beryllium, cadmium, chromium (although hexavalent chromium was not analyzed, it was assessed in this risk assessment by using the standard practice of assuming 1/6 the concentration of total chromium is hexavalent chromium), cobalt, copper, lead, manganese, mercury, molybdenum, nickel, vanadium and zinc (Table 4).

The following SVOCs, pesticides and polychlorinated biphenyls (PCBs) were detected in the top 10-feet of soil sampled onsite: 2-methylnaphthalene, bis(2-ethylhexyl)phthalate, 4,4'-DDT, chlordane, Aroclor 1254 and Aroclor 1260 (Tables 6, 7 and 8).

Not every soil sample had detected concentrations of the abovementioned constituents. If a constituent was detected one time in the top 10-feet of soil sampled onsite it was retained and quantitatively assessed in this risk assessment.

Tetra Tech measured concentrations of methane greater than 25% of its lower explosive limit (LEL) of 12,500 parts per million by volume (ppmv). Tetra Tech measured methane at 55,900ppmv at 5-feet bgs on the portion of the site north of Baker Street and at 374,000ppmv at 5-feet bgs underlying the former Basins 1 and 2. Based on these concentrations a methane mitigation system subslab of all buildings (and paved parking greater than 5000square feet) will be required and will, at a minimum, consist of an impermeable barrier beneath which will be either a 4-inch or 6-inch gravel blanket within which will be slotted horizontal piping runs connected to vertical vent pipe risers.

Groundwater 47-feet bgs

Total dissolved solids (TDS) ranged from 1,200 milligrams per liter (mg/L) to 4,400 mg/L based on analysis via Untied States Environmental Protection Agency (USEPA) Method No. 160.1, and from 190 mg/L to 3,200 mg/L based on analysis by USEPA Method No. 160.2 during the first quarter groundwater monitoring event in 2015 (Brycon 2015). The pH ranged from 6.7 to 7.1, and the chloride concentration ranged from 340 mg/L to 2,300 mg/L (Brycon, 2015). In general, the TDS and chloride concentrations are high and indicative of water that is not suitable for use as a source of drinking water.

Tetra Tech is not aware of any water supply wells that draw water from the semi-perched zone in the site vicinity. ESE (1999) described the closest water well as located approximately 700 feet west-southwest of the site at 32nd Street and Delta Avenue, west of the Los Angeles River, with a groundwater elevation approximately 25 feet below msl (Los Angeles County Flood Control District [LACFCD] No. 888F). This water well is described as being screened the Gaspur Aquifer. CADWR (1961) shows a water well (ID No. 4W/3S-1404) in a similar location that extends to the top of the Silverado Aquifer at a depth of approximately 650 feet below msl.

VOCs detected in groundwater 47-feet bgs include: 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,4trimethylbenzene, 1,2-dibromoethane, 1,2-dichloroethane, 1,4-dichlorobenzene, 1,3,5-trimethylbenzene, 2butanone (MEK), acetone, benzene, chlorobenzene, chloroform, cis-1,2-dichloroethene, diisopropylether, ethylbenzene, m,o-xylenes, naphthalene, n-butylbenzene, n-propylbenzene, sec-butylbenzene, tertbutylbenzene, toluene and vinyl chloride (Tetra Tech 2015) (Table 5). The maximum concentrations of these VOCs was used as the exposure point concentration in the appropriate Johnson & Ettinger model.

Site Geology and Hydrogeology

Native soil has been characterized as having subtle features such as thin layering, homogeneous coloration, and the presence of thin carbonate stringers. Native soil was encountered beneath the artificial fill north of Baker Street and the western portion of the site south of Baker Street and in the eastern portion of the site south of Baker Street (Tetra Tech 2015).

Native soil was classified as:

- Terrace Deposits: Interbedded silty sand, sand, clayey silt, and sandy silt. Terrace Deposits were encountered in the depth interval of from approximately 18-feet to 2-feet bgs to 5-feet bgs (the maximum depth investigated Tetra Tech, 2015.
- Alluvium: Interbedded sand and silty sand to sandy silt from 26-feet to 30-feet bgs in the southernmost part of the site (Tetra Tech 2015).

The site is located in the floodplain of the Los Angeles River adjacent to the southwest side of Signal Hill. Underlying the Site is the Bellflower aquitard, which American Environmental Management Corporation (AEM) describes as extending to 65-feet bgs (AEM 1991). Within the Bellflower aquitard is a perched groundwater zone, which is the groundwater zone encountered at the site. Underlying the Bellflower aquiclude is the Gaspur aquifer, which AEM describes as extending from 65-feet bgs to 105-feet bgs. A 5-foot thick clay zone beneath the Gaspur aquifer separates it from the underlying Gage aquifer. The latter extends approximately 50 feet beneath the site (from approximately 110-feet bgs to 160-feet bgs) (Tetra Tech 2015).

The depth to groundwater on May 18, 2015 ranged from 30.28-feet to 50.71-feet bgs. The groundwater flow direction was interpreted to be variable with an overall trend to the west to northwest, with localized flow toward east. A northwest groundwater flow direction at the site was reported by Brycon from October 2007 through March 2015. Prior to 2007, the groundwater flow direction was reported to be variable, including flow directions such as east-northeast, east, east-southeast, southeast, west-southwest, west, northwest, and north (Brycon 2015, ATSI 2015).

The shallow groundwater zone beneath the Site was described in 1999 by ESE (1999) as semi-perched groundwater (the semi-perched zone). According to ESE, the Bellflower Aquiclude usually underlies the semi-perched zone. The Bellflower Aquiclude tends to limit hydraulic communication with the underlying regional groundwater zones. ESE describes the semi-perched zone as degraded by widespread salt water intrusion, industrial wastes, and/or oil field brines.

4.0 CONCEPTUAL SITE MODEL

A conceptual site model was developed to identify the potential complete exposure pathways by which constituents detected in soil could impact human health (Figure 5).

The conceptual site model identifies potential sources, environmental release mechanisms, potential migration pathways, potential exposure pathways, potential exposure routes and potential human receptors onsite.

The conceptual site model identified the following potential complete exposure pathways:

- Future onsite commercial worker
 - ingestion/dermal contact with surface soil
 - inhalation of dust from soil in outdoor air
- Future construction worker
 - ingestion/dermal contact with surface and subsurface soil
 - inhalation of dust from soil in outdoor air
- Future onsite resident
 - ingestion/dermal contact with surface and subsurface soil
 - inhalation of dust that has migrated to indoor air
 - inhalation of soil vapor that has migrated to indoor air

Consumption of fruit or vegetables grown in soil is not considered to be a complete potential exposure pathway under future site conditions because the 20-acre site will be developed as a mixture of 275 single family residences and townhomes with two recreation centers and a homeowners' association.

Potential direct exposures (ingestion and dermal contact) to groundwater are not complete pathways as drinking water is provided by a remote municipal water supply, so there is little chance of incidental exposure. Discharge of groundwater to surface water also is not considered to be a complete migration pathway since there are no surface water bodies that are recharged by artesian flow or groundwater seepage in the vicinity of the site.

The potential for chemicals in soil to leach to underlying groundwater used as a drinking water source is considered very low as several aquitards or aquicludes exist below the maximum depth of impacted soils and groundwater used as a drinking water source.

There is very limited ecological habitat at and near the site. Wetlands were not observed onsite or at adjacent sites. There are no natural or undisturbed areas onsite. Based on the lack of viable ecological habitat at and near the site, there are no complete ecological pathways onsite.

5.0 IDENTIFYING CHEMICALS OF CONCERN

All constituents detected at least one time in the soil matrix sampled in 2015 and VOCs detected in soil vapor and groundwater underlying the site were quantitatively assessed using the appropriate exposure pathway in this risk assessment.

6.0 TOXICITY ASSESSMENT

Toxicity values are combined with exposure factors to estimate noncancer adverse health effects and cancer risks. Toxicity values include reference doses (RfDs), reference concentrations (RfCs), unit risk factors (URFs) and slope factors (SFs) that are used to evaluate noncancer adverse health effects and cancer risks. USEPA (1989) has developed the following hierarchical toxicity identification protocol:

- Integrated Risk Information System (IRIS, USEPA 1999)
- Health Effects Assessment Summary Tables (HEAST, USEPA 1997)
- National Center for Environmental Assessment (NCEA)

The State of California Office of Environmental Health Hazard Assessment (OEHHA) and the State of California Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) have developed URFs SFs, RfCs and RfDs. Pursuant to regulatory agency guidance OEHHA's and HERO's values are preferentially used instead of USEPA's when available, as OEHHA's and HERO's values are generally more conservative than USEPA's (DTSC 2013, USEPA 2004).

If a constituent had both a risk factor and a reference concentration it was assessed as a carcinogen and as a noncarcinogen. The unit risk factors and reference concentrations were obtained from DTSC HERO (DTSC 2014), ATSDR, IRIS, OEHHA, PPRTV as listed in USEPA's Regional Screening Levels (November 2015).

The exposure point concentrations, the slope factors and reference doses for the constituents detected in the soil matrix and quantitatively assessed are presented in Table 9.

6.1 Types of Toxicity Values

USEPA recognizes that fundamental differences exist between noncarcinogenic and carcinogenic effects of chemicals. As a result of these differences, the evaluation of potential human health effects associated with noncarcinogenic and carcinogenic chemicals is conducted separately. As summarized in IRIS (USEPA 1999) and HEAST (USEPA 1997), USEPA has developed reference doses to evaluate noncancer effects and slope factors to evaluate carcinogenic effects. If a chemical is considered to cause both noncancer health effects and cancer risks, both reference doses and slope factors may be listed for the chemical. Other chemicals may have only reference doses or slope factors developed, depending on the observed toxic effects.

6.1.1 Reference Doses and Reference Concentrations

Noncancer health effects are evaluated using a reference dose, which is expressed in units of milligrams per kilogram body weight per day (mg/kg-day). A reference dose represents a USEPA-developed, estimated daily exposure level (dose) to which humans may be exposed for a portion of their lifetime (in the case of subchronic reference doses) or for their entire lifetime (in the case of chronic reference doses), without expectation of adverse health effects. USEPA assumes the existence of a threshold concentration for noncancer effects. Below this concentration toxic effects are not expected to occur (USEPA 1989).

Reference doses are often based on animal laboratory studies, from which data are then extrapolated to a chemical concentration considered "safe" for humans. The threshold of observed effects in test animals is divided by uncertainty factors (UFs). Separate uncertainty factors, each of which may be up to 10, are

used to account for each of the following:

- Protection of sensitive individuals within the receptor population.
- Extrapolation of toxicity data from animals to humans.
- Extrapolation of subchronic toxicity data to chronic exposure durations.
- Extrapolation from a lowest-observed adverse effect level (LOAEL) to a no-observed adverse effect level (NOAEL) to assess toxicity.

The uncertainty factors for a given chemical are then multiplied together to provide a total uncertainty factor, which is then used to derive a chronic reference dose. In order to derive a reference dose protective of the most sensitive members of the human population, the uncertainty factor may range from one to 10,000. The higher the total uncertainty factor, the more uncertainty and degree of conservativeness there are in the resultant chronic reference dose.

The chronic reference dose is the USEPA-established dose used to evaluate health effects associated with long-term (chronic) exposures of at least seven years (USEPA 1989). The subchronic reference dose is the dose used to evaluate health effects associated with exposures less than seven years (USEPA 1989).

USEPA has developed route-specific reference doses for the oral and inhalation routes of exposure. However, USEPA has not developed reference doses to specifically evaluate possible impacts from dermal (skin) exposure. For this reason, oral reference doses are typically used to estimate possible noncancer health effects from dermal exposure consistent with USEPA (1989) guidance.

USEPA defines a reference concentration as an estimate of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be at appreciable risk of deleterious effects during a lifetime (USEPA 2009). The reference concentration is derived after a review of the health effects database for a chemical and identification of the most sensitive and relevant endpoint along with the principal study or studies demonstrating that endpoint. Uncertainty factors are used to account for uncertainties in the extrapolations from the experimental data conditions to an estimate appropriate to the exposed human scenario (USEPA 2009). The reference concentrations are derived from the following formula:

$$RfC = NOAEL_{[HEC]} / (UF)^{1}$$

Where:RfC (mg/m³) = reference concentration
NOAEL[HEC] (mg/m³) = The NOAEL or analogous exposure level obtained with an
alternate approach, dosimetrically adjusted to an HEC
UF = uncertainty factor(s) applied to account for the extrapolations required from the
characteristics of the experimental regimen

6.1.2 Cancer Slope Factors and Unit Risk Factors

USEPA has developed route-specific slope factors for chemicals that are known or potential human carcinogens. USEPA (1989) defines a slope factor and a unit risk factor as a plausible upper-bound estimate of the probability of a carcinogenic response in human populations per unit intake of a chemical (averaged over an expected lifetime of 70 years). Slope factors are used to estimate cancer risks and are expressed in units of risk per dose in mg/kg-day ([mg/kg-day]⁻¹).

Most slope factors and unit risk factors are based on a continuous exposure, linear non-threshold extrapolation model (generally the linear multistage model) which is predicated on the assumption that any level of exposure to a carcinogen will result in some degree of carcinogenic risk, however minute (i.e., no threshold is assumed to exist). The extrapolation model derives a mathematical relationship between the generally high chemical doses and resulting effects measured in laboratory animals or epidemiological (human) studies, and applies that relationship to extrapolate effects for the generally lower doses that occur in the environment.

This low-dose extrapolation is generally regarded as a very conservative (health protective) approach. The resulting slope factor typically represents at least the upper 95th percentile of the measured dose-response relationship. USEPA has developed slope factors for oral and inhalation exposure routes but not for the dermal route. Therefore, oral slope factors are typically used to evaluate potential effects from dermal exposure (USEPA 1989).

7.0 EXPOSURE ASSESSMENT

The exposure assessment provides a scientifically defensible basis for the identification of potentially exposed human receptors and the most likely ways they might be exposed to chemicals of concern at the site. As defined by USEPA (1989), the following four components are necessary for chemical exposure to occur:

- A chemical source and a mechanism of chemical release to the environment
- An environmental transport medium (e.g., soil) for the released chemical
- A point of contact between the contaminated medium and the receptor (i.e., the exposure point)
- An exposure route (e.g., ingesting chemically-impacted soil) at the exposure point

All four of these elements must be present for an exposure pathway to be considered complete and for chemical exposure to occur (USEPA 1989).

This HRA evaluated the potential for receptors to be exposed to the maximum detected concentrations or the upper confidence level (UCL), whichever value was less, pursuant to the ProUCL User's Guide (USEPA 2004) of the constituents detected in the top 10-feet of soil. The ProUCL model output is included as Appendix A.

The maximum concentrations of the VOCs detected in soil vapor at 5-feet and 15-feet bgs and from groundwater at 47-feet bgs underlying the site were used as the exposure point concentrations in the appropriate Johnson & Ettinger vapor intrusion models. Data collected from the soil matrix and soil vapor investigation in 2015 (Tetra Tech 2015) and from the groundwater investigation in 2015 (Brycon 2015) were used in the risk assessment. Exposure point concentrations are presented in Table 9.

7.1 Average and Reasonable Maximum Exposures

Typically two types of exposure scenarios are evaluated in a risk assessment; an average exposure scenario, and a reasonable maximum exposure (RME) scenario. The average exposure scenario represents a more typical exposure, believed to be most likely to occur, while the reasonable maximum exposure scenario represents a plausible worst case situation - one that is not very likely to occur. USEPA guidance (1989) recommends evaluating a reasonable maximum exposure scenario. The reasonable maximum exposure scenario estimates the exposure a receptor might receive using highly conservative intake assumptions (e.g., 90th or 95th percentile for most intake assumptions) and the upper confidence limit (UCL) on the mean of the chemical concentrations. It is assumed that by evaluating a reasonable maximum exposure scenario potential health risks to extremely sensitive individuals within a particular receptor population will be adequately addressed. As an added measure of conservatism, only a reasonable maximum exposure scenario was evaluated in this HRA.

The DTSC PEA and USEPA guidance contain formulae that incorporate default values which were selected to be health protective. Some of these default values, such as, the exposure frequency, exposure time and exposure duration, were modified when evaluating the commercial worker and construction worker scenarios (DTSC 2013, USEPA 2004).

8.0 **RISK CHARACTERIZATION**

The risk characterization process incorporates data from the exposure and toxicity assessments. The exposure assessment information necessary to estimate risks and hazards includes the estimated chemical intakes, exposure modeling assumptions, and the exposure pathways assumed to contribute to the majority of exposure for each receptor over a given time period (USEPA 1989a). The exposure parameters for assessing the constituents detected in the soil matrix are included as Table 10.

The method by which chemicals with carcinogenic and/or noncarcinogenic effects are evaluated to determine whether they pose a risk or an adverse impact to human health is discussed below, relative to the exposure pathways by which the receptors may be exposed to the exposure point concentrations of the chemicals of concern.

8.1 Ingestion and Dermal Contact Pathways

To provide an evaluation of chronic risk along the ingestion and dermal contact pathways the following equations for risk and hazard were used consistent with PEA guidance (DTSC 2013).

 $Hazard_{soil} =$

 $\begin{array}{r} (1/RfD_o) \; x \;\; C_s \; x \; \underline{IR \; x \; EF \; x \; ED \; x \; 10^{-6} \; kg/mg} \\ BW \; x \; AT \; x \; 250 \; days/year \end{array}$

+ $(1/RfD_o) \times C_s \times SA \times AF \times ABS \times EF \times ED \times 10^{-6} \text{ kg/mg}$ BW x AT x EF

Where: $SF_o = oral cancer slope factor (mg/kg-day)^{-1}$ $C_s = concentration in soil (mg/kg)$ $RfD_o = oral reference dose (mg/kg-day)$ ABS = absorption fraction (dimensionless):Exposure Duration (ED) - years Exposure Frequency (EF) - days/year

Body Weight (BW) - kg Incidental Soil Ingestion Rate (IR_s) - mg/day Exposed Skin (SA) - cm^2 Soil to Skin Adherence Factor (AF) – mg/cm² Averaging Time (AT) - years

Chemical specific values for the absorption fractions (ABS) parameter were obtained from USEPA and DTSC (USEPA June 2015; DTSC 2013). Toxicity and exposure point concentrations are found in Table

9. Exposure parameters for assessing constituents detected in the soil matrix are presented in Table 10. The maximum concentration or the upper confidence level, whichever was less, of the constituents detected in the top 10-feet of soils were evaluated in this risk assessment for the residential, commercial worker and construction worker scenarios.

The exposure factors presented in Tables 9 and 10 provide a conservative estimate of chronic risk and hazard to human health due to exposure to the chemicals of concern detected in the soil matrix via the ingestion and dermal contact routes of exposure. The calculated estimates of risk and hazard due to exposure to constituents detected in the soil matrix are provided in Tables 11-15.

8.2 Inhalation Pathway Soil Matrix

To provide an evaluation of chronic risk along the inhalation pathway the following equations (DTSC 2013, USEPA 2009) for estimating risk and hazard due to exposure to constituents of concern detected in the soil matrix were used consistent with PEA guidance (DTSC 2013, USEPA 2009).

Semi-volatile organic compounds and metals in soil are evaluated in outdoor air using particulate emission factors (PEFs) to obtain concentrations of chemicals in dust. PEFs are used to develop an estimate of the concentration of a chemical in dust based on its concentration in soil. It assumes that the dust from the site is caused by the wind and not created by mechanical means (e.g. construction activities, tilling, automobile traffic, etc.) (DTSC 2013).

A default PEF of 1.32E+09 (m³/kg) is used, because this is the same default value used by the USEPA in its Soil Screening Guidance (USEPA 2009). It assumes an infinite source of chemicals, a vegetative cover of 50%, and a mean annual wind speed of 4.69 m/s. This is equivalent to a dust concentration of 0.76 g/m³ at the receptor. The default dispersion term (Q/C) of 90.80 (g/m2-s per kg/m3) is based on a site of 0.5 acres and dispersion modeling runs of 29 sites across the United States. The default Q/C provides a conservative estimate of the long-term exposure to dust (DTSC 2013).

$$C_a = (C_s/PEF) \times 1000 \mu g/mg$$

Where:

 $C_a = \text{concentration in air, mg/m}^3$ $C_s = \text{concentration in soil, mg/kg}$ PEF = 1.32E09 (default value)

Chronic and SubChronic Exposure

$$EC = CA x [(ET x EF x ED)/AT]$$

Where:

EC = exposure concentration (mg/m³) CA = contaminant concentration in air (mg/m³) ET = exposure time EF = exposure frequency ED = exposure duration AT = averaging time (varies by receptor and for noncarcinogens and carcinogens) $Risk = EC \times IUR$

Where:

 $Risk = estimated risk \\ EC = exposure concentration (\mu g/m^3) \\ IUR = inhalation unit risk factor (\mu g/m^3)^{-1}$

HQ = EC/Toxicity value

Where:

HQ = hazard quotient EC = exposure concentration (mg/m³) Toxicity value = inhalation reference concentration (mg/m³)

The risk and hazard for the air pathway are based on either the exposure to volatile emissions for VOCs or the exposure to fugitive dust emissions for non-VOCs. The Office of Scientific Affairs defines a VOC as a chemical with a vapor pressure of 0.001 mm mercury or higher and a Henry's Law Constant of 1 x 10^{-5} or higher. Exposure to a chemical via the air pathway can be adequately performed using either volatilization or fugitive dust scenarios; it is not necessary to do both (DTSC 2013).

For this risk assessment exposure to non-VOCs detected in the soil matrix via the inhalation pathway was performed using the fugitive dust scenario.

As the exposure duration was 1 year for construction workers the subchronic exposure was estimated instead of acute exposure, pursuant to USEPA guidance (USEPA 2009). The commercial worker and residential receptors were assessed for chronic exposure.

8.3 The DTSC modified Johnson and Ettinger Model - Soil gas screen, version 2.0 (April 2003; modified by DTSC HERO December 2014)

The exposure point concentrations (the maximum detected concentrations) of VOCs detected at least one time in soil vapor was assessed by the DTSC modified Johnson & Ettinger Model soil gas screen, version 2.0 (April 2003; modified by DTSC HERO December 2014).

The Johnson and Ettinger Model has the following conservative assumptions: (1) steady state conditions exist, (2) an infinite source of contamination exists, (3) the subsurface is homogenous, (4) air mixing within the building is uniform, (5) preferential pathways do not exist, (6) biodegradation of vapors does not occur, (7) contaminants are homogenously distributed, (8) contaminant vapors enter the building primarily through cracks in the foundation and walls, (9) buildings are constructed on slabs or with basements, (10) ventilation rates and pressure differences are assumed to remain constant and (11) the receptors are exposed to these constituents for 350 days per year for 30 years (residential scenario).

The Johnson & Ettinger Model was used to calculate incremental risks and hazards by the following equations imbedded within the model:

 $Risk = \frac{URF \ x \ EF \ x \ ED \ x \ C_{building}}{AT_c \ x \ 365 \ days/year}$

Where: URF = unit risk factor $\mu g/m^3$; comparable to a SF EF = exposure frequency = 350 days/year ED = exposure duration = 30 years C_{building} = vapor concentration in the building, milligrams per cubic meter (mg/m³) per $\mu g/kg$ soil; calculated by the model AT_c = averaging time for carcinogens; default value = 70 Hazard Quotient = EF x ED x 1/RfC x C_{building}

Where: RfC = Reference Concentration mg/m³; comparable to a RfD EF = exposure frequency = 350 days/year ED = exposure duration = 30 years $C_{building}$ = vapor concentration in the building, milligrams per cubic meter (mg/m³) per µg/kg soil; calculated by the model AT_{nc} = averaging time for noncarcinogens; default value = 25

Site specific variables input into the model include the following:

- The depth at which the maximum concentration of the VOC was detected varied from 152 centimeters (cm) to 457cm.
- The soil type in the top 15-feet as depicted in the cross-section prepared by Tetra-Tech was a combination of silty sand, bioremediated soil, clay and poorly graded sand therefore the soil type selected in the model was silt, SI (Appendix B).
- The temperature of groundwater was changed pursuant to the map in the Johnson & Ettinger User's Manual (page 46) to reflect Southern California temperatures of 62°F or 17°C.

The results of the Johnson & Ettinger model are presented below and in Appendix C. The summed estimated risk is 8.2×10^{-4} , greater than the threshold of 1×10^{-6} and the summed estimated hazard is 26, greater than the threshold of 1 indicating VOCs in soil vapor underlying the site pose an adverse impact to future residential occupants.

	Soil vapor concentration µg/m ³	Indoor Air Concentration µg/m ³	Estimated Risk	Estimated Hazard
1,2,4- trimethylbenzene	5.44E+03	4.5E+00	NA	6.2E-01
Benzene	1.67E+05	7.8E+01	8.0E-04	2.5E+01
Ethylbenzene	4.02E+04	1.5E+01	1.3E-05	1.4E-02
Cumene	1.13E+03	3.8E-01	NA	9.1E-04
Naphthalene	4.10E+02	3.4E-01	4.1E-06	1.1E-01
n-butylbenzene	7.24E+02	2.2E-01	NA	1.2E-03
n-propylbenzene	4.2E+03	3.5E+00	NA	3.3E-03
Toluene	1.67E+04	6.9E+00	NA	2.2E-02
Xylenes	5.11E+04	1.9E+01	NA	1.8E-01
SUM			8.2E-04	26

8.4 The DTSC modified Johnson and Ettinger Model – Groundwater screen, version 3.0 (April 2003; modified by DTSC HERO December 2014)

The maximum detected concentrations of VOCs detected at least one time in groundwater 47-feet bgs was assessed by the DTSC modified Johnson & Ettinger Model groundwater screen, version 3.0 (April 2003; modified by DTSC HERO December 2014) for the residential scenario.

The Johnson and Ettinger Model has the following conservative assumptions: (1) steady state conditions exist, (2) an infinite source of contamination exists, (3) the subsurface is homogenous, (4) air mixing within the building is uniform, (5) preferential pathways do not exist, (6) biodegradation of vapors does not occur, (7) contaminants are homogenously distributed, (8) contaminant vapors enter the building primarily through cracks in the foundation and walls, (9) buildings are constructed on slabs or with basements, (10) ventilation rates and pressure differences are assumed to remain constant and (11) the receptors are exposed to these constituents for 350 days per year for 30 years (residential scenario).

The Johnson & Ettinger Model was used to calculate incremental risks and hazards by the following equations imbedded within the model:

$$Risk = \frac{URF \ x \ EF \ x \ ED \ x \ C_{building}}{AT_c \ x \ 365 \ days/year}$$

Where: URF = unit risk factor $\mu g/m^3$; comparable to a SF EF = exposure frequency = 350 days/year ED = exposure duration = 30 years C_{building} = vapor concentration in the building, milligrams per cubic meter (mg/m³) per $\mu g/kg$ soil; calculated by the model AT_c = averaging time for carcinogens; default value = 70

$$\label{eq:Hazard Quotient} \begin{split} \text{Hazard Quotient} = \frac{\text{EF x ED x } 1/\text{RfC x } C_{\text{building}}}{\text{AT}_{\text{nc}} \text{ x } 365 \text{ days/year}} \end{split}$$

Where: RfC = Reference Concentration mg/m³; comparable to a RfD EF = exposure frequency = 350 days/year ED = exposure duration = 30 years $C_{building}$ = vapor concentration in the building, milligrams per cubic meter (mg/m³) per µg/kg soil; calculated by the model AT_{nc} = averaging time for noncarcinogens; default value = 25

Site specific variables input into the model include the following:

- The depth of groundwater was changed to 1433cm.
- The soil type was changed to reflect silt, SI.
- The temperature of groundwater was changed pursuant to the map in the Johnson & Ettinger User's Manual (page 46) to reflect Southern California temperatures of 62°F or 17°C.

The results of the Johnson & Ettinger model for the residential scenario are presented below and in Appendix D. The estimated risk 2.5×10^{-4} is greater than the threshold 1×10^{-6} . The estimated hazard 8.1 is greater than the threshold of 1; indicating the VOCs detected in groundwater underlying the site do pose an adverse impact to future residents.

		LESIDENTIAL SCEN			
	Groundwater concentration µg/L	Indoor Air Concentration µg/m ³	Estimated Risk	Estimated Hazard	
1,1,2,2- tetrachloroethan	4.4E-01	1.5E-04	3.0E-09	2.0E-06	
1,1,2- trichlororethane	2.6E+00	1.9E-03	1.1E-08	9.3E-03	
1,2,4- trimethylbenzene	1.0E+03	3.6E+00	NA	4.9E-01	
1,2- dibromoethane	2.45E+02	1.1E-01	2.4E-05	1.4E-01	
1,2- dichloroethane	4.3E+02	5.5E-01	5.1E-06	7.5E-02	
1,4- dichlorobenzene	4.0E-01	5.6E-04	2.2E-09	6.7E-07	
1,3,5- trimethylbenzene	3.4E+02	1.7E+00	NA	4.6E-02	
2-butanone (MEK)	1.3E+02	2.2E-02	NA	4.3E-06	
Acetone	4.2E+02	6.1E-02	NA	1.9E-06	
Benzene	3.9E+03	2.1E+01	2.2E-04	6.9E+00	
Chlorobenzene	8.4E-01	2.0E-03	NA	3.9E-05	
Chloroform	1.2E+00	4.3E-03	3.3E-08	3.9E-05	
Cis-1,2- dichloroethene	1.8E+00	7.5E-03	NA	1.0E-03	
Diisopropylether	2.5E+00	4.9E-03	NA	6.8E-06	
Ethylbenzene	1.7E+03	9.2E+00	8.2E-06	8.8E-03	
m-xylene	5.9E+03	2.9E+01	NA	2.8E-01	
Naphthalene	2.6E+02	9.9E-02	1.2E-06	3.1E-02	
n-butylbenzene	5.5E+01	4.2E-01	NA	2.3E-03	
n-propylbenzene	1.5E+02	9.0E-01	NA	8.6E-04	
o-xylene	3.0E+03	1.1E+01	NA	1.0E_01	
sec-butylbenzene	2.8E+01	6.0E-03	NA	1.4E-05	
Tert- butylbenzene	2.0E+00	1.4E-02	NA	3.4E-05	
Toluene	3.6E+03	2.0E+01	NA	6.3E-02	
Vinyl chloride	6.9E-01	2.5E-02	7.1E-07	2.4E-04	
SUM			2.6E-04	8.1	

RESIDENTIAL SCENARIO

8.5 DTSC's LeadSpread 8.0 Model

DTSC's LeadSpread 8.0 Model estimates the hazard due to exposure to lead in air and onsite soils/dust for adults and children within a residential exposure scenario. Typically, lead concentrations in air are not measured onsite. Therefore the model extrapolates these concentrations from the measured concentrations of lead in onsite soils.

DTSC's LeadSpread 8.0 Model results indicate that lead does pose an unacceptable hazard to adults or children exposed to the maximum concentration of lead in site soils, 820mg/kg, used in the model as the exposure point concentration. These results are provided in Table 16.

8.6 Noncancer Adverse Health Effects

Noncarcinogenic effects or hazards are typically evaluated by comparing an exposure level over a specified time period (e.g., a lifetime or 25 years), with a reference dose based on a similar time period.

Hazard quotient values less than 1 indicate that potential exposures to noncarcinogenic COCs are not expected to result in toxicity (USEPA 1989). Summing the hazard quotient values to derive a hazard index (HI) provides an estimation of the total potential hazard due to a simultaneous exposure to all the noncarcinogenic COCs. However, summing hazard quotient values is not necessary when the chemicals of concern target different organs within the body (USEPA 1989, DTSC 2013). Although the noncarcinogenic chemicals of concern quantitatively assessed in this risk assessment target different organs within the body, the estimated hazard quotients were summed to derive a HI.

8.7 Lifetime Excess Cancer Risk

Slope factors are used to estimate the potential risk associated with exposure to individual COCs. The slope factor is multiplied by the chronic daily intake averaged over 70 years to estimate lifetime excess cancer risk. "excess" or "incremental" cancer risk represents the probability of an individual developing cancer over a lifetime as a result of chemical exposure, over and above the baseline or "background" cancer risk in the general population. Cancer risks and noncancer health hazards estimated in the HRA are regarded as estimated or theoretical results developed on the basis of the toxicity factors, chemical fate and transport, exposure assumption, and other inputs previously described. Cancer risks do not represent actual cancer cases in actual people. Rather, risks are calculated on the basis of an entirely hypothetical set of conditions. This assumed "exposure scenario" is developed to protect human health, and is based on standard USEPA and Cal-EPA methods and assumptions.

USEPA characterizes theoretical excess lifetime cancer risks below one in one million (10^{-6}) as not of concern and has stated that risks between 10^{-6} and one in 10,000 (10^{-4}) are "safe and protective of public health" (Federal Register 56(20):3535, 1991). Remedial action is not generally required by USEPA for sites with a theoretical lifetime excess risk of less than 10^{-4} ; whereas the State of California uses a risk-management approach (DTSC 2011).

The more stringent target risk of 10^{-6} is typically applied to residential receptors. To provide perspective, a total theoretical lifetime excess cancer risk of one in 100,000 (10^{-5}) is frequently accepted by Cal-EPA for worker receptors at California sites, and the target risk for chemicals evaluated under State Proposition 65 regulations is 10^{-5} (22CCR 12703).

8.8 Multipathway Cancer Risk

Based on regulatory guidelines, it is appropriate to combine risk estimates across exposure pathways for a given receptor. At the same time, exposure to multiple carcinogenic COCs is also typically considered to be additive. For exposures to multiple pathways and chemicals, the following equation was used to estimate total theoretical lifetime excess carcinogenic risks:

	Total R	isk	=	m Σ p=1	n Σ i=1	CR _{i,p}
Where:						
Total Risk	=	Excess	cancer r	isk from	exposu	e to n chemicals via m pathways
m	=	Numbe	r of expo	osure pat	thways	
n	=	Numbe	r of cher	nicals		
CR i,p	=	Potenti	al cancer	r risk fro	m expos	ure to chemical i via pathway p

This equation was used to estimate the total potential cancer risks due to exposure to the carcinogenic COCs via the ingestion, dermal contact and inhalation routes of exposure. The estimated risks, total risk, estimated hazards and hazard index are presented in Tables 11 - 15.

8.9 Estimation of Risks and Hazards

A total of 83 constituents of concern were quantitatively assessed in the risk assessment.

Residential Scenario Child – Soil Matrix

Estimated Risk Ingestion and Dermal Contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes 3.17×10^{-5} greater than the target threshold 1×10^{-6} .

Estimated Risk Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 2.09×10^{-7} less than the target threshold 1×10^{-6} .

Hazard Quotients Ingestion and Dermal Contact - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 3.3, which is greater than 1, the target hazard value.

Hazard Quotients Inhalation - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 0.008, which is less than 1, the target hazard value.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix, is 3.18×10^{-5} , greater than the target risk.

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals of concern in the soil matrix is 3.3, greater than the target hazard value. These estimated risk and hazards values are presented in Table 11.

Residential Scenario Adult – Soil Matrix

Estimated Risk Ingestion and Dermal Contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes 1.39×10^{-5} greater than the target threshold 1×10^{-6} .

Estimated Risk Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 2.09×10^{-7} less than the target threshold 1×10^{-6} .

Hazard Quotients Ingestion and Dermal Contact - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 0.3, which is less than 1, the target hazard value.

Hazard Quotients Inhalation - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 0.008, which is less than 1, the target hazard value.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix, is 1.4×10^{-5} , greater than the target threshold 1×10^{-6} .

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals

of concern in the soil matrix is 0.3, less than the target hazard value. These estimated risk and hazards values are presented in Table 12.

Construction Worker Scenario – Soil Matrix

Estimated Risk Ingestion and Dermal Contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes 1.90×10^{-6} less than the target threshold 1×10^{-5} .

Estimated Risk Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 2.42×10^{-9} less than the target threshold 1×10^{-5} .

Hazard Quotients Ingestion and Dermal Contact - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 0.04, which is less than 1, the target hazard value.

Hazard Quotients Inhalation - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 0.00009, which is less than 1, the target hazard value.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix, is 1.9×10^{-6} , less than the target threshold 1×10^{-5} .

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals of concern in the soil matrix is 0.04, less than the target hazard value. These estimated risk and hazards values are presented in Table 13.

Commercial Worker Scenario – Soil Matrix

Estimated Risk Ingestion and Dermal Contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes 1.61×10^{-5} slightly greater than the target threshold 1×10^{-5} .

Estimated Risk Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 4.14×10^{-8} less than the target threshold 1×10^{-5} .

Hazard Quotients Ingestion and Dermal Contact - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 0.2, which is less than 1, the target hazard value.

Hazard Quotients Inhalation - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 0.002, which is less than 1, the target hazard value.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix, is 1.61×10^{-5} , slightly greater than the target threshold 1×10^{-5} .

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals of concern in the soil matrix is 0.23, less than the target hazard value. These estimated risk and hazards values are presented in Table 14.

9.0 UNCERTAINTY ANALYSIS

The uncertainty analysis characterizes the propagated uncertainty in health risk assessments. These uncertainties are driven by variability in:

- The chemical data selection and assumptions used in the models with which concentrations at receptor locations were estimated.
- The variability of receptor intake parameters.
- The accuracy of toxicity values used to characterize exposure, hazards and cancer risks.

Additionally, uncertainties are introduced in the risk assessment when exposures to several substances across multiple pathways are summed.

Quantifying uncertainty is an essential element of the risk assessment process. According to USEPA's Guidance on Risk Characterization for Risk Managers and Risk Assessors, point estimates of risk "do not fully convey the range of information considered and used in developing the assessment" (USEPA 1992). The following components of the risk assessment process can introduce uncertainties:

- Data Collection and Evaluation
- Exposure Assessment
- Toxicity Assessment
- Risk Characterization

9.1 Data Collection and Evaluation

The techniques used for data sampling and analysis and the methods used for identifying chemicals for evaluation in this risk assessment, may result in a number of uncertainties. These uncertainties are itemized below in the form of assumptions.

- It was assumed that the nature and extent of chemical impacts on and near the site have been adequately characterized. If this assumption is not valid, then potential health impacts may be over- or underestimated.
- Systematic or random errors in the chemical analyses may yield erroneous data. These types of errors may result in a slight over- or underestimation of risk.

9.2 Exposure Assessment

A number of uncertainties are associated with the exposure assessment, including estimation of exposure point concentrations and assumptions used to estimate chemical intakes. Key uncertainties associated with these components of the HRA are summarized below.

9.2.1 Exposure Pathways

The exposure pathways evaluated in this HRA are expected to represent the primary pathways of exposure, based on the results of the chemical analyses, and the expected fate and transport of these chemicals in the environment. Minor or secondary pathways may also exist, but often cannot be identified or evaluated using the available data. The contribution of secondary pathways to the overall risk from the site is not

likely to be significant. In addition, intake assumptions are reflective of trends (usually for the most sensitive individual within an entire population), and as such are subject to intrinsic variability. In both cases, their presence introduces a level of uncertainty to this risk assessment process.

9.3 Toxicity Assessment

Toxicity information for many chemicals is often limited. Consequently, there are varying degrees of uncertainty with the calculated toxicity values. Sources of uncertainty associated with toxicity values include:

- Using dose-response information from effects observed at high doses to predict the adverse health effects that may occur following exposure to the low levels expected from human contact with the agent in the environment.
- Using dose-response information from short-term exposures to predict the effects of long-term exposures.
- Using dose-response information from animal studies to predict effects in humans.
- Using dose-response information from homogeneous animal populations or human populations to predict the effects likely to be observed in the general population consisting of individuals with a wide range of sensitivities.

To compensate for these uncertainties, USEPA typically applies a margin of safety when promulgating human toxicity values. Therefore, use of USEPA toxicity values likely results in an overestimation of potential hazard and risk.

9.4 Risk Characterization

The reasonable maximum exposure scenario risk characterization represents an over-estimation of risk. Site-specific information regarding depth below ground at which the constituents of concern were detected was not used in the equations. The reasonable maximum exposure scenario estimated the risk to the receptors based on the maximum detected concentrations or the UCLs for the constituents quantitatively assessed in this risk assessment.

9.5 Summary of Risk Assessment Uncertainties

The analysis of the uncertainties associated with this risk assessment indicates that the estimated risks and hazards derived from the equations in the PEA Manual (DTSC 2013), the RAGs Manual (USEPA 2009), the LeadSpread Model (DTSC) and the J&E Models for the reasonable maximum exposure scenario represent an over-estimation of risk. Although as outlined in the sections above, many factors can contribute to the over- or underestimation of risk, in general, a mixture of conservative and upper-bound input values were identified to estimate potential exposures. Compounding conservative and upper-bound input values in the risk assessment process are intended to lead to reasonable, maximum, health-conservative estimates. The actual impacts to human health are most likely less than those estimated in this HRA for the evaluated receptors and pathways.

10.0 REFERENCES

American Environmental Management Corporation (AEM). December 12, 1991. Subsurface Characterization Report of the Southern Portion of Oil Operators, Inc. – 712 West Baker Street – Long Beach, California.

ATSI. April 30, 2015. Tesoro Logistics Operations LLC Soil Vapor Extraction System Installation and Startup Report – Former BP/ARCO Pipelines, Golden Avenue, between Baker Street and Wardlow Road, Long Beach, California.

Brycon, LLC (Brycon). September 28, 2001. Pilot Test Work Plan for Removal, Handling, Treatment and Disposal of Oily Materials from North Pond (Basin 1) at the Oil Operators Incorporated Property, Long Beach, California

Brycon. September 3, 2003. Basin 1 Corrective Action Plan.

Brycon. September 23, 2003. Revised Corrective Action Plan for Basin 1 at the Oil Operators Incorporated Property, Long Beach California.

Brycon. April 15, 2008. 1st Quarter 2008 Quarterly Monitoring Report for Basin 1 – Land Treatment of Petroleum Hydrocarbon - Impacted Soil – Oil Operators Incorporated Property – 712 West Baker Street – Long Beach, California.

Brycon. November 15, 2010. Report On Additional Site Characterization – Oil Operators, Inc. – 712 West Baker Street – Long Beach, California – SCP Case No. 0093; SCPID No. 2044M00.

Brycon. September 30, 2011. Report On Additional Site Characterization – Oil Operators, Inc. – 712 West Baker Street – Long Beach, California – SCP Case No. 0093; SCPID No. 2044M00.

Brycon. January 15, 2013. September 2012 – Quarterly Groundwater Monitoring – Oil Operators Property – 712 West Baker Street – Long Beach, California.

Brycon. March 12, 2015. Remediated Soil Stockpile Areas w Height.

Brycon. April 15, 2015. March 2015 - Quarterly Groundwater Monitoring – Oil Operators Property – 712 West Baker Street – Long Beach, California.

California Environmental Protection Agency (Cal-EPA). 1992. Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 1997. Selecting Inorganic Constituents as Chemicals of Potential Concern at Risk Assessments at Hazardous Waste Sites and Permitted Facilities. February 1997.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2005. Final Report, Background Metals at Los Angeles Unified School Sites – Arsenic. June 6, 2005.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2007. Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals for Proposed and Existing School Sites. March 21, 2007.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air October 2011.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2013. Preliminary Endangerment Assessment Guidance Manual.

Chernoff, G., W. Bosan and D. Oudiz. Determination of a Southern California Regional Background Arsenic Concentration in Soil

County of Los Angeles. August 28, 2002. Consent Decree – People of the State of California vs. Oil Operators, Inc., A California Corporation: Document filed in the Municipal Court for the Long Beach Judicial District – County of Los Angeles, State of California, Case # 01LM01702.

DTSC's LeadSpread 8.0 Model.

EMCON Associates. February 1981. Hydrogeologic Investigation – IndustrialWaste Transfer Station – Long Beach, California.

Environmental Science & Engineering, Inc. (ESE). October 26, 1999. Groundwater Monitoring Report – Oil Operators Inc. Property – 712 West Baker Street – Long Beach, California – SLIC No. 093.

ESE. February 21, 2000. Groundwater Monitoring Report for the Fourth Quarter 1999 at the Oil Operators Inc. Property, 712 West Baker Street, Long Beach, California.

Jack K. Bryant and Associates, Inc. July 1992. Investigation of Origination of Groundwater/Soil Contamination – Oil Operators South Site – 712 West Baker Street – Long Beach, California.

Jaykim Engineers, Inc. (JEI). September 9, 1986. Ambient Air Survey for Oil Operators Land Farming Operation.

JEI. October 1986. Hydrogeologic and Soils Report for the Closure of Basins 4, 5, and 14 – Oil Operators, Inc.

JEI. January 6, 1987. Well Logs for Ground Water Monitoring Wells for Oil Operators: Letter transmitting boring logs.

JEI. October 15, 1987b. Quarterly Monitoring Report – Land Treatment Operation – Oil Operators, Inc. – Long Beach, California.

JEI. January 15, 1988a. Quarterly Monitoring Report – Land Treatment Operation – Oil Operators, Inc. – Long Beach, California.

JEI. May 3, 1988b. Quarterly Monitoring Report for Oil Operators, Inc. - Long Beach, California.

JEI. July 11, 1988. Quarterly Monitoring Report for Oil Operators, Inc. - Long Beach, California.

Massachusetts Department of Environmental Protection (MADEP). October 31, 2002. Characterizing Risks posed by Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach.

National Center for Environmental Assessment (NCEA). In USEPA 1989.

Office of Environmental Health Hazard Assessment (OEHHA). Unit Risk Factors and Reference Concentrations.

Tetra Tech, Inc. April 3, 2015. Supplemental Site Investigation (SSI) Work Plan for Oil Operators, Inc. Property – 712 Baker Street, Long Beach, California 90806.

Tetra Tech, Inc. April 24, 2015. Supplemental Site Investigation Work Plan Amendment No. 1 - Oil Operators, Inc. Property at 712 Baker Street, Long Beach, California 90806.

Tetra Tech, Inc. July 17, 2015. Supplemental Site Investigation (SSI) Report for Oil Operators, Inc. Property – 712 Baker Street, Long Beach, California 90806.

United States Environmental Protection Agency (USEPA). September 24, 1986. Guidelines for Health Risk Assessment of Chemical Mixtures. 51 FR 34014-34025.

United States Environmental Protection Agency (USEPA). January, 1992(a). Dermal Exposure Assessment: Principles and Applications. Office of Research and Development Response. EPA/600/8-91/011B.

United States Environmental Protection Agency (USEPA). February, 1992(b). Guidance on Risk Characterization for Risk Managers and Risk Assessors.

United States Environmental Protection Agency (USEPA). July, 1996. Soil Screening Guidance: User's Guide. Office of Solid Waste and Emergency Response. Publication 9355.4-23.

United States Environmental Protection Agency (USEPA). August, 1997(a). Exposure Factors Handbook, Volumes I, II and III. Office of Research and Development. EPA/600/P-95/002F.

United States Environmental Protection Agency (USEPA). July, 1997(b). Health Effects Assessment Summary Tables (HEAST). Office of Solid Waste and Emergency Response. EPA-540-R-97-036.

United States Environmental Protection Agency (USEPA). December, 2004. Risk Assessment Guidance for Superfund (RAGs), Office of Emergency and Remedial Response. EPA/540/1-9/002.

United States Environmental Protection Agency (USEPA). 2004. Risk Assessment Guidance for Superfund - Volume I - Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). Office of Emergency and Remedial Response. Publication 9285.7-01B.

United States Environmental Protection Agency (USEPA). November 2015. Regional Screening Levels.

United States Environmental Protection Agency (USEPA). 2009. Risk Assessment Guidance for Superfund - Volume I - Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment).

United States Environmental Protection Agency (USEPA). April, 2004. ProUCL Guidance.

United States Environmental Protection Agency (USEPA). ProUCL version 5.0

TABLES

Sample ID	Depth ft	1,2,4-Trimethylbenzene	Benzene	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	n-Propylbenzene	Toluene	Xylenes
SG1-5	5	0.112	< 0.008	0.117	< 0.008	0.024	< 0.008	0.083	< 0.008	0.207
SG1-15	15	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG2-5	5	0.855	2.02	< 0.008	0.149	0.097	< 0.008	0.394	0.063	1.08
SG2-15 (10P)	15	< 0.008	12.3	5.87	< 0.008	< 0.008	< 0.008	< 0.008	9.55	38.4
SG2-15 (1P)	15	< 0.008	26.4	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	16.7	< 0.008
SG2-15 (3P)	15	< 0.008	33.7	8.67	< 0.008	< 0.008	< 0.008	< 0.008	10.4	18.4
SG3-5	5	5.44	< 0.008	6.56	< 0.008	0.41	< 0.008	4.2	< 0.008	7.71
SG4-5	5	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG4-15	15	0.539	< 0.008	0.674	0.17	0.042	< 0.008	0.362	< 0.008	0.739
SG5-5	5	4.97	< 0.008	5.04	0.85	0.22	< 0.008	2.92	< 0.008	2.75
SG5-5 dup.	5	5	< 0.008	5.4	1.13	0.304	< 0.008	3.34	< 0.008	3.04
SG5-15	15	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG6-5	5	0.652	< 0.008	1.41	< 0.008	< 0.008	< 0.008	0.678	< 0.008	1.97
SG6-15	15	< 0.008	167	40.2	< 0.008	< 0.008	< 0.008	< 0.008	8.47	51.1
SG7-5	5	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG7-15	15	0.07	< 0.008	0.114	< 0.008	0.01	0.042	0.07	< 0.008	0.256
SG8-5	5	0.684	< 0.008	1.3	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	0.564
SG8-15	15	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG9-5	5	< 0.008	< 0.008	0.65	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG9-15	15	1.68	< 0.008	5.78	0.298	0.162	0.638	2.43	1.09	6.08
SG10-5	5	0.546	< 0.008	1.18	< 0.008	< 0.008	0.388	0.742	< 0.008	1.14
SG10-15	15	< 0.008	1.85	0.632	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG11-5	5	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG11-15	15	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG12-5	5	0.06	< 0.008	0.095	< 0.008	< 0.008	< 0.008	0.068	< 0.008	0.139
SG12-15	15	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG13-5	5	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG13-5 dup.	5	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
SG13-15	15	2.58	< 0.008	3.84	0.02	0.104	0.724	2.18	< 0.008	4.15

Notes: Concentrations are in micrograms per liter (ug/L)

Mearns Consulting LLC

		TPH Gasoline	TPH Diesel	TPH Oil				
Sample ID	Depth (ft.)	(C4-C12)	(C13-C22)	TPH (C23-C32)	TPH (C33-C40)			
B1@5	5	<1	84	460	670			
B1@10	10	33	2,300	2,200	1,600			
B2@5	5	<1	12	19	13			
B3@5	5	<1	2,800	3,200	2,500			
B3@10	10	<1	8.4	9.7	4.9			
B4@5	5	19	3,600	3,800	2,800			
B4@10	10	42	1,500	1,200	800			
B5@5	5	37	5,700	5,200	3,700			
B5@10	10	18	1,500	1,300	950			
B6@5	5	35	2,100	1,700	1,200			
B6@10	10	3.4	940	5,000	6,500			
B7@5	5	2.4	1,200	1,100	790			
B7@10	10	<1	<1	<1	<1			
B8-5	5	<1	<1	<1	<1			
B8-10	10	1,500	15,000	<400	<400			
B9@5	5	<1	<1	1.4	<1			
B9@10	10	<1	1.2	1.1	<1			
B12@5	5	<1	<1	<1	<1			
B12@10	10	<1	<1	<1	<1			
B13@5	5	<1	4.4	25	34			
B13@10	10	<1	180	1,200	2,300			
B14@5	5	<1	490	1,100	850			
B14@10	10	<1	60	220	210			
B15@5	5	<1	<1	1.7	2.1			
B15@10	10	<1	<1	<1	1.5			
B16@3	3	<1	<10	81	190			
B16@10	10	<1	<1	1.8	1.1			
B17@5	5	<1	360	940	790			
B17@10	10	<1	<1	1.3	<1			
B18@3	3	<1	6,400	13,000	8,900			
B18@10	10	13	5,500	3,600	2,100			
B19@5	5	<1	1.4	2	2.2			
B19@10	10	<1	1.4	1.2	<1			
B20-5	5	20	4,900	4,000	2,400			
B20-10	10	<1	1	1.2	1.1			
B21@5	5	<1	1.5	13	20			
B21@10	10	<1	48	66	39			
B22@5	5	<1	1,700	1,900	1,100			
B22@10	10	<1	5.8	5.8	3.6			
B23@5	5	<1	20	27	19			
B23@10	10	87	6,800	8,100	4,300			
B24-5	5	<1	17	45	34			
B24-10	10	<1	710	3,000	3,800			

		TPH Gasoline	TPH Diesel	TPH	Oil
Sample ID	Depth (ft.)	(C4-C12)	(C13-C22)	TPH (C23-C32)	TPH (C33-C40)
B25-5	5	<1	3	6.1	4.5
B25-10	10	<1	<1	1.4	1.5
B26-5	5	<1	190	840	920
B26-10	10	<1	2.2	3.5	2.9
B27-5	5	<1	3,000	4,900	3,200
B27-10	10	15	2,400	2,000	1,300
B28@5	5	<1	490	2,600	3,500
B28@10	10	25	51	39	25
B29@2	2	<1	110	340	370
B29@5	5	<1	<1	1.3	<1
B29@10	10	<1	1.6	1.4	1.1
B30@5	5	<1	1,400	1,800	1,400
B30@10	10	1.3	3,200	4,000	2,400
TSO-7-5	5	<0.2	10	180	
TSO-8-5	5	2.02	3,310	1,300	
TSO-8-10	10	17.3	3,800	820	
TSO-9-10	10	16.9	250	54	
TSO-20-5	5	< 0.2	<10	<20	
TSO-20-10	10	< 0.2	<10	<20	
GB-SOIL-TSO-7-3-041415	3	0.28 J	5,300	7,600	4,500
GB-SOIL-TSO-7-5-041415	5	0.33	71	150	110
GB-SOIL-TSO-7-10-0414	10	< 0.27	4.5 J	6.3	2.9 J
GB-SOIL-TSO-8-3-041315	3	150	8,600	9,400	4,400
GB-SOIL-TSO-8-5-041315	5	57	3,700	6,000	3,500
GB-SOIL-TSO-8-10-041315	10	420	1,100	1,000	500
GB-SOIL-TSO-8-10D-041315	10	470	4,100	3,300	1,700
GB-SOIL-TSO-9-5-041415	5	< 0.24	<5	3 J	<5
GB-SOIL-TSO-9-10-041415	10	370	99	4.5 J	<5
GB-SOIL-TSO-10-5-041315	5	< 0.29	<5	<5	<5
GB-SOIL-TSO-10-10-041415	10	< 0.34	<5	<5	<5
GB-SOIL-TSO-10-10D-041415	10	< 0.36	<5	<5	<5
GB-SOIL-TSO-11-5-041515	5	< 0.3	<5	<5	<5
GB-SOIL-TSO-11-5D-041515	5	< 0.29	<5	<5	<5
GB-SOIL-TSO-11-10-041515	10	< 0.31	<5	<5	<5
GB-SOIL-TSO-12-7-041515	7	< 0.31	<5	19	20
GB-SOIL-TSO-12-10-041615	10	< 0.32	<4.9	<4.9	<4.9
GB-SOIL-TSO-13-5-041515	5	< 0.32	<14	<14	<14
GB-SOIL-TSO-13-10-041515	10	< 0.34	<5	<5	<5
GB-SOIL-TSO-16-5-041615	5	< 0.31	44	83	59
GB-SOIL-TSO-16-5D-041615	5	< 0.31	78	170	93
GB-SOIL-TSO-20-5-042115	5	0.2 J	10	10	6.3
GB-SOIL-TSO-20-10-042115	10	< 0.28	11	17	10

Notes: Concentrations are in milligrams per kilogram (mg/kg)

Table 5 Volatile Organie Com		,			, 									
		a)	ne		ne				e					
		oethane	anze	ene	anze	Q			hen					
		oetl	ylbe	-Dichlorobenzene	ethylbe	(MEK)			,2-Dichloroethene		zene			e
		1,1,2-Trichlor	ieth	rob	leth	le (J			hlo	ene	Jenz	es	ne	-Butylbenzene
		Tricl	rin	chlo	,3,5-Trim	liou	9	e	-Dic	Ethylbenzene	pyll	m,p-Xylenes	hale	llber
		,2-T	г -+,	-Did	5-7	Buta	cetone	Benzene	.1,2	dlyı	pro	X-d	apht	Buty
Sample ID	Depth ft.	1,1	1,2	1,2,	1,3	2-B	Acc	Bei	cis-1	Eth	Iso	['m	Na	I III
B1@5	5	< 0.0042	< 0.0042	< 0.0042	< 0.0042			< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0085	< 0.0042	< 0.0042
B1@10	10	< 0.19	6.3	<0.19	0.34			0.45	<0.19	1.7	1	1.3	3.9	0.77
B2@5	5	< 0.0041	0.0089	< 0.0041	< 0.0041			0.005	<0.0041	< 0.0041	< 0.0041	< 0.0082	< 0.0041	<0.0041
B2@10	10	< 0.0047	0.28	< 0.0047	0.033			0.04	< 0.0047	0.066	0.035	0.055	0.15	0.033
B3@5	5	< 0.0043	< 0.0043	<0.0043	<0.0043			<0.0043	<0.0043	< 0.0043	<0.0043	<0.0087	<0.0043	<0.0043
B3@10	10	< 0.0035	< 0.0035	<0.0035	< 0.0035			< 0.0035	<0.0035	<0.0035	< 0.0035	<0.007	< 0.0035	< 0.0035
B4@5	5	< 0.19	3.5	<0.19	0.4			0.25	<0.19	0.76	0.48	0.7	1.9	0.33
B4@10	10	<0.0038	0.22	0.0064	0.091			0.047	<0.0038	0.06	0.031	0.043	0.13	0.045
B5@5 B5@10	5	<0.22 <0.0042	4.1 0.2	<0.22 <0.0042	0.58 0.057			0.24 0.027	<0.22 <0.0042	1.1 0.057	0.6	0.8	2.6 0.12	0.54 0.032
B5@10 B6@5	10	<0.0042	0.2 7.6	<0.0042	0.037			<0.26	<0.0042	1.5	1.2	0.041	4.7	0.032
B6@10	10	<0.20	<0.0036	<0.0036	<0.0036			<0.20	<0.20	<0.0036	<0.0036	<0.0071	<0.0036	<0.0036
B7@5	5	<0.0030	0.012	<0.0030	<0.0030			<0.0030	<0.0030	<0.0030	<0.0030	<0.0071	0.037	<0.0030
B7@10	10	< 0.004	< 0.004	< 0.004	< 0.004			< 0.004	< 0.004	< 0.004	< 0.004	<0.008	< 0.004	< 0.004
B8-5	5	< 0.0037	< 0.0037	< 0.0037	< 0.0037			< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0074	< 0.0037	< 0.0037
B8-10	10	< 0.24	13	<0.24	4.5			3.8	<0.24	1.5	0.41	2.8	51	3.4
B9@5	5	< 0.004	< 0.004	< 0.004	< 0.004			< 0.004	< 0.004	< 0.004	< 0.004	< 0.008	< 0.004	< 0.004
B9@10	10	< 0.004	< 0.004	< 0.004	< 0.004			< 0.004	< 0.004	< 0.004	< 0.004	< 0.0079	< 0.004	< 0.004
B12@5	5	< 0.0045	< 0.0045	< 0.0045	< 0.0045			< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0089	< 0.0045	< 0.0045
B12@10	10	< 0.0046	< 0.0046	< 0.0046	< 0.0046			< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0093	< 0.0046	< 0.0046
B13@5	5	< 0.0062	< 0.0062	< 0.0062	< 0.0062			< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.012	< 0.0062	< 0.0062
B13@10	10	< 0.0043	< 0.0043	< 0.0043	< 0.0043			< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0085	< 0.0043	< 0.0043
B14@5	5	< 0.0056	< 0.0056	< 0.0056	< 0.0056			< 0.0056	< 0.0056	< 0.0056	< 0.0056	<0.011	< 0.0056	< 0.0056
B14@10	10	< 0.0027	< 0.0027	< 0.0027	< 0.0027			<0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0054	< 0.0027	<0.0027
B15@5	5	< 0.0049	< 0.0049	< 0.0049	< 0.0049			< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0098	< 0.0049	< 0.0049
B15@10	10	< 0.0037	< 0.0037	< 0.0037	< 0.0037			< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0075	< 0.0037	< 0.0037
B16@3	3	< 0.0041	< 0.0041	< 0.0041	< 0.0041			< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0083	< 0.0041	< 0.0041
B16@10	10	< 0.0045	< 0.0045	< 0.0045	< 0.0045			< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.009	< 0.0045	< 0.0045
B17@5	5	< 0.0044	< 0.0044	< 0.0044	< 0.0044			< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0088	< 0.0044	< 0.0044
B17@10	10	< 0.0037	< 0.0037	< 0.0037	< 0.0037			< 0.0037	<0.0037	< 0.0037	<0.0037	< 0.0074	< 0.0037	< 0.0037
B18@3	3	< 0.0052	<0.0052	<0.0052	<0.0052			< 0.0052	<0.0052	<0.0052	<0.0052	<0.01	<0.0052	< 0.0052
B18@10	10	< 0.0048	<0.0048	<0.0048	< 0.0048			< 0.0048	<0.0048	<0.0048	0.016	< 0.0096	6.8	< 0.0048
B19@5	5	< 0.0069	<0.0069	<0.0069	<0.0069			< 0.0069	< 0.0069	<0.0069	<0.0069	<0.014	<0.0069	< 0.0069
B19@10	10	< 0.0049	< 0.0049	< 0.0049	< 0.0049			< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0099	< 0.0049	< 0.0049

Sample ID	Depth ft.	n-Propylbenzene	o-Xylene	p-Isopropyltoluene	sec-Butylbenzene	Toluene
B1@5	5	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042
B1@10	10	1.6	< 0.19	1.5	0.92	<0.19
B2@5	5	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0041
B2@10	10	0.055	0.0054	0.049	0.031	0.0055
B3@5	5	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043
B3@10	10	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0035
B4@5	5	0.72	<0.19	0.71	0.47	<0.19
B4@10	10	0.05	0.007	0.044	0.032	0.0057
B5@5	5	0.9	<0.22	0.98	0.54	< 0.22
B5@10	10	0.044	0.005	0.045	0.025	0.0047
B6@5	5	1.9	<0.26	1.9	1.2	<0.26
B6@10	10	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036
B7@5	5	< 0.0041	< 0.0041	0.0056	0.0042	< 0.0041
B7@10	10	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
B8-5	5	< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0037
B8-10	10	0.79	0.27	2.2	1.2	1.6
B9@5	5	< 0.004	<0.004	< 0.004	< 0.004	< 0.004
B9@10	10	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
B12@5	5	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045
B12@10	10	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046
B13@5	5	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062
B13@10	10	< 0.0043	<0.0043	<0.0043	< 0.0043	< 0.0043
B14@5	5	<0.0056	<0.0056	<0.0056	<0.0056	< 0.0056
B14@10	10	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027
B15@5	5	<0.0049	<0.0049	<0.0049	<0.0049	< 0.0049
B15@10	10	<0.0037	<0.0037	<0.0037	<0.0037	< 0.0037
B16@3	3	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041
B16@10 B17@5	10 5	<0.0045	<0.0045 <0.0044	<0.0045 <0.0044	<0.0045 <0.0044	<0.0045
						<0.0044
B17@10	10 3	<0.0037	<0.0037 <0.0052	<0.0037 <0.0052	<0.0037	<0.0037
B18@3	3 10	<0.0052 0.028	<0.0052	<0.0052	<0.0052 0.034	<0.0052 <0.0048
B18@10	5	<0.0069	<0.0048	<0.0048	<0.0069	
B19@5	10	<0.0069	<0.0069	<0.0069	<0.0069	<0.0069 <0.0049

January 14, 2016

		, 												
		oethane	iylbenzene	enzene	ethylbenzene	(MEK)			,2-Dichloroethene		zene			e
		nlı	neth	-Dichlorobe	neth	e			chlo	Ethylbenzene	ben	nes	ene	-Butylbenzene
		-Trichlo	Trin	ichle	-Trim	anon	ne	ne	C-Di	penz	lyqu	n,p-Xylenes	thal	ylbe
Samula ID	Donth ft	.1,2-	,2,4-	2-D)	.3,5-	2-But	ceto	enzene	s-1,2	thyl	oprdo	,p-X	aphi	But
Sample ID	Depth ft.		H	1 1 1		5	A	Ä	·:5		<u>Š</u>	H	Z	я П
B20-5	5	<0.0047	<0.0047	<0.0047	<0.0047			<0.0047	<0.0047	0.025	0.025	<0.0093	0.15	0.025
B20-10 B21@5	10 5	<0.0039 <0.0042	<0.0039 <0.0042	<0.0039 <0.0042	<0.0039 <0.0042			<0.0039 <0.0042	<0.0039 <0.0042	<0.0039 <0.0042	<0.0039 <0.0042	<0.0079 <0.0083	<0.0039 <0.0042	<0.0039 <0.0042
B21@10	10	<0.0042	<0.0042	<0.0042	<0.0042			<0.0042	<0.0042	<0.0042	<0.0042	<0.0083	<0.0042	<0.0042
B22@5	5	<0.0058	<0.0058	<0.0058	<0.0058			<0.0058	<0.0058	<0.0030 0.0064	<0.0030 0.014	<0.012	<0.0030 0.019	<0.0058
B22@10	10	< 0.0038	<0.0034	<0.0034	< 0.0038			0.0046	< 0.0034	0.0061	< 0.0034	<0.0012	0.0062	<0.0034
B23@5	5	< 0.003 1	< 0.004	< 0.004	< 0.004			0.015	< 0.004	< 0.004	< 0.004	<0.0081	< 0.004	< 0.004
B23@10	10	<0.19	18	0.42	4.1			1.3	<0.19	3.9	1.4	11	9.3	2.5
B24-5	5	< 0.0039	< 0.0039	< 0.0039	< 0.0039			< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0078	< 0.0039	< 0.0039
B24-10	10	< 0.0051	< 0.0051	< 0.0051	< 0.0051			< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.01	< 0.0051	< 0.0051
B25-5	5	< 0.0048	< 0.0048	< 0.0048	< 0.0048			< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0097	< 0.0048	< 0.0048
B25-10	10	< 0.0044	< 0.0044	< 0.0044	< 0.0044			< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0088	< 0.0044	< 0.0044
B26-5	5	< 0.0044	< 0.0044	< 0.0044	< 0.0044			< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0088	< 0.0044	< 0.0044
B26-10	10	< 0.0044	< 0.0044	< 0.0044	< 0.0044			< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0088	< 0.0044	< 0.0044
B27-5	5	< 0.0088	< 0.0088	< 0.0088	< 0.0088			< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.018	< 0.0088	< 0.0088
B27-10	10	< 0.21	1	< 0.21	<0.21			< 0.21	< 0.21	0.98	0.59	< 0.41	3.1	0.56
B28@5	5	< 0.0048	< 0.0048	< 0.0048	< 0.0048			< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0096	< 0.0048	< 0.0048
B28@10	10	< 0.0044	< 0.0044	< 0.0044	< 0.0044			< 0.0044	< 0.0044	0.09	0.04	< 0.0089	0.13	0.02
B29@2	2	< 0.0038	< 0.0038	< 0.0038	< 0.0038			< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0075	< 0.0038	< 0.0038
B29@5	5	< 0.0042	< 0.0042	< 0.0042	< 0.0042			< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0083	< 0.0042	< 0.0042
B29@10	10	< 0.0039	< 0.0039	< 0.0039	< 0.0039			< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0078	< 0.0039	< 0.0039
B30@5	5	< 0.0045	< 0.0045	< 0.0045	< 0.0045			< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.009	< 0.0045	< 0.0045
B30@10	10	< 0.0037	0.017	< 0.0037	0.0058	< 0.01	<0.1	0.0088	0.005	0.0038	< 0.0037	0.0097	0.02	< 0.0037
TSO-7-5	5	< 0.003	0.0024	< 0.001	0.0056	< 0.01	<0.1	< 0.001	< 0.002	< 0.001	< 0.001	< 0.002	0.0056	< 0.002
TSO-8-5	5	< 0.003	0.064	< 0.001	0.007	< 0.01	<0.1	0.003	< 0.002	0.017	0.008	0.014	0.035	0.004
TSO-8-10	10	< 0.003	0.118	<0.001	0.011	< 0.01	<0.1	0.015	< 0.002	0.056	0.024	0.023	0.228	0.017
TSO-9-10	10	< 0.003	0.6	<0.001	0.16	< 0.01	<0.1	< 0.001	<0.002	0.023	0.007	0.069	1.11	0.074
TSO-20-5	5	< 0.003	< 0.001	< 0.001	<0.001	<0.01	<0.1	< 0.001	<0.002	< 0.001	<0.001	<0.002	< 0.002	<0.002
TSO-20-10	10	< 0.003	<0.001	<0.001	<0.001	< 0.01	<0.1	< 0.001	<0.002	< 0.001	<0.001	<0.002	<0.002	<0.002
GB-SOIL-TSO-7-3-041415	3	<0.0017	<0.0017	<0.0017	< 0.0017	< 0.0083	<0.017	<0.0017	<0.0017	<0.0017	<0.0017	<0.0033	<0.0041	<0.0041
GB-SOIL-TSO-7-5-041415	5	<0.0015	0.014	<0.0015	0.002	< 0.0077	<0.015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.0031	0.006	0.0011 J
GB-SOIL-TSO-7-10-0414	10	<0.0016	<0.0016	<0.0016	<0.0016	<0.008	<0.016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0032	< 0.004	< 0.004
GB-SOIL-TSO-7-15-041515	15	<0.002 <0.078	<0.002	<0.002	<0.002	<0.01	<0.02	<0.002	<0.002	<0.002	<0.002 0.24	<0.0041	<0.0051	<0.0051
GB-SOIL-TSO-8-3-041315	3	<0.078	2.3	0.11	0.46	<0.78	<1.6	0.053 J	< 0.078	0.4	0.24	0.3	3.1	0.58

Sample ID	Depth ft.	n-Propylbenzene	o-Xylene	p-Isopropyltoluene	sec-Butylbenzene	Toluene
B20-5	5	0.039	< 0.0047	0.017	0.024	< 0.0047
B20-10	10	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039
B21@5	5	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042
B21@10	10	<0.0036	< 0.0036	<0.0036	< 0.0036	<0.0036
B22@5	5	0.018	< 0.0058	0.0091	0.0089	< 0.0058
B22@10	10	0.0036	< 0.0034	< 0.0034	< 0.0034	< 0.0034
B23@5	5	<0.004	< 0.004	< 0.004	< 0.004	0.0092
B23@10	10	2.6	5.1	1.9	1.4	2.6
B24-5	5	<0.0039	< 0.0039	<0.0039	<0.0039	< 0.0039
B24-10	10	<0.0051	< 0.0051	<0.0051	< 0.0051	< 0.0051
B25-5	5	<0.0048	<0.0048	<0.0048	<0.0048	< 0.0048
B25-10	10	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
B26-5	5	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
B26-10	10	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
B27-5	5	<0.0088	<0.0088	<0.0088	<0.0088	<0.0088
B27-10	10	1	<0.21	0.51	0.59	<0.21
B28@5	5	<0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B28@10	10	0.056	< 0.0044	<0.0044	0.023	< 0.0044
B29@2	2	<0.0038	<0.0038	<0.0038	<0.0038	< 0.0038
B29@5	5	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042
B29@10	10	<0.0039	<0.0039	<0.0039	<0.0039	< 0.0039
B30@5	5	<0.0045	<0.0045	<0.0045	<0.0045	< 0.0045
B30@10	10	<0.0037	< 0.0037	< 0.0037	< 0.0037	0.0044
TSO-7-5	5	<0.001	<0.001	<0.002	<0.002	< 0.001
TSO-8-5	5	0.013	0.006	0.01	0.006	< 0.001
TSO-8-10	10	0.036	< 0.001	0.026	0.016	< 0.001
TSO-9-10	10	0.02	0.017	0.026	0.009	0.002
TSO-20-5	5	<0.001	<0.001	<0.002	<0.002	< 0.001
TSO-20-10	10	<0.001	<0.001	<0.002	< 0.002	<0.001
GB-SOIL-TSO-7-3-041415	3	<0.0017	<0.0017	<0.0017	<0.0041	< 0.0017
GB-SOIL-TSO-7-5-041415	5	<0.0015	<0.0015	0.0027	0.0011 J	<0.0015
GB-SOIL-TSO-7-10-0414	10	<0.0016	<0.0016	<0.0016	< 0.004	< 0.0016
GB-SOIL-TSO-7-15-041515	15	<0.002	<0.002	<0.002	<0.0051	< 0.002
GB-SOIL-TSO-8-3-041315	3	0.46	0.048 J	0.47	0.34	< 0.078

January 14, 2016

Sample ID	Depth ft.	1,1,2-Trichloroethane	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene	2-Butanone (MEK)	Acetone	Benzene	cis-1,2-Dichloroethene	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Naphthalene	n-Butylbenzene
GB-SOIL-TSO-8-5-041315	5	< 0.088	0.89	< 0.088	0.11	<0.88	<1.8	0.047 J	< 0.088	0.23	0.12	0.2	0.49	0.14 J
GB-SOIL-TSO-8-10-041315	10	< 0.071	2.8	< 0.071	0.35	<0.71	<1.4	0.13	< 0.071	0.92	0.53	0.49	1.7	0.6
GB-SOIL-TSO-8-10D-041315	10	0.3	2.3	< 0.074	0.31	< 0.74	<1.5	0.11	< 0.074	0.77	0.46	0.4	1.4	0.53
GB-SOIL-TSO-9-5-041415	5	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0081	< 0.016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0032	< 0.004	< 0.004
GB-SOIL-TSO-9-10-041415	10	< 0.19	6.7	< 0.19	2.5	<1.9	<3.8	< 0.19	< 0.19	0.15 J	< 0.19	1.1	2.8	<0.48
GB-SOIL-TSO-10-5-041315	5	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0079	< 0.016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0032	< 0.004	< 0.004
GB-SOIL-TSO-10-10-041415	10	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0089	< 0.018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0036	< 0.0045	< 0.0045
GB-SOIL-TSO-10-10D-041415	10	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0093	< 0.019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0037	< 0.0046	< 0.0046
GB-SOIL-TSO-11-5-041515	5	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0081	< 0.016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0032	< 0.004	< 0.004
GB-SOIL-TSO-11-5D-041515	5	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0075	< 0.015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.003	< 0.0037	< 0.0037
GB-SOIL-TSO-11-10-041515	10	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0081	< 0.016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0032	< 0.004	< 0.004
GB-SOIL-TSO-12-7-041515	7	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0089	< 0.018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0035	< 0.0044	< 0.0044
GB-SOIL-TSO-12-10-041615	10	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0087	< 0.017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0035	< 0.0044	< 0.0044
GB-SOIL-TSO-13-5-041515	5	< 0.0034	< 0.0034	< 0.0034	< 0.0034	< 0.017	< 0.034	< 0.0034	< 0.0034	< 0.0034	< 0.0034	< 0.0068	< 0.0084	< 0.0084
GB-SOIL-TSO-13-10-041515	10	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0083	< 0.017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0033	< 0.0042	< 0.0042
GB-SOIL-TSO-16-5-041615	5	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0076	< 0.015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.003	< 0.0038	< 0.0038
GB-SOIL-TSO-16-5D-041615	5	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.008	< 0.016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0032	< 0.004	< 0.004
GB-SOIL-TSO-20-5-042115	5	< 0.0014	< 0.0014	< 0.0014	< 0.0014	0.0079	0.036	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0028	< 0.0035	< 0.0035
GB-SOIL-TSO-20-10-042115	10	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0071	0.014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0029	< 0.0036	< 0.0036

Sample ID	Depth ft.	n-Propylbenzene	o-Xylene	p-Isopropyltoluene	sec-Butylbenzene	Toluene
GB-SOIL-TSO-8-5-041315	5	0.21	0.089	0.16	0.12 J	< 0.088
GB-SOIL-TSO-8-10-041315	10	0.87	< 0.071	0.89	0.56	< 0.071
GB-SOIL-TSO-8-10D-041315	10	0.76	< 0.074	0.75	0.51	< 0.074
GB-SOIL-TSO-9-5-041415	5	< 0.0016	< 0.0016	< 0.0016	< 0.004	< 0.0016
GB-SOIL-TSO-9-10-041415	10	< 0.19	0.24	0.41	< 0.48	0.1 J
GB-SOIL-TSO-10-5-041315	5	< 0.0016	< 0.0016	< 0.0016	< 0.004	< 0.0016
GB-SOIL-TSO-10-10-041415	10	< 0.0018	< 0.0018	< 0.0018	< 0.0045	< 0.0018
GB-SOIL-TSO-10-10D-041415	10	< 0.0019	< 0.0019	< 0.0019	< 0.0046	< 0.0019
GB-SOIL-TSO-11-5-041515	5	< 0.0016	< 0.0016	< 0.0016	< 0.004	< 0.0016
GB-SOIL-TSO-11-5D-041515	5	< 0.0015	< 0.0015	< 0.0015	< 0.0037	< 0.0015
GB-SOIL-TSO-11-10-041515	10	< 0.0016	< 0.0016	< 0.0016	< 0.004	< 0.0016
GB-SOIL-TSO-12-7-041515	7	< 0.0018	< 0.0018	< 0.0018	< 0.0044	< 0.0018
GB-SOIL-TSO-12-10-041615	10	< 0.0017	< 0.0017	< 0.0017	< 0.0044	< 0.0017
GB-SOIL-TSO-13-5-041515	5	< 0.0034	< 0.0034	< 0.0034	< 0.0084	< 0.0034
GB-SOIL-TSO-13-10-041515	10	< 0.0017	< 0.0017	< 0.0017	< 0.0042	< 0.0017
GB-SOIL-TSO-16-5-041615	5	< 0.0015	< 0.0015	< 0.0015	< 0.0038	< 0.0015
GB-SOIL-TSO-16-5D-041615	5	< 0.0016	< 0.0016	< 0.0016	< 0.004	< 0.0016
GB-SOIL-TSO-20-5-042115	5	< 0.0014	< 0.0014	< 0.0014	< 0.0035	< 0.0014
GB-SOIL-TSO-20-10-042115	10	< 0.0014	< 0.0014	< 0.0014	< 0.0036	< 0.0014

Notes: Concentrations are in milligrams per kilogram (mg/kg) Only detected concentrations of VOCs in soil 5-feet and 10feet bgs are presented

Table 4 Metal Concentrations in Soil 5-feet and 10-feet bgs

Sample ID	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	Vanadium	Zinc
B1@5	7.3	98	<1	<1	17	8.5	17	11	0	<0.1	<1	14	31	53
B1@10	6.6	620	<1	<1	20	7	37	200		0.37	<1	18	29	78
B2@5	2.1	130	<1	<1	18	7.7	26	12		< 0.1	<1	15	31	71
B2@10	11	410	<1	<1	24	7.5	30	140		0.17	<1	18	32	400
B3@5	8.2	690	<1	1	22	7.7	55	480		0.83	<1	21	32	95
B3@10	4	84	<1	<1	18	9.2	22	5.2		< 0.1	<1	17	28	39
B4@5	11	760	<1	1	21	7.4	74	520		1.5	<1	22	30	120
B4@10	12	370	<1	<1	20	7.3	28	86		0.11	<1	17	29	87
B5@5	5.9	550	<1	<1	19	7.1	44	280		0.52	<1	19	31	90
B5@10	14	350	<1	<1	20	7.7	30	160		0.19	<1	16	29	110
B6@5	6.7	540	<1	<1	20	6.8	33	170		0.31	<1	17	29	93
B6@10	1.2	100	<1	<1	9.9	3.4	13	19		< 0.1	<1	13	19	30
B7@5	3.7	210	<1	<1	21	8.9	20	12		< 0.1	<1	15	35	40
B7@10	5.2	150	<1	<1	27	11	29	7.5		< 0.1	<1	20	46	47
B8-5	2.8	65	<1	<1	20	8.5	20	5.2	410	<0.1	<1	18	36	36
B8-10	24	110	<1	<1	32	6.4	50	11		<0.1	<1	14	59	44
B9@5	1.9	99	<1	<1	20	10	19	5.6	1	<0.1	<1	18	39	280
B9@10	14	86	<1	<1	19	6.6	20	4.7		<0.1	<1	16	36	65
B10@2	1.4	67	<1	<1	13	5.2	15	8.9	310	<0.1	<1	11	22	34
B11@2	1.7	83	<1	<1	17	5.8	17	21	280	<0.1	<1	24	24	42
B12@2	2.1	71	<1	<1	12	4.8	12	10	230	<0.1	<1	8.9	21	47
B12@5	1.9	45	<1	<1	10	3.9	6.9	2.8	200	<0.1	<1	7.7	19	20
B12@10	2.4	29	<1	<1	5.7	2.4	5.3	2.0		<0.1	<1	6.5	12	11
B13@2	12	430	<1	<1	20	6	20	46	290	0.13	<1 <1	17	27	54
B13@5	<1	92	<1	<1	15	6	18	54	270	<0.1	<1	10	29	88
B13@10	38	200	<1	<1	16	5.9	20	57		<0.1	<1 <1	10	27	56
B14@5	16	500	<1	<1	23	6.5	26	69		0.15	<1	20	27	<u> </u>
B14@10	20	120	<1	<1	17	7.6	20	32		<0.1	<1 <1	14	29	48
B15@5	<1	130	<1	<1	17	5	14	2.5		<0.1	<1	14	23	30
B15@10	1.1	310	<1	<1	12	6.2	14	5		<0.1	<1	15	23	30
B16@3	1.1	74	<1	<1	13	5.8	10	5.3		<0.1	<1	13	27	37
B16@10		500	<1		61	4.9	40	18	-	<0.1		15	33	32
B17@5	<1 4.4	64		<1	01 11	4.9		3.9		<0.1	<1	8.9	33 17	
B17@10	1.8	84	<1 <1	<1 <1	11	6.6	11 18	3.9		<0.1	<1 <1	<u> </u>	28	26 36
B18@3	2.8	250	<1	<1	13	8.1	28	610		0.1	<1 <1	27	28	210
B18@10	2.0	140			14	6.9	20	4.4		<0.1		16	32	39
B19@5	1.5	140	<1	<1	10	8.5	21 26	6.5		<0.1 0.12	<1	16	32	<u> </u>
	2.5		<1	<1							<1			
B19@10		120	<1	<1	21 14	8.2	21	4.6		<0.1	<1	<u>17</u> 12	33 29	40
B20-5	<1	130	<1	<1		6.1	15	3		<0.1	<1			36
B20-10	6.1	160	<1	<1	26	10	37	6.8		<0.1	<1	21	45	49
B21@5	6	100	<1	<1	18	6.8	18	30	┥	<0.1	<1	13	31	43
B21@10	11	440	<1	<1	21	7.9	24	28	┥	<0.1	<1	17	36	41
B22@5	2.5	150	<1	<1	16	6.9	17	16	ļ	<0.1	<1	16	31	130
B22@10	14	290	<1	<1	22	8.2	25	5.5	ļ	<0.1	<1	18	39	65 70
B23@5	5.2	180	<1	<1	20	11	18	5.8	ļ	<0.1	<1	16	33	78
B23@10	26	340	<1	<1	20	7	25	29	ļ	<0.1	<1	17	32	53
B24-5	13	90	<1	<1	16	5.8	14	9.1	ļ	<0.1	<1	11	25	32
B24-10	<1	170	<1	<1	12	5.7	14	2.6		< 0.1	<1	14	27	32

Table 4 Metal Concentrations in Soil 5-feet and 10-feet bgs

Sample ID	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	Vanadium	Zinc
B25-5	1.3	70	<1	<1	12	5.4	13	2.8		< 0.1	<1	9.3	26	33
B25-10	<1	78	<1	<1	13	6.2	14	3.4		< 0.1	<1	11	27	37
B26-5	9.8	350	<1	<1	21	8.2	24	21		< 0.1	<1	18	35	42
B26-10	4.2	170	<1	<1	21	7.2	21	6.2		< 0.1	<1	20	28	36
B27-5	4.7	160	<1	3.2	20	7.1	230	65		0.44	<1	20	38	4,700
B27-10	6	360	<1	<1	18	6.1	24	28		0.13	<1	16	30	66
B28@5	1.9	52	<1	<1	8.4	3.6	10	16		< 0.1	<1	11	21	22
B28@10	3.2	150	<1	<1	24	9.3	28	7.5		< 0.1	<1	17	33	46
B29@2	2.2	140	<1	<1	14	4.7	16	11		0.11	<1	33	21	36
B29@5	2	230	<1	<1	28	11	35	6.5		< 0.1	<1	36	42	46
B29@10	2.2	240	<1	<1	26	10	32	6		< 0.1	<1	25	41	45
B30@5	3	130	<1	<1	15	6.4	16	18		0.14	<1	13	33	43
B30@10	120	1,100	<1	1.1	50	5.5	33	820		0.21	<1	22	27	130
TSO-7-5	4.92	124	<0.5	< 0.5	21.1	8.3	17.2	25.2		< 0.2	0.5	14.5	29	38.3
TSO-8-5	12.2	724	< 0.5	< 0.5	23.3	9.18	48	352		0.3	0.5	18.3	31.6	98.4
TSO-8-10	9.53	346	< 0.5	< 0.5	18.4	8.89	27.8	72.4		0.2	0.5	15.4	29.8	61.2
TSO-9-10	7.34	70.8	< 0.5	< 0.5	15.9	6.63	23.1	8.1		< 0.2	0.803	11.9	28.2	38.1
TSO-20-5	5.65	170	< 0.5	< 0.5	17.5	7.76	17.4	2.88		< 0.2	0.5	12.2	29.5	32.1
TSO-20-10	8.51	196	0.52	< 0.5	23.8	12.9	29.9	5.97		< 0.2	0.5	19.1	45.4	45
GB-SOIL-TSO-7-3-041415								500						
GB-SOIL-TSO-7-5-041415								11						
GB-SOIL-TSO-7-10-0414								4.7						
GB-SOIL-TSO-8-3-041315								550						
GB-SOIL-TSO-8-5-041315								340						
GB-SOIL-TSO-8-10-041315								120						
GB-SOIL-TSO-8-10D-041315								110						
GB-SOIL-TSO-9-5-041415								5.7						
GB-SOIL-TSO-9-10-041415								15						
GB-SOIL-TSO-10-5-041315								4.5						
GB-SOIL-TSO-10-10-041415								10						
GB-SOIL-TSO-10-10D-041415								10						
GB-SOIL-TSO-11-5-041515								6.3						
GB-SOIL-TSO-11-5D-041515								6.1						
GB-SOIL-TSO-11-10-041515								4.8						
GB-SOIL-TSO-12-7-041515								8.1						
GB-SOIL-TSO-12-10-041615								7.2						
GB-SOIL-TSO-13-5-041515								4.6						
GB-SOIL-TSO-13-10-041515								9.8						
GB-SOIL-TSO-16-5-041615								13						
GB-SOIL-TSO-16-5D-041615								12						
GB-SOIL-TSO-20-5-042115								4.1						
GB-SOIL-TSO-20-10-042115								10						

Notes: Only detected concentrations of metals in soil samples from 5-feet and 10-feet below ground surface are presented. Concentrations are in milligrams per kilogram (mg/kg) Blank cell denotes metal was not analyzed

Table 5 Volatile Organic Compounds (VOCs) Concentrations in Groundwater

	· · · ·	,																		
Sample ID	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,2-Dibromoethane (EDB	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone (MEK	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK	Acetone	Benzene	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Diisopropyl ether (DIPE
92-MW1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Brycon-MW1	< 0.5	< 0.5	<1	760	<1	18	< 0.5	34	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	360	< 0.5	< 0.5	< 0.5	<1
Brycon-MW2	< 0.5	< 0.5	< 0.5	1.7	< 0.5	< 0.5	< 0.5	6.3	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	180	< 0.5	< 0.5	< 0.5	1.5
Brycon-MW3	< 0.5	< 0.5	< 0.5	900	< 0.5	< 0.5	< 0.5	160	< 0.5	< 0.5	< 0.5	< 0.5	0.69	< 0.5	< 0.5	400	< 0.5	< 0.5	< 0.5	< 0.5
Brycon-MW4	< 0.5	< 0.5	1	0.53	< 0.5	6.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.5	< 0.5	< 0.5	< 0.5	< 0.5
Brycon-MW5	< 0.5	< 0.5	< 0.5	2.8	< 0.5	10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	26	< 0.5	< 0.5	< 0.5	< 0.5
ESE-MW2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ESE-MW1	< 0.5	< 0.5	<2	1,000	<2	2.1	< 0.5	240	< 0.5	< 0.5	< 0.5	< 0.5	<2	< 0.5	< 0.5	1,000	< 0.5	< 0.5	< 0.5	<2
TMW1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
TMW1-D1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
TMW2	< 0.5	< 0.5	< 0.5	0.76	< 0.5	< 0.5	< 0.5	0.52	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
TMW3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
TMW4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
TMW5	< 0.5	< 0.5	< 0.5	750	72	430	< 0.5	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3,900	< 0.5	< 0.5	< 0.5	< 0.5
TMW6	< 0.5	< 0.5	< 0.5	3.4	< 0.5	< 0.5	< 0.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.68	< 0.5	< 0.5	< 0.5	< 0.5
EB	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ТВ	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
TSO-8-GW	< 0.5	< 0.5	< 0.5	3.68	< 0.5	< 0.5	< 0.5	4.39	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	15.7	< 0.5	< 0.5	1.72	<0.5
TSO-9-GW	< 0.5	< 0.5	< 0.5	85.1	245	< 0.5	< 0.5	28	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	810	< 0.5	< 0.5	< 0.5	< 0.5
TSO-10-GW	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	688	< 0.5	< 0.5	< 0.5	< 0.5
TSO-11-GW	< 0.5	< 0.5	< 0.5	4.68	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	116	< 0.5	< 0.5	< 0.5	< 0.5
TSO-12-GW	< 0.5	< 0.5	< 0.5	61.1	< 0.5	< 0.5	< 0.5	50.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1,320	< 0.5	< 0.5	< 0.5	< 0.5
TSO-13-GW	< 0.5	< 0.5	< 0.5	1.2	58	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	39.7	< 0.5	< 0.5	< 0.5	< 0.5
TSO-15-GW	< 0.5	< 0.5	< 0.5	661	18.9	< 0.5	< 0.5	192	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1,770	< 0.5	< 0.5	< 0.5	< 0.5
TSO-16-GW	< 0.5	< 0.5	< 0.5	383	63.1	< 0.5	< 0.5	133	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	145	< 0.5	< 0.5	< 0.5	< 0.5
TSO-20-GW	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
GB-GW-TSO-08-38.5-041415	<1	<1	<1	20	<1	< 0.5	<1	4.2	0.4 J	<10	<1	<10	<1	<10	<10	21	0.84 J	<1	1.8	<1
GB-GW-TSO-09-44-042115	<2	<2	<2	55	<2	180	0.5 J	19	<2	<20	<2	6.1 J	<2	<20	<20	510	<2	<2	<2	<2
GB-GW-TSO-DUP-042115	<2	<2	<2	62	<2	180	<2	22	<2	<20	<2	5.4 J	<2	<20	<20	520	<2	<2	<2	<2
GB-GW-TSO-10-41.5-041615	<5	<5	<5	<5	<5	<2.5	<5	<5	<5	<50	<5	<50	<5	<50	<50	990	<5	<5	<5	<5
GB-GW-TSO-11-43.5-042015	<1	<1	<1	4.4	<1	1.8	<1	0.52 J	<1	9.8 J	<1	<10	<1	<10	180	150	<1	<1	<1	2.5
GB-GW-TSO-12-38.5-041715	<5	<5	<5	100	<5	<2.5	<5	82	<5	<50	<5	<50	<5	<50	47 J	2,400	<5	<5	<5	1.3 J
GB-GW-TSO-13-43-042215	<1	<1	<1	1.2	<1	53	<1	0.63 J	<1	<10	<1	<10	<1	<10	<10	41	<1	<1	<1	<1
GB-GW-TSO-14-45-042315	0.44 J	2.6	<1	4.3	<1	15	0.78 J	<1	<1	<10	<1	<10	<1	<10	7.8 J	0.67	<1	<1	<1 <1	<1 <1
GB-GW-TSO-15-46-042215	<10	<10	<10	680	<10	89	<10	230	<10	130	<10	<100	<10	38 J	420	1,700	<10	<10	<10	<10
GB-GW-TSO-16-40.5-042315	<4	<4	<4	670	<4	72	18	230	<4	<40	49	<40	40	<40	<40	1,700	<4	1.2 J	<4	<4
GB-GW-TSO-2028.5-042415	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<10	<1	<10	<1	<10	7.8 J	<0.5	<1	<1	<1	<1
EB-041315	<1	<1	<1	<1	<1	<0.5	<1 <1	<1 <1	<1 <1	<10	<1	<10	<1	<10	<10	<0.5	<1 <1	<1	<1 <1	<1 <1
LD 011313				1	· · ·													·-		

January 14, 2016

Table 5 Volatile Organic Compounds (VOCs) Concentrations in Groundwater

Sample ID	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,2-Dibromoethane (EDB	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone (MEK	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK	Acetone	Benzene	Chlorobenzene	Chloroform	cis-1,2-Dichloroethene	Diisopropyl ether (DIPE
EB-041415	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-041515	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-041615	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-041715	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-042115	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-042215	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-042315	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
EB-042415	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-041415	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-041515	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-041615	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-041715	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-042115	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-042215	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-042315	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
FB-042415	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-041315	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-041415	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-041515	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-041615	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-041715	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-042115	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-042215	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-042315	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1
TB-042415	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<10	<1	<10	<10	< 0.5	<1	<1	<1	<1

Table 5 Volatile Organic Compounds (VOCs) Concentrations in Groundwater)

		zene			ne	ene		duene	<i>zene</i>		tert-Butyl alcohol (TBA	zene		υ
	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	p-Isopropyltoluene	sec-Butylbenzene	Styrene	-Butyl alc	tert-Butylbenzene	Toluene	Vinyl chloride
Sample ID	Eth	Iso	l,m	Naj	n-B	n-P	X-0	p-I	sec	Sty	teri	tert	Tol	Vin
92-MW1	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
Brycon-MW1	360	72	340	160	20	65	440	39	15	<1	42	<1	26	< 0.5
Brycon-MW2	14	63	85	38	8.8	76	4.9	7.5	8.7	< 0.5	200	1	7.2	< 0.5
Brycon-MW3	850	140	1,100	170	19	150	440	44	18	5	<10	< 0.5	62	<0.5
Brycon-MW4	1.2	0.72	2.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	< 0.5	11	0.95	< 0.5	< 0.5
Brycon-MW5	1.9	18	3.4	2.5	6.8	1.6	2.3	< 0.5	14	< 0.5	<10	1.4	4.4	< 0.5
ESE-MW2	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
ESE-MW1	1,500	87	3,800	210	22	110	870	19	8.4	2.2	<40	<2	99	<0.5
TMW1	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	16	< 0.5	< 0.5	< 0.5
TMW1-D1	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	15	< 0.5	< 0.5	< 0.5
TMW2	< 0.5	< 0.5	<1	0.92	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
TMW3	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
TMW4	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
TMW5	930	58	2,100	260	27	99	1,300	15	9.1	4.4	16	< 0.5	3,600	< 0.5
TMW6	2	0.89	3.8	3.5	0.68	1.4	1.8	0.71	< 0.5	< 0.5	41	< 0.5	2.2	< 0.5
EB	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
ТВ	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5
TSO-8-GW	9	2.94	9.6	19.8	1.65	4.39	5.1	1.98	1.34	< 0.5	< 0.5	< 0.5	1.74	< 0.5
TSO-9-GW	94	10.6	280	57.6	<1	11.8	141	1.4	2	< 0.5	< 0.5	< 0.5	414	< 0.5
TSO-10-GW	2.55	9.76	4.41	< 0.5	<1	12.3	< 0.5	< 0.5	1.35	< 0.5	< 0.5	< 0.5	10.6	< 0.5
TSO-11-GW	22.6	6.83	4.78	7.59	1.75	5.8	< 0.5	2.26	6.13	< 0.5	< 0.5	< 0.5	2	< 0.5
TSO-12-GW	170	29.5	470	102	1.77	34.2	270	5.7	1.82	< 0.5	< 0.5	< 0.5	77.5	< 0.5
TSO-13-GW	0.6	1.3	3	< 0.5	<1	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	1.6	< 0.5
TSO-15-GW	1,180	67.5	3,940	106	16	93.3	2,010	6	2.6	< 0.5	< 0.5	< 0.5	900	< 0.5
TSO-16-GW	306	78.4	370	179	19.8	82.2	265	< 0.5	15.9	< 0.5	< 0.5	< 0.5	50.9	< 0.5
TSO-20-GW	< 0.5	< 0.5	<1	< 0.5	<1	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
GB-GW-TSO-08-38.5-041415	13	4.3	15	17	1.7	5.6	7.7	1.9	1.6	<1	<10	<1	2.5	0.69
GB-GW-TSO-09-44-042115	66	7.5	210	22	1.6 J	8.4	110	1 J	1.1 J	<2	<20	<2	250	<1
GB-GW-TSO-DUP-042115	71	8.2	220	24	<2	9.1	120	1.1 J	1.2 J	<2	<20	<2	270	<1
GB-GW-TSO-10-41.5-041615	5.6	15	6.1	<5	<5	18	1.6 J	<5	1.9 J	<5	<50	<5	15	<2.5
GB-GW-TSO-11-43.5-042015	24	4.8	5.6	8.4	2.1	4.1	0.46 J	1	3.4	<1	14	0.41 J	2.6	< 0.5
GB-GW-TSO-12-38.5-041715	290	51	870	120	4.9 J	58	500	5.4	2.6 J	<5	36 J	<5	150	<2.5
GB-GW-TSO-13-43-042215	0.72	1.6	5	<1	<1	0.67 J	< 0.5	<1	0.26 J	<1	<10	<1	2.3	< 0.5
GB-GW-TSO-14-45-042315	0.43 J	2	<1	0.4 J	<1	0.8 J	< 0.5	1.5	5.6	<1	89	1.1	<1	<0.5
GB-GW-TSO-15-46-042215	1,700	93	5,900	160	15	110	3,000	12	5.9 J	3.7 J	<100	<10	1,700	<5
GB-GW-TSO-16-40.5-042315	600	140	840	160	55	140	590	64	28	1.3 J	71	2 J	71	<2
GB-GW-TSO-2028.5-042415	<0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	<0.5
EB-041315	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5

January 14, 2016

Table 5 Volatile Organic Compounds (VOCs) Concentrations in Groundwater)

Sample ID	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	p-Isopropyltoluene	sec-Butylbenzene	Styrene	tert-Butyl alcohol (TBA	tert-Butylbenzene	Toluene	Vinyl chloride
EB-041415	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
EB-041515	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
EB-041615	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
EB-041715	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	<0.5
EB-042115	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	<0.5
EB-042215	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
EB-042315	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
EB-042415	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-041415	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	<0.5
FB-041515	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-041615	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-041715	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-042115	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-042215	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-042315	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
FB-042415	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-041315	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-041415	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-041515	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-041615	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-041715	<0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-042115	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-042215	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-042315	< 0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5
TB-042415	<0.5	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<10	<1	<1	< 0.5

Notes: Concentrations are in micrograms per liter (ug/L0 Only Detected concentrations of VOCs are presented

Table 6 Semi-volatile organic compounds (SVOCs) Concentration in Soil 5-feet and 10-feet bgs

Sample ID	Depth ft.	2-Methylnaphthalene	bis(2-ethylhexylphthalate
B2@5	5	< 0.33	< 0.33
B2@10	10	<16	<16
B4@5	5	<25	<25
B4@10	10	<16	<16
B17@5	5	<3.3	<3.3
B17@10	10	< 0.33	< 0.33
B22@5	5	<25	<25
B22@10	10	< 0.33	0.4
B23@5	5	< 0.33	< 0.33
B23@10	10	<25	<25
B28@5	5	<50	<50
B28@10	10	2.7	<1.6

Notes: Concentrations are in milligrams per kilogram (mg/kg) Only detected concentrations of SVOCs in soil 5-ft and 10-ft bgs are presented

Table 7 Pesticide Concentrations in Soil 5-feet and 10-feet bgs

Sample ID	Depth ft.	4,4′-DDT	Chlordane
B8-5	5	< 0.002	< 0.0085
B10@2	2	< 0.002	< 0.0085
B11@2	2	0.0031	< 0.0085
B12@2	2	0.0036	< 0.0085
B13@2	2	0.011	0.042

Notes: Concentrations are in milligrams per kilogram (mg/kg) Only detected concentrations of Pesticides in soil 5-feet and 10-feet bgs are presented

Table 8 Polychlorinated biPhenyls (PCBs) Concentrations in Soil 5-feet and 10-feet bgs

Sample ID	Depth ft.	Aroclor 1254	Aroclor 1260
B2@5	5	0.02	0.046
B2@10	10	<0.16	< 0.16
B4@5	5	<0.16	< 0.16
B4@10	10	<0.16	< 0.16
B17@5	5	< 0.016	< 0.016
B17@10	10	< 0.016	< 0.016
B28@5	5	< 0.032	< 0.032
B28@10	10	< 0.016	< 0.016

Notes: Concentrations are in milligrams per kilograms (mg/kg) Only detected concentrations in soil 5-feet and 10-feet bgs are presented

		95UCL				
ANALYTE	Max	EPC	SFo	IUR	RfDo	RfCi
C4-C12	1500	162.6			2.00E+00	
C13-C22	15000	1824			2.00E+00	
C23-C32	13000	2875			2.00E+00	
C33-C40	8,900	2,130			2.00E+00	
1,1,2-trichloroethane	0.3	0.3	5.70E-02	1.60E-05	4.00E-03	2.00E-04
1,2,4-trimethylbenzene	18	6.482				7.00E-03
1,2-dichlorobenzene	0.42	0.42			9.00E-02	2.00E-01
1,3,5-trimethylbenzene	5	1.124			1.00E-02	3.50E-02
2-butanone (MEK)	0.0079	0.0079			6.00E-01	5.00E+00
acetone	0.036	0.036			9.00E-01	3.10E+01
benzene	3.8	1.122	5.50E-02	2.90E-05	4.00E-03	3.00E-02
cis-1,2-dichloroethene	0.005	0.005			2.00E-03	
ethylbenzene	3.9	1.285	1.10E-02	2.50E-06	1.00E-01	1.00E+00
isopropylbenzene	1.4	0.408			1.00E-01	4.00E-01
m,p-xylenes	11	1.022			2.00E-01	1.00E-01
naphthalene	51	6.376		3.40E-05	2.00E-02	3.00E-03
n-butylbenzene	3.4	0.886				1.75E-01
n-propylbenzene	2.6	0.737			1.00E-01	4.00E-01
o-xylene	5.1	3.23			2.00E-01	1.00E-01
p-isopropyltoluene	2.2	1.141				
sec-butylbenzene	1.4	0.935				4.00E-01
toluene	2.6	2.6			8.00E-02	5.00E+00
arsenic	120	16.49	1.50E+00	4.30E-03	3.00E-04	1.50E-05
barium	1100	287.7			2.00E-01	5.00E-04
beryllium	0.52	0.52		2.40E-03	2.00E-04	7.00E-06
cadmium	3.2	0.645		4.20E-03	6.30E-06	1.00E-05
chromium	61	20.93			1.50E+00	
hexavalent chromium	10.2	3.49	5.00E-01	1.50E-01	3.00E-03	1.00E-04
cobalt	12.9	7.516		9.00E-03	3.00E-04	6.00E-06
copper	230	41.85			4.00E-02	
lead	820	143				
manganese	410	367.1			2.40E-02	5.00E-05
mercury	1.5	0.216				3.00E-04
molybdenum	0.803	0.635			5.00E-03	
nickel	27	17.34		2.60E-04	2.00E-02	9.00E-05
vanadium	59	31.94			5.00E-03	1.00E-04
zinc	4,700	436.50			3.00E-01	
2-methylnaphthalene	2.7	2.7			4.00E-03	1.40E-02
bis(2-ethylhexyl)phthalate	0.4	0.4	1.40E-02	2.40E-06	2.00E-02	
4,4'-DDT	0.011	0.0083				
chlordane	0.042	0.042	3.50E-01	1.00E-04	5.00E-04	7.00E-04
Aroclor 1254	0.02	0.02	2.00E+00	5.70E-04	2.00E-05	
Aroclor 1260	0.046	0.046	2.00E+00	5.70E-04		

Notes:

EPC = Exposure Point Concentration; either the maximum detected concentration or the 95UCL of the analyte in the soil matrix, whichever is less (ProUCL 2004).

UCL calculated using ProUCL version 5.0. Units are expressed in mg/kg

Lead was assessed with DTSC's LeadSpread 8.0 Model using the maximum concentration as the EPC

Table 9 Exposure Point Concentrations, Slope Factors and Reference Doses

SFo = Slope Factor, oral route of exposure $(mg/kg-day)^{-1}$

IUR = inhalation unit risk factor, inhalation route of exposure $(\mu g/m3)^{-1}$

USEPA RSLs November 2015

RfDo = Reference Dose, oral route of exposure (mg/kg-day)

RfCi = Reference Concentration, inhalation route of exposure (mg/m^3)

Blank cell indicates a SF or RfD are not available for the analyte

Table 10 - Exposure Parameters

			Receptor Populati	ons			
Exposure Parameter	Notation	Commercial	Construction	Residentia	1	Units	Reference
		Worker	Worker	Adult Chil			
General Parameters							
Body Weight	BW	70	70	70	15	kg	DTSC
Exposure Duration	ED	25	1	24	6	years	DTSC
Site Visit Duration	SVD	8	8	24	24	hours/day	
Soil Ingestion Pathway			-	1	1		
Exposure Frequency	EF	250	365	350	350	days/year	
Averaging Time c 70yrs x 365days	ATc	25,550	25,550	25,550	25,550	days	DTSC
Averaging Time nc 6yrs x 365days child, 30yrs	ATnc	10,950	10,950	10,950	2,190	days	DTSC
Soil Ingestion Rate	IR	100	330	100	200	mg/day	DTSC
Dermal Contact with Soil			-	1			[
Averaging Time c 70yrs x 365days	ATc	25,550	25,550	25,550	25,550	days	DTSC
Averaging Time nc 6yrs x 365days child, 30yrs	ATnc	10,950	10,950	10,950	2,190	days	DTSC
Skin Surface Area	SA	3,300	3,300	5,700	2,900	cm ² /event	OEHHA
Soil-to-Skin Adherence factor	AF	0.2	0.2	0.07	0.21	mg/cm ²	OEHHA
Fraction of Chemical Dermally Absorbed	ABS	chem specific	chem specific	ch sp	ch sp	unitless	DTSC
Inhalation of Outdoor Air	1			I	1		
Exposure Frequency	EF	250	365	350	350	days/year	
Averaging Time 365 d/yr x 70 yr x 24 hr/d	ATc	613,200	613,200	613,200	613,200	hours	DTSC
Averaging Time 365 d/yr x 6 yr x 24 hr/d child	ATnc	613,200	613,200	613,200	52,560	hours	DTSC

Notes:

ABS = 0.1 for VOCs, 0.13 for naphthalene, 0.01 for most metals (DTSC 2013; USEPA RSL November 2015)

ANALYTE	RISKo	RISKi	HAZARDo	HAZARDi
C4-C12			6.78E-02	
C13-C22			3.04E-01	
C23-C32			2.40E-02	
C33-C40			1.78E-02	
1,1,2-trichloroethane	2.44E-08		1.25E-03	
1,2-dichlorobenzene			1.19E-03	
1,3,5-trimethylbenzene			1.87E-03	
2-butanone (MEK)			1.32E-07	
acetone			6.00E-07	
benzene	8.82E-08		4.68E-03	
cis-1,2-dichloroethene			4.17E-05	
ethylbenzene	2.02E-08		2.14E-04	
isopropylbenzene			6.80E-05	
m,p-xylenes			8.52E-05	
naphthalene			5.94E-03	
n-propylbenzene			0.0002694	
o-xylene			0.0002694	
toluene			0.0005204	
arsenic	2.958E-05	2.20757E-08	0.7668915	0.0007906
barium			0.0189518	0.000418
beryllium		3.88543E-10		5.364E-05
cadmium		8.49938E-10	1.3129647	4.722E-05
chromium			0.000182	
hexavalent chromium	1.912E-06	1.62983E-07	0.0148588	2.535E-05
cobalt		2.1071E-08	0.3293346	0.0009068
copper			0.013784	
manganese			0.1982938	0.0053335
mercury				4.707E-07
molybdenum			0.0016732	
nickel		1.40361E-09	0.0114225	0.0001386
vanadium			0.08416	0.000232
zinc			0.0172523	
2-methylnaphthalene			0.012572	
bis(2-ethylhexyl)phthalate	8.006E-09		0.0003336	
chlordane	2.347E-08	1.3076E-12	0.0003092	3.051E-08
Aroclor 1254	6.386E-08	3.54919E-12	0.0186247	
Aroclor 1260	1.469E-07	8.16314E-12	5.0100217	
SUM RISK	3.17E-05	2.09E-07		
SUM HAZARD	2.17.2.00		3.27E+00	7.95E-03
HAZARD INDEX = 3.3			5.2711100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SUM RISK = 3.18E-05				
5011 MBK - 510E-05				

Table 11 Estimated Risks and Hazards SOIL - Residential Child Scenario

ANALYTE	RISKo	RISKi	HAZARDo	HAZARDi
C4-C12			6.23E-03	
C13-C22			2.80E-02	
C23-C32			2.20E-03	
C33-C40			1.63E-03	
1,1,2-trichloroethane	1.12E-08		1.15E-04	
1,2-dichlorobenzene			1.09E-04	
1,3,5-trimethylbenzene			1.72E-04	
2-butanone (MEK)			1.21E-08	
acetone			5.52E-08	
benzene	4.055E-08		4.30E-04	
cis-1,2-dichloroethene			3.83E-06	
ethylbenzene	9.29E-09		1.97E-05	
isopropylbenzene			6.26E-06	
m,p-xylenes			7.83E-06	
naphthalene			5.58E-04	
n-propylbenzene			1.13E-05	
o-xylene			2.476E-05	
toluene			4.783E-05	
arsenic	1.301E-05	2.20757E-08	0.0674411	0.0007906
barium			0.0016393	0.000418
beryllium		3.88543E-10	0.002963	5.364E-05
cadmium		8.49938E-10	0.1126459	4.722E-05
chromium			1.574E-05	
hexavalent chromium	8.196E-07	1.62983E-07	0.0012736	2.535E-05
cobalt		2.1071E-08	0.0284876	0.0009068
copper			0.0011923	
manganese			0.0171525	0.0053335
mercury				4.707E-07
molybdenum			0.0001447	
nickel		1.40361E-09	0.000988	0.0001386
vanadium			0.0072799	0.000232
zinc			0.0014923	
2-methylnaphthalene			0.0011825	
bis(2-ethylhexyl)phthalate	3.68E-09		3.066E-05	
chlordane	1.104E-08	1.3076E-12	2.908E-05	3.051E-08
Aroclor 1254	3.003E-08	3.54919E-12	0.0017517	
Aroclor 1260	6.907E-08	8.16314E-12		
SUM RISK	1.39E-05	2.09E-07		
SUM HAZARD		1	2.85E-01	7.95E-03
HAZARD INDEX = 0.3				
SUM RISK = 1.4E-05				

Table 12 Estimated Risks and Hazards SOIL - Residential Adult Scenario

ANALYTE	RISKo	RISKi	HAZARDo	HAZARDi
C4-C12			7.67E-04	
C13-C22			3.44E-03	
C23-C32			2.71E-04	
C33-C40			2.01E-04	
1,1,2-trichloroethane	1.38E-09		1.41E-05	
1,2-dichlorobenzene			1.34E-05	
1,3,5-trimethylbenzene			2.12E-05	
2-butanone (MEK)			1.49E-09	
acetone			6.79E-09	
benzene	4.987E-09		5.29E-05	
cis-1,2-dichloroethene			4.71E-07	
ethylbenzene	1.14E-09		2.42E-06	
isopropylbenzene			7.69E-07	
m,p-xylenes			9.64E-07	
naphthalene			6.51E-05	
n-propylbenzene			1.39E-06	
o-xylene			3.05E-06	
toluene			5.883E-06	
arsenic	1.766E-06	2.55797E-10	0.009155	9.161E-06
barium			0.0002306	4.843E-06
beryllium		4.50216E-12	0.0004167	6.215E-07
cadmium		9.84849E-12	0.0161206	5.471E-07
chromium			2.214E-06	
hexavalent chromium	1.175E-07	1.88853E-09	0.0001826	2.938E-07
cobalt		2.44156E-10	0.0040067	1.051E-05
copper			0.0001677	
manganese			0.0024125	6.18E-05
mercury				5.455E-09
molybdenum			2.036E-05	
nickel		1.62641E-11	0.000139	1.606E-06
vanadium			0.0010239	2.689E-06
zinc			0.0002099	
2-methylnaphthalene			0.0001379	
bis(2-ethylhexyl)phthalate	4.526E-10		3.771E-06	
chlordane	1.287E-09	1.51515E-14	3.391E-06	3.535E-10
Aroclor 1254	3.502E-09	4.11255E-14	0.0002043	
Aroclor 1260	8.055E-09	9.45887E-14		
SUM RISK	1.90E-06	2.42E-09		
SUM HAZARD		•	3.93E-02	9.21E-05
HAZARD INDEX = 0.04				•
SUM RISK = 1.9E-06				

Table 13 Estimated Risks and Hazards SOIL - Construction Worker Scenario

ANALYTE	RISKo	RISKi	HAZARDo	HAZARDi
C4-C12			5.50E-03	
C13-C22			2.47E-02	
C23-C32			1.95E-03	
C33-C40			1.44E-03	
1,1,2-trichloroethane	1.45E-08		1.02E-04	
1,2-dichlorobenzene			9.65E-05	
1,3,5-trimethylbenzene			1.52E-04	
2-butanone (MEK)			1.07E-08	
acetone			4.87E-08	
benzene	5.226E-08		3.80E-04	
cis-1,2-dichloroethene			3.38E-06	
ethylbenzene	1.20E-08		1.74E-05	
isopropylbenzene			5.52E-06	
m,p-xylenes			6.92E-06	
naphthalene			5.17E-04	
n-propylbenzene			9.98E-06	
o-xylene			2.19E-05	
toluene			4.223E-05	
arsenic	1.512E-05	4.38009E-09	0.0536884	0.0001569
barium			0.0012504	8.294E-05
beryllium		7.70919E-11	0.0022599	1.064E-05
cadmium		1.68638E-10	0.0840318	9.369E-06
chromium			1.201E-05	
hexavalent chromium	8.903E-07	3.23378E-08	0.0009476	5.03E-06
cobalt		4.18075E-09	0.0217281	0.0001799
copper			0.0009094	
manganese			0.0130826	0.0010582
mercury				9.34E-08
molybdenum			0.0001104	
nickel		2.78494E-10	0.0007536	2.749E-05
vanadium			0.0055525	4.604E-05
zinc			0.0011382	
2-methylnaphthalene			0.0010953	
bis(2-ethylhexyl)phthalate	4.743E-09		2.707E-05	
chlordane	1.492E-08	2.59444E-13	2.694E-05	6.054E-09
Aroclor 1254	4.061E-08	7.04204E-13	0.0016226	
Aroclor 1260	9.341E-08	1.61967E-12		
SUM RISK	1.61E-05	4.14E-08		
SUM HAZARD		1	2.23E-01	1.58E-03
HAZARD INDEX = 0.23				
SUM RISK = 1.61E-05				

Table 14 Estimated Risks and Hazards SOIL - Commercial Worker Scenario

Table 15 - Summary of Risks and Hazards

		Receptor Populations					
		Residentia					
	Commercial Worker	Construction Worker	Adult	Child			
			1	-			
Hazard Index	0.23	0.04	34.4	37.4			
\sum Risk	1.61E-05	1.90E-06	1.10E-03	1.11E-03			

Notes:

Hazard Index Residential = J&E model results + estimated hazards due to inhalation of constituents in soil Σ Risk Residential = J&E model results + estimated risks due to inhalation of constituents in soil

LEAD RISK ASSESSMENT SPREADSHEET 8 CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	820.0
Respirable Dust (ug/m ³)	1.5

OUTPUT							
Percentile Estimate of Blood Pb (ug/dl)							
50th 90th 95th 98th 99th							
BLOOD Pb, CHILD	5.8	10.6	12.6	15.3	17.4	77	
BLOOD Pb, PICA CHILD	11.6	21.2	25.1	30.5	34.7	39	

EXPOSURE PAR	AMETERS					
	units	children				
Days per week	days/wk	7				
Geometric Standard Deviation		1.6				
Blood lead level of concern (ug/dl)		1				
Skin area, residential	cm ²	2900				
Soil adherence	ug/cm ²	200				
Dermal uptake constant	(ug/dl)/(ug/day)	0.0001				
Soil ingestion	mg/day	100				
Soil ingestion, pica	mg/day	200				
Ingestion constant	(ug/dl)/(ug/day)	0.16				
Bioavailability	unitless	0.44				
Breathing rate	m³/day	6.8				
Inhalation constant	(ug/dl)/(ug/day)	0.192				

PATHWAYS								
CHILDREN	typical				with pi	ca		
	Pathway contribution			Pathwa	ay cont	ribution		
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent		
Soil Contact	5.8E-5	0.05	1%		0.05	0%		
Soil Ingestion	7.0E-3	5.77	99%	1.4E-2	####	100%		
Inhalation	2.0E-6	0.00	0%		0.00	0%		

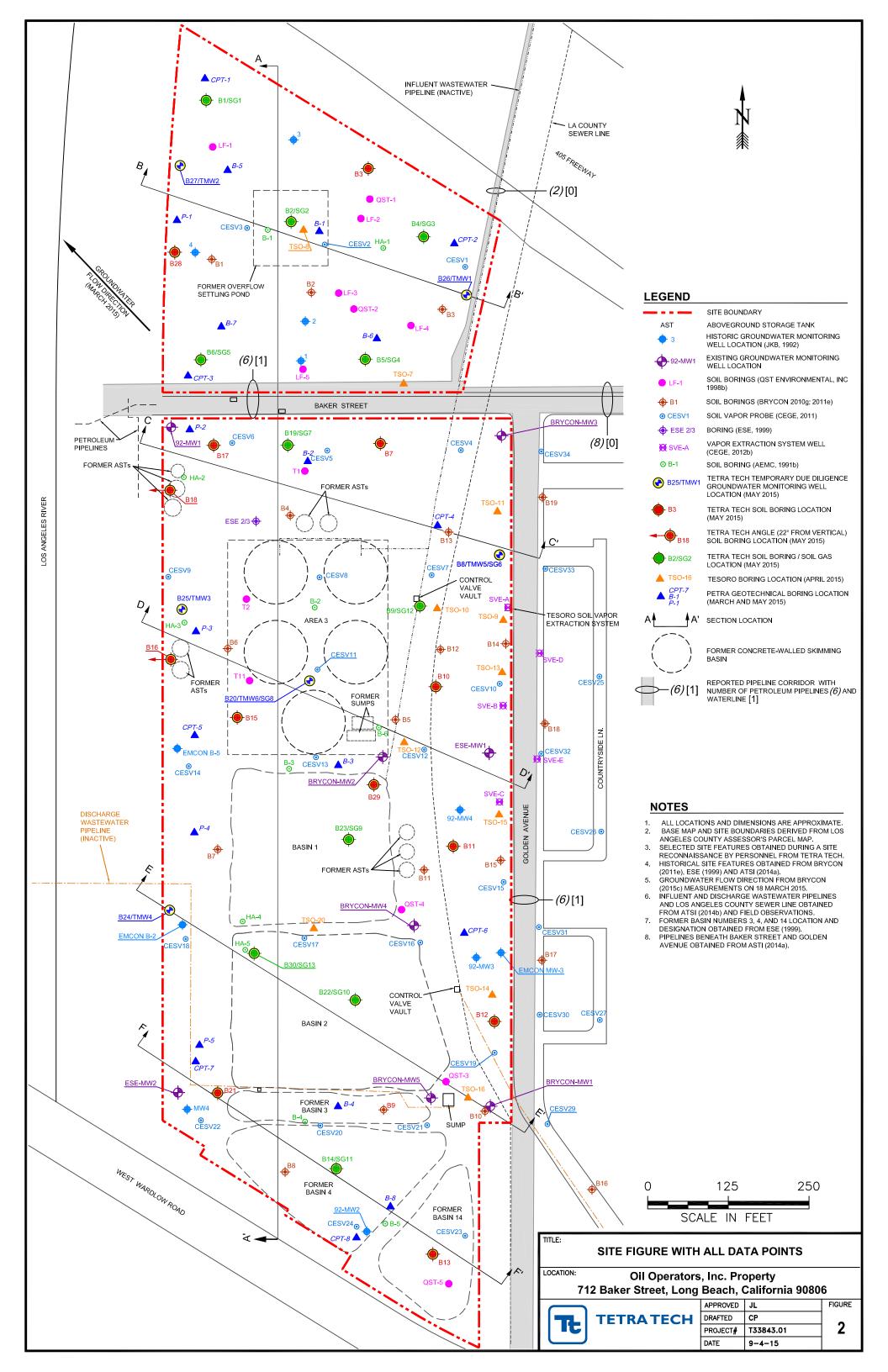
Click here for REFERENCES

MODIFIED VERSION OF USEPA ADULT LEAD MODEL

CALCULATIONS OF BLOOD LEAD CONCENTRATIONS (PbBs) AND PRELMIINARY REMEDIATION GOAL (PRG)

EDIT RED CELL

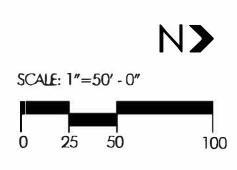
Variable	Description of Variable	Units	
PbS	Soil lead concentration	ug/g or ppm	820
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	0.0
IRs	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	250
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.3
PbB _{fetal, 0.90}	90th percentile PbB among fetuses of adult workers	ug/dL	2.6
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	1.0
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	62.9%

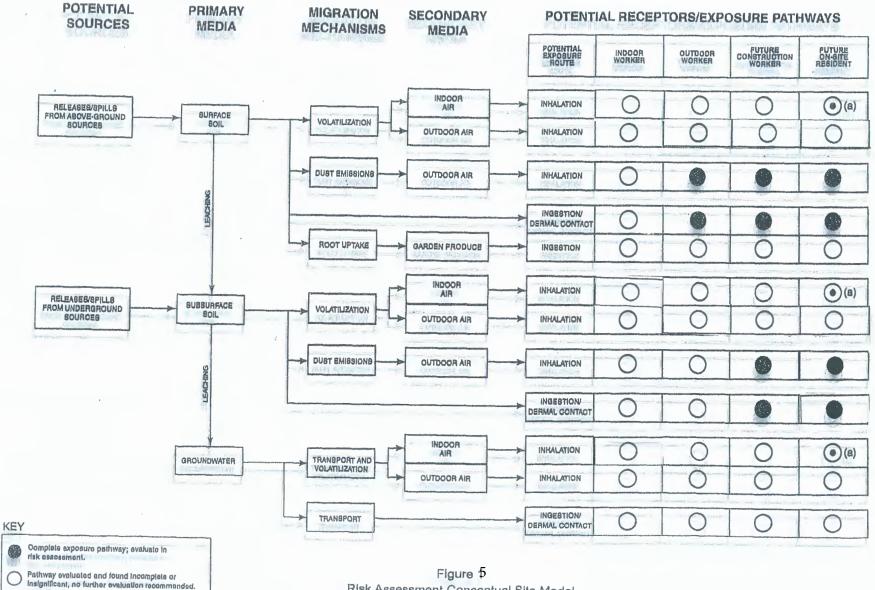

PRG90

318

Click here for REFERENCES

FIGURES





Risk Assessment Conceptual Site Model

(8) Evaluate pathway using soli gas data.

 \odot

Potential complete exposure pathway;

further evaluation in risk assessment recommended.

APPENDIX A

ProUCL Statistics Soil Matrix

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2		-			
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:24:59 PM			
5	From File	TPH Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9	TPU 0				
10	TPH Gasoline (C4-C12)				
11			Canaral	Statistics	
12	Total	Number of Observations	General	Number of Distinct Observations	25
13	lota	Number of Observations	85	Number of Distinct Observations Number of Missing Observations	35
14		Number of Detects	26	Number of Missing Observations	1 59
15	N	umber of Distinct Detects	26	Number of Distinct Non-Detects	11
16		Minimum Detect	0.2	Minimum Non-Detect	0.2
17		Maximum Detect	1500	Minimum Non-Detect Maximum Non-Detect	0.2
18		Variance Detects	95709	Percent Non-Detects	69.41%
19		Mean Detects	129	SD Detects	309.4
20		Median Detects	129	CV Detects	2.397
21		Skewness Detects	3.843	Kurtosis Detects	16.37
22		Mean of Logged Detects	2.901	SD of Logged Detects	2.298
23			2.001		
24		Norm	al GOF Tes	t on Detects Only	
25 26	S	hapiro Wilk Test Statistic	0.456	Shapiro Wilk GOF Test	
20		hapiro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Level	
27		Lilliefors Test Statistic	0.362	Lilliefors GOF Test	
29	5	% Lilliefors Critical Value	0.174	Detected Data Not Normal at 5% Significance Level	
30		Detected Data	a Not Norma	I at 5% Significance Level	
31					
32	Kaplan-	Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
33		Mean	39.62	Standard Error of Mean	19.69
34		SD	178	95% KM (BCA) UCL	77.89
35		95% KM (t) UCL	72.36	95% KM (Percentile Bootstrap) UCL	74.13
36		95% KM (z) UCL	72	95% KM Bootstrap t UCL	131.9
37	(90% KM Chebyshev UCL	98.68	95% KM Chebyshev UCL	125.4
38	97	.5% KM Chebyshev UCL	162.6	99% KM Chebyshev UCL	235.5
39					
40		Gamma GOF	Tests on De	tected Observations Only	
41		A-D Test Statistic	1.123	Anderson-Darling GOF Test	
42		5% A-D Critical Value	0.842	Detected Data Not Gamma Distributed at 5% Significance	Level
43		K-S Test Statistic	0.218	Kolmogrov-Smirnoff GOF	
44		5% K-S Critical Value	0.185	Detected Data Not Gamma Distributed at 5% Significance	Level
45		Detected Data Not (Gamma Dist	ributed at 5% Significance Level	
46					
47				Detected Data Only	
48		k hat (MLE)	0.344	k star (bias corrected MLE)	0.33
49		Theta hat (MLE)	375	Theta star (bias corrected MLE)	391
50		nu hat (MLE)	17.89	nu star (bias corrected)	17.16

	A B C D E	F	G H I J K		
51	MLE Mean (bias corrected)	129	MLE Sd (bias corrected)	224.6	
52					
53	Gamm	a Kaplan-M	eier (KM) Statistics		
54	k hat (KM)	0.0496	nu hat (KM)	8.425	
55	Approximate Chi Square Value (8.43, α)	2.984	Adjusted Chi Square Value (8.43, β)		
56	95% Gamma Approximate KM-UCL (use when n>=50)	111.9	95% Gamma Adjusted KM-UCL (use when n<50)	114	
57	Gamma (KM) n	nay not be u	sed when k hat (KM) is < 0.1		
58					
59	Gamma ROS	Statistics us	sing Imputed Non-Detects		
60	GROS may not be used when data so	et has > 50%	6 NDs with many tied observations at multiple DLs		
61	GROS may not be used	when kstar o	of detected data is small such as < 0.1		
62	For such situations, GROS m	ethod tends	to yield inflated values of UCLs and BTVs		
63	For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates		
64	Minimum	0.01	Mean	39.48	
65	Maximum	1500	Median	0.01	
	SD	179.1	CV	4.536	
66 67	k hat (MLE)	0.131	k star (bias corrected MLE)	0.134	
	Theta hat (MLE)	301.5	Theta star (bias corrected MLE)	294.3	
68	nu hat (MLE)	22.26	nu star (bias corrected)	22.81	
69	MLE Mean (bias corrected)	39.48	MLE Sd (bias corrected)	107.8	
70			Adjusted Level of Significance (β)	0.0472	
71	Approximate Chi Square Value (22.81, α)	12.94	Adjusted Chi Square Value (22.81, β)	12.82	
72	95% Gamma Approximate UCL (use when n>=50)	69.56	95% Gamma Adjusted UCL (use when n<50)	70.25	
73				70.20	
74	Lognormal GO	F Test on D	etected Observations Only		
75	Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test		
76	5% Shapiro Wilk Critical Value	0.92	Detected Data appear Lognormal at 5% Significance Le	vel	
77	Lilliefors Test Statistic	0.173	Lilliefors GOF Test		
78	5% Lilliefors Critical Value	0.174	Detected Data appear Lognormal at 5% Significance Le	vel	
79			rmal at 5% Significance Level		
80					
81	Lognormal BO	S Statistics	Using Imputed Non-Detects		
82	Mean in Original Scale	39.59	Mean in Log Scale	-1.771	
83	SD in Original Scale	179	SD in Log Scale	3.987	
84	95% t UCL (assumes normality of ROS data)	71.89	95% Percentile Bootstrap UCL	73.45	
85	95% BCA Bootstrap UCL	93.51	95% Bootstrap t UCL	128.4	
86	95% H-UCL (Log ROS)	6714			
87					
88	UCLs using Lognormal Distribution and	KM Estimat	tes when Detected data are Lognormally Distributed		
89	KM Mean (logged)	-0.191	95% H-UCL (KM -Log)	41.19	
90	KM SD (logged)	2.403	95% Critical H Value (KM-Log)	3.891	
91	KM Standard Error of Mean (logged)	0.268		0.001	
92		5.200			
93		2 2/ 10	tatistics		
94	DL/2 Normal	5620	DL/2 Log-Transformed		
95	Mean in Original Scale	39.74	Mean in Log Scale	0.14	
96	SD in Original Scale	179	SD in Log Scale	2.283	
97	95% t UCL (Assumes normality)	72.04	95% H-Stat UCL	39.51	
98	, , , , , , , , , , , , , , , , , , ,		ded for comparisons and historical reasons	00.01	
99		caloa, provi			
100					

	А	В	С	D	Е	F	G	Н		J	K	L		
101					Nonparam	etric Distribu	ution Free UC	CL Statistics						
102				Detected D	ata appear	Lognormal	Distributed at	t 5% Signific	ance Level					
103														
104						Suggested	UCL to Use							
105			97.5	% KM (Cheb	yshev) UCL	162.6				T				
106														
107		Note: Sugges	stions regardi	ing the select	tion of a 95%	% UCL are p	rovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	-		
108			R	ecommenda	tions are ba	sed upon da	ta size, data o	distribution,	and skewnes	SS.				
109		These recor	nmendations	are based u	pon the resu	ults of the sin	nulation studi	es summariz	zed in Singh,	Maichle, and	d Lee (2006).			
110	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.													
111														

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:28:19 PM			
5	From File	TPH Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	TPH Diesel (C13-C22)				
11			-		
12				Statistics	
13	Total	Number of Observations	85	Number of Distinct Observations	59
14				Number of Missing Observations	1
15		Number of Detects	60	Number of Non-Detects	25
16	N	umber of Distinct Detects	56	Number of Distinct Non-Detects	5
17		Minimum Detect	1	Minimum Non-Detect	1
18		Maximum Detect	15000	Maximum Non-Detect	14
19		Variance Detects		Percent Non-Detects	29.41%
20		Mean Detects	1755	SD Detects	2737
21		Median Detects	305	CV Detects	1.56
22		Skewness Detects	2.523	Kurtosis Detects	8.598
23		Mean of Logged Detects	5.229	SD of Logged Detects	2.934
24					
25				t on Detects Only	
26		hapiro Wilk Test Statistic	0.696	Normal GOF Test on Detected Observations Only	
27		5% Shapiro Wilk P Value		Detected Data Not Normal at 5% Significance Leve	
28		Lilliefors Test Statistic	0.261	Lilliefors GOF Test	
29	5	% Lilliefors Critical Value	0.114	Detected Data Not Normal at 5% Significance Leve	1
30		Delected Data	a not norma		
31	Konlon	Major (KM) Statistics usi		ritical Values and other Nonparametric UCLs	
32	Каріан-	Mean	1239	Standard Error of Mean	264.2
33		SD	2416	95% KM (BCA) UCL	1698
34		95% KM (t) UCL	1679	95% KM (Percentile Bootstrap) UCL	1704
35		95% KM (t) UCL 95% KM (z) UCL	1679	95% KM Bootstrap UCL	1811
36		90% KM Chebyshev UCL	2032	95% KM Chebyshev UCL	2391
37		.5% KM Chebyshev UCL	2889	99% KM Chebyshev UCL	3868
38	57		2000		
39		Gamma GOF	Tests on De	etected Observations Only	
40		A-D Test Statistic	1.18	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.862	Detected Data Not Gamma Distributed at 5% Significance	e Level
42		K-S Test Statistic	0.119	Kolmogrov-Smirnoff GOF	
43		5% K-S Critical Value	0.124	Detected data appear Gamma Distributed at 5% Significand	ce Level
44				Distribution at 5% Significance Level	
45		······································		•	
46		Gamma	Statistics or	Detected Data Only	
47		k hat (MLE)	0.307	k star (bias corrected MLE)	0.302
48		Theta hat (MLE)	5723	Theta star (bias corrected MLE)	5803
49		nu hat (MLE)	36.79	nu star (bias corrected)	36.29
50				(

	A B C D E	F	GHIJK	
51	MLE Mean (bias corrected)	1755		3191
52				
53	Gamm	a Kaplan-M	eier (KM) Statistics	
54	k hat (KM)	0.263	nu hat (KM)	44.72
55	Approximate Chi Square Value (44.72, α)	30.38	Adjusted Chi Square Value (44.72, β)	30.17
56	95% Gamma Approximate KM-UCL (use when n>=50)	1824	95% Gamma Adjusted KM-UCL (use when n<50) 1	1836
57				
58	Gamma ROS	Statistics us	sing Imputed Non-Detects	
59	GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	
60	GROS may not be used	when kstar o	f detected data is small such as < 0.1	
61	For such situations, GROS m	ethod tends	to yield inflated values of UCLs and BTVs	
62	For gamma distributed detected data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates	
63	Minimum	0.01	Mean 1	1239
64	Maximum	15000	Median	20
65	SD	2430	CV	1.962
66	k hat (MLE)	0.159	k star (bias corrected MLE)	0.161
67	Theta hat (MLE)	7779	Theta star (bias corrected MLE) 7	7672
68	nu hat (MLE)	27.07	nu star (bias corrected)	27.45
69	MLE Mean (bias corrected)	1239	MLE Sd (bias corrected) 3	3083
70			Adjusted Level of Significance (β)	0.0472
71	Approximate Chi Square Value (27.45, α)	16.5	Adjusted Chi Square Value (27.45, β)	16.35
72	95% Gamma Approximate UCL (use when n>=50)	2061	95% Gamma Adjusted UCL (use when n<50) 2	2079
73				
74	Lognormal GO	F Test on D	etected Observations Only	
75	Lilliefors Test Statistic	0.144	Lilliefors GOF Test	
76	5% Lilliefors Critical Value	0.114	Detected Data Not Lognormal at 5% Significance Level	
77	Detected Data I	Not Lognorn	nal at 5% Significance Level	
78				
79	Lognormal ROS	S Statistics	Jsing Imputed Non-Detects	
80	Mean in Original Scale	1239	Mean in Log Scale	3.466
81	SD in Original Scale	2430	SD in Log Scale	3.807
82	95% t UCL (assumes normality of ROS data)	1677	95% Percentile Bootstrap UCL 1	1694
83	95% BCA Bootstrap UCL	1749	95% Bootstrap t UCL 1	1869
84	95% H-UCL (Log ROS)	499967		
85				
86		DL/2 S	atistics	
87	DL/2 Normal		DL/2 Log-Transformed	
88	Mean in Original Scale	1239	Mean in Log Scale	3.789
89	SD in Original Scale	2430	SD in Log Scale	3.37
90	95% t UCL (Assumes normality)	1678	95% H-Stat UCL 8	37257
91	DL/2 is not a recommended me	ethod, provi	led for comparisons and historical reasons	
92				
93	Nonparame	tric Distribu	tion Free UCL Statistics	
0.4	Detected Data appear Appro	ximate Gan	nma Distributed at 5% Significance Level	
94				
94 95			LICI to Lise	
		Suggested		
95	95% KM (Chebyshev) UCL	Suggested 2391		2061
95 96	95% KM (Chebyshev) UCL 95% Approximate Gamma KM-UCL			2061
95 96 97		2391		2061

	А	В	С	D	E	F	G	Н	I	J	K	L		
101		Recommendations are based upon data size, data distribution, and skewness.												
102		These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).												
103	Н	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
104														

	A B C	D E	F	G H I J K	1		
1			•	Sets with Non-Detects			
2							
3	User Selected Options						
4	Date/Time of Computation	1/9/2016 2:53:36 PM					
5	From File	TPH Soil 1.xls					
6	Full Precision	OFF					
7	Confidence Coefficient	95%					
8	Number of Bootstrap Operations	2000					
9							
10	TPH (C23-C32)						
11							
12			General	Statistics			
13	Total	Number of Observations	86	Number of Distinct Observations	66		
14		Number of Detects	68	Number of Non-Detects	18		
15	N	umber of Distinct Detects	59	Number of Distinct Non-Detects	7		
16		Minimum Detect	1.1	Minimum Non-Detect	0.28		
17		Maximum Detect	13000	Maximum Non-Detect	400		
18		Variance Detects	6638858	Percent Non-Detects	20.93%		
19		Mean Detects	1605	SD Detects	2577		
20		Median Detects	200	CV Detects	1.605		
20		Skewness Detects	2.307	Kurtosis Detects	6.029		
21		Mean of Logged Detects	4.941	SD of Logged Detects	3.062		
22							
23		Norm	al GOF Tes	t on Detects Only			
24	S	hapiro Wilk Test Statistic	0.685	Normal GOF Test on Detected Observations Only	/		
25		5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Leve			
20		Lilliefors Test Statistic	0.267	Lilliefors GOF Test			
27	5	% Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Leve	1		
20		Detected Data	a Not Norma	l at 5% Significance Level			
30							
31	Kaplan-	Meier (KM) Statistics usir	ng Normal C	ritical Values and other Nonparametric UCLs			
32		Mean	1270	Standard Error of Mean	257		
33		SD	2366	95% KM (BCA) UCL	1713		
34		95% KM (t) UCL	1697	95% KM (Percentile Bootstrap) UCL	1723		
35		95% KM (z) UCL	1693	95% KM Bootstrap t UCL	1815		
36		00% KM Chebyshev UCL	2041	95% KM Chebyshev UCL	2390		
37	97	.5% KM Chebyshev UCL	2875	99% KM Chebyshev UCL	3827		
38				1			
39		Gamma GOF	Tests on De	etected Observations Only			
40		A-D Test Statistic	1.583	Anderson-Darling GOF Test			
40		5% A-D Critical Value	0.873	Detected Data Not Gamma Distributed at 5% Significance	e Level		
42		K-S Test Statistic	0.125	Kolmogrov-Smirnoff GOF			
43		5% K-S Critical Value	0.118	Detected Data Not Gamma Distributed at 5% Significance	e Level		
44		Detected Data Not (Gamma Dist	ributed at 5% Significance Level			
44							
45		Gamma	Statistics or	Detected Data Only			
40		k hat (MLE)	0.285	k star (bias corrected MLE)	0.282		
47		Theta hat (MLE)		Theta star (bias corrected MLE)			
40		nu hat (MLE)	38.76	nu star (bias corrected)	38.38		
49 50	M	LE Mean (bias corrected)	1605	MLE Sd (bias corrected)	3022		
υc				(/			

	A B C D E	F	G	Н		J		K	L			
51							•					
52	Gamm	a Kaplan-M	eier (KM) St	atistics								
53	k hat (KM)	0.288					nu	hat (KM)	49.57			
54	Approximate Chi Square Value (49.57, α)	34.41			Adjusted C	Chi Square	Value (49.57, β)	34.19			
55	95% Gamma Approximate KM-UCL (use when n>=50)	1830		95% Gamma	a Adjusted	KM-UCL	(use who	en n<50)	1841			
56												
57	Gamma ROS											
58	GROS may not be used when data se			•			DLs					
59	GROS may not be used											
60	For such situations, GROS m		-									
61	For gamma distributed detected data, BTVs a		y be compu	ted using gan	ıma distrit	oution on k	(M estim	ates				
62	Minimum	0.01						Mean				
63	Maximum							Median	33			
64	SD							CV	1.875			
65	k hat (MLE)	0.178				k star (bia		,	0.18			
66	Theta hat (MLE)				Thet	a star (bia			7062			
67	nu hat (MLE)	30.65					•	orrected)	30.92			
68	MLE Mean (bias corrected)	1269					•	orrected)	2994			
69		10.00			•	ed Level o	-	,	0.0472			
70	Approximate Chi Square Value (30.92, α)	19.22				Chi Square	-		19.06			
71	95% Gamma Approximate UCL (use when n>=50)	2043		95% Ga	mma Adju	sted UCL	(use who	en n<50)	2059			
72												
73	Lognormal GO		etected Obs	servations Or	-							
74	Lilliefors Test Statistic	0.174				's GOF Te						
75	5% Lilliefors Critical Value 0.107 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level											
76		Not Lognorn	1al at 5% SI	gnificance Le	vei							
77	Lognormal RO	S Statistics	leing Imput	ed Non-Dete	rte							
78	Mean in Original Scale					М	ean in L	og Scale	3.821			
79	SD in Original Scale							og Scale	3.587			
80	95% t UCL (assumes normality of ROS data)	1697			95%	6 Percenti		-	1711			
81	95% BCA Bootstrap UCL	1786						aptUCL	1795			
82	95% H-UCL (Log ROS)											
83												
84 85		DL/2 S	tatistics									
85 86	DL/2 Normal				DL/2 Log	-Transfor	med					
87	Mean in Original Scale	1272						og Scale	4.067			
88	SD in Original Scale						SD in L	og Scale	3.293			
89	95% t UCL (Assumes normality)	1699						Stat UCL	81597			
90	DL/2 is not a recommended me		ded for com	parisons and	historical	reasons						
91												
92	Nonparame	etric Distribu	tion Free U	CL Statistics								
93	Data do not follow a Di	iscernible Di	stribution a	t 5% Significa	nce Leve	l						
94												
95		Suggested	UCL to Use)								
96	97.5% KM (Chebyshev) UCL	2875										
97		1										
98	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to he	lp the user to	select the	most app	ropriate	95% UCL				
99	Recommendations are bas	sed upon dat	a size, data	distribution, a	nd skewn	ess.						
100	These recommendations are based upon the resu	Its of the sim	ulation stud	ies summariz	ed in Sing	h, Maichle	, and Le	e (2006).				
100								,				

	A	В	С	D	E	F	G	Н		J	K	L
101	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
102												

	АВС	DE	F	G H I J K	
1				Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:54:26 PM			
5	From File	TPH Soil 1.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	ТРН (С33-С40)				
11					
12			General	Statistics	
13	Total	Number of Observations	80	Number of Distinct Observations	54
14		Number of Detects	59	Number of Non-Detects	21
15	Ν	umber of Distinct Detects	50	Number of Distinct Non-Detects	5
16		Minimum Detect	1.1	Minimum Non-Detect	1
17		Maximum Detect	8900	Maximum Non-Detect	400
17		Variance Detects	3365223	Percent Non-Detects	26.25%
18		Mean Detects	1299	SD Detects	1834
20		Median Detects	500	CV Detects	1.412
		Skewness Detects	1.957	Kurtosis Detects	4.547
21		Mean of Logged Detects	5.051	SD of Logged Detects	2.896
22					
23 24		Norm	nal GOF Tes	t on Detects Only	
24 25	S	hapiro Wilk Test Statistic	0.744	Normal GOF Test on Detected Observations Only	/
25		5% Shapiro Wilk P Value	2.641E-13	Detected Data Not Normal at 5% Significance Leve	
20		Lilliefors Test Statistic	0.24	Lilliefors GOF Test	
27	5	% Lilliefors Critical Value	0.115	Detected Data Not Normal at 5% Significance Leve	
20		Detected Data	a Not Norma	I at 5% Significance Level	
30					
31	Kaplan-	Meier (KM) Statistics usi	ng Normal C	ritical Values and other Nonparametric UCLs	
32		Mean	959	Standard Error of Mean	187.5
33		SD	1663	95% KM (BCA) UCL	1266
34		95% KM (t) UCL	1271	95% KM (Percentile Bootstrap) UCL	1260
35		95% KM (z) UCL	1267	95% KM Bootstrap t UCL	1349
36		90% KM Chebyshev UCL	1522	95% KM Chebyshev UCL	1776
37	97	.5% KM Chebyshev UCL	2130	99% KM Chebyshev UCL	2825
38					
39		Gamma GOF	Tests on De	tected Observations Only	
40		A-D Test Statistic	1.455	Anderson-Darling GOF Test	
40		5% A-D Critical Value	0.858	Detected Data Not Gamma Distributed at 5% Significance	e Level
41		K-S Test Statistic	0.139	Kolmogrov-Smirnoff GOF	
42		5% K-S Critical Value	0.125	Detected Data Not Gamma Distributed at 5% Significance	e Level
43		Detected Data Not (Gamma Dist	ributed at 5% Significance Level	
44 45					
45		Gamma	Statistics or	Detected Data Only	
46		k hat (MLE)	0.322	k star (bias corrected MLE)	0.317
47		Theta hat (MLE)		Theta star (bias corrected MLE)	4102
48 49		nu hat (MLE)	37.98	nu star (bias corrected)	37.38
	M	LE Mean (bias corrected)	1299	MLE Sd (bias corrected)	2309
50		,		(

	A B C D E	F	G	Н	I	J		K	L		
51											
52	Gamm	a Kaplan-M	eier (KM) St	tatistics							
53	k hat (KM)	0.333					nu	hat (KM)	53.21		
54	Approximate Chi Square Value (53.21, α)	37.45		1	Adjusted C	Chi Square	Value (53.21, β)	37.21		
55	95% Gamma Approximate KM-UCL (use when n>=50)	1362		95% Gamma	a Adjusted	KM-UCL	(use whe	en n<50)	1371		
56											
57	Gamma ROS										
58	GROS may not be used when data se			•			DLs				
59	GROS may not be used										
60	For such situations, GROS m		-								
61	For gamma distributed detected data, BTVs a		y be compu	ted using gan	ıma distrit	oution on k	(M estim	ates			
62	Minimum	0.01						Mean	958.4		
63	Maximum	8900						Median	22.5		
64	SD	-						CV	1.746		
65	k hat (MLE)	0.176				k star (bias		,	0.178		
66	Theta hat (MLE)				Theta	a star (bias		,	5393		
67	nu hat (MLE)	28.16					r (bias co	,	28.43		
68	MLE Mean (bias corrected)	958.4					•	prrected)	2273		
69					•	ed Level o	-	,	0.047		
70	Approximate Chi Square Value (28.43, α)	17.27				Chi Square	-		17.11		
71	95% Gamma Approximate UCL (use when n>=50)	1578		95% Ga	mma Adju	sted UCL	(use whe	en n<50)	1593		
72											
73	Lognormal GO		etected Obs	servations Or	-	0057	<u> </u>				
74	Lilliefors Test Statistic	0.187				's GOF Te					
75	5% Lilliefors Critical Value 0.115 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level										
76	Delected Data	NOL LOGHOIN		grimcance Le	vei						
77	Lognormal RO	S Statistics	lsing Imput	ed Non-Dete	rte						
78	Mean in Original Scale					М	ean in Lo	og Scale	3.597		
79	SD in Original Scale							og Scale	3.602		
80	95% t UCL (assumes normality of ROS data)	1270			95%	6 Percentil		-	1280		
81	95% BCA Bootstrap UCL	1317						ap t UCL	1332		
82	95% H-UCL (Log ROS)										
83											
84 85		DL/2 S	tatistics								
86	DL/2 Normal				DL/2 Log	-Transfor	ned				
87	Mean in Original Scale	961.2						og Scale	3.852		
88	SD in Original Scale	1672					SD in Lo	og Scale	3.279		
89	95% t UCL (Assumes normality)	1272					95% H-S	Stat UCL	69194		
90	DL/2 is not a recommended me	ethod, provi	ded for com	parisons and	historical	reasons					
91											
92	Nonparame	etric Distribu	tion Free U	CL Statistics							
93	Data do not follow a D	iscernible D	stribution a	t 5% Significa	nce Leve						
94											
95		Suggested	UCL to Use)							
96	97.5% KM (Chebyshev) UCL	2130									
97											
98	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to he	lp the user to	select the	most app	ropriate	95% UCL			
99	Recommendations are bas	sed upon dat	a size, data	distribution, a	nd skewn	ess.					
100	These recommendations are based upon the resu	Its of the sim	ulation stud	ies summariz	ed in Sing	h, Maichle	, and Le	e (2006).			
100					9	,	0	()			

	A	В	С	D	E	F	G	Н		J	K	L
101	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
102												

	A	В	С	D	E	F	G	Н	I	J	К	L		
1					UCL Statis	stics for Data	Sets with N	on-Detects						
2														
3		User Selec	cted Options											
4	Dat	e/Time of Co	omputation	1/9/2016 2:2	29:59 PM									
5			From File	VOCs Soil.>	kls									
6		Full	I Precision	OFF										
7		Confidence (Coefficient	95%										
8	Number o	f Bootstrap C	Operations	2000										
9														
10														
11	1,1,2-Trichle	oroethane												
12														
13							Statistics					1		
14			Total	Number of C	Observations	1		Number of Distinct Observations						
15									Number	r of Missing C	Observations	86		
16					Minimum						Mean	0.3		
17					Maximum	0.3					Median	0.3		
18														
19					•		only has 1 ol							
20			Dat		small to com	-		-		ates!				
21				The data	a set for varia	able 1,1,2-Tr	ichloroethan	e was not pr	ocessed!					
22					-									
23					ect at least 8			-						
24		lf po	ossible, com	pute and col	llect Data Qu	ality Object	ives (DQO) b	based sampl	e size and a	analytical res	sults.			
25														
26														

	A B C	D E	F	G H I J K	L
1		UCL Statist	ics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:31:25 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	1,2,4-Trimethylbenzene				
12			0		
13			General		
14	lotal	Number of Observations	23	Number of Distinct Observations	22
15				Number of Missing Observations	64
16		Minimum	0.0024	Mean	3.045
17		Maximum	18	Median	0.89
18		SD	4.632	Std. Error of Mean	0.966
19		Coefficient of Variation	1.521	Skewness	2.114
20					
21			Normal C		
22		hapiro Wilk Test Statistic	0.704	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.914	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.256	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.185	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27		A a a	uming Nor	nal Distribution	
28	95% N/	ormal UCL		95% UCLs (Adjusted for Skewness)	
29	55 % 11	95% Student's-t UCL	4.703	95% Adjusted IOT Skewness)	5.088
30		95% Student S-t OCL	4.703	95% Modified-t UCL (Johnson-1978)	4.774
31				33 % Modified-t OCE (301113011-1378)	4.774
32			Gamma	SOF Test	
33		A-D Test Statistic	0.294	Anderson-Darling Gamma GOF Test	
34		5% A-D Critical Value	0.835	Detected data appear Gamma Distributed at 5% Significance	
35		K-S Test Statistic	0.11	Kolmogrov-Smirnoff Gamma GOF Test	
36		5% K-S Critical Value	0.195	Detected data appear Gamma Distributed at 5% Significance	e l evel
37				stributed at 5% Significance Level	
38					
39			Gamma	Statistics	
40		k hat (MLE)	0.362	k star (bias corrected MLE)	0.344
41		Theta hat (MLE)	8.404	Theta star (bias corrected MLE)	8.85
42		nu hat (MLE)	16.66	nu star (bias corrected)	15.82
43	M	LE Mean (bias corrected)	3.045	MLE Sd (bias corrected)	5.191
44		, - ,	-	Approximate Chi Square Value (0.05)	7.838
45	Adius	sted Level of Significance	0.0389	Adjusted Chi Square Value	7.433
46				.,	
47 48		Ass	uming Gam	ma Distribution	
48	95% Approximate Gamm		6.147	95% Adjusted Gamma UCL (use when n<50)	6.482
49 50			/		
50					

	А	В	C	D	E	F	G	Н	<u> </u>	J	K		L
51						Lognorma	I GOF Test						
52			SI	napiro Wilk	Test Statistic	0.934		Shap	iro Wilk Log	normal GO	F Test		
53			5% Sł	apiro Wilk (Critical Value	0.914		Data appea	r Lognormal	at 5% Signi	ficance Le	vel	
54				Lilliefors	Test Statistic	0.159		Lill	iefors Logno	ormal GOF	Test		
55			59	% Lilliefors (Critical Value	0.185		Data appea	r Lognormal	at 5% Signi	ficance Le	vel	
56					Data appear	Lognormal	at 5% Signif	icance Level					
57													
58						Lognorma	al Statistics						
59			Ν	Vinimum of	Logged Data	-6.032				Mean of	logged D	ata	-0.732
60			Ν	laximum of	Logged Data	2.89				SD of	flogged D	ata	2.626
61													
62					Assı	iming Logno	ormal Distrib	ution					
63					95% H-UCL	264.7			90%	Chebyshev	(MVUE) U	CL	28.45
64			95% (Chebyshev ((MVUE) UCL	37.17			97.5%	Chebyshev	(MVUE) U	CL	49.27
65			99% (Chebyshev ((MVUE) UCL	73.03							
<u></u>							1						
66													
67					Nonparame	tric Distribu	ition Free UC	L Statistics					
				Data appea	Nonparame ar to follow a l				cance Level				
67				Data appea					cance Leve				
67 68				Data appea	ar to follow a l	Discernible		at 5% Signifi	cance Leve				
67 68 69					ar to follow a l	Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife U	CL	4.703
67 68 69 70				95	ar to follow a l Nonpar	Discernible rametric Dis	Distribution a	at 5% Signifi	cance Level	95% Ja	ackknife U otstrap-t U	_	
67 68 69 70 71			95%	99 Standard Bo	ar to follow a l Nonpar	Discernible rametric Dis 4.633	Distribution a	at 5% Signifi		95% Ja	otstrap-t U	CL	5.825
67 68 69 70 71 72			95% 9!	99 Standard Bo 5% Hall's Bo	n to follow a l Nonpar 5% CLT UCL potstrap UCL	Discernible rametric Dis 4.633 4.543	Distribution a	at 5% Signifi		95% Ja 95% Boo	otstrap-t U	CL	5.825
67 68 69 70 71 72 73			95% 9! 5	98 Standard Bo 5% Hall's Bo 95% BCA Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible rametric Dis 4.633 4.543 6.081	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo	otstrap-t U ootstrap U	CL	5.825 4.714
67 68 69 70 71 72 73 74			95% 9! 9 90% Chi	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Discernible rametric Dis 4.633 4.543 6.081 4.93	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U ean, Sd) U	CL CL	5.825 4.714
67 68 69 70 71 72 73 74 75			95% 9! 9 90% Chi	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 4.633 4.543 6.081 4.93 5.942	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76			95% 9! 9 90% Chi	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 4.633 4.543 6.081 4.93 5.942 9.076	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76 77			95% 9! 20% Chi 97.5% Chi	99 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 4.633 4.543 6.081 4.93 5.942 9.076	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76 77 78			95% 9! 20% Chi 97.5% Chi	99 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 4.633 4.543 6.081 4.93 5.942 9.076 Suggested	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76 77 78 79		lote: Sugges	95% 9! 90% Chi 97.5% Chi 97.5% S	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me 80 80 80 80 80 80 80 80 80 80 80 80 80	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 4.633 4.543 6.081 4.93 5.942 9.076 Suggested 6.482	UCL to Use	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U	CL CL CL CL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			95% 9! 90% Chi 97.5% Chi 95% 95%	93 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me % Adjusted o ing the select	Ar to follow a l Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL	Discernible rametric Dis 4.633 4.543 6.081 4.93 5.942 9.076 Suggested 6.482 0 UCL are pr	USE to USE	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			95% 91 90% Chi 97.5% Chi 97.5% Chi 95% stions regardi	99 Standard Bo 5% Hall's Bo 25% BCA BO 25% B	Ar to follow a l Nonpar 5% CLT UCL botstrap UCL botstrap UCL botstrap UCL ban, Sd) UCL ban, Sd) UCL can, Sd) UCL can, Sd) UCL	ametric Dis 4.633 4.543 6.081 4.93 5.942 9.076 Suggested 6.482 0 UCL are pr ults of the si	USE TO USE	e UCLs e UCLs p the user to dies summar	95% F 95% Ch 99% Ch 99% Ch select the m	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me nost appropr	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL	5.825 4.714 7.254
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			95% 91 90% Chi 97.5% Chi 97.5% Chi 95% stions regardi	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me % Adjusted 0 ing the select is are based and Singh (2)	Ar to follow a l Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL can, Sd) UCL ction of a 95% upon the res	Discernible rametric Dis 4.633 4.543 6.081 4.93 5.942 9.076 Suggested 6.482 0 UCL are pr ults of the si er, simulatic	UCL to Use	e UCLs UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m ized in Singh	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me nost appropr	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL	4.703 5.825 4.714 7.254 12.65

	A B C	DE	F	GH	IJK	
1	ABC		-	Sets with Non-Detects	I J K	L
2						
3	User Selected Options	;				
4	Date/Time of Computation	1/9/2016 2:32:17 PM				
5	From File	VOCs Soil.xls				
6	Full Precision	OFF				
7	Confidence Coefficient	95%				
8	Number of Bootstrap Operations	2000				
9						
10						
11	1,2-Dichlorobenzene					
12						
13			General	Statistics		
14	Tota	Number of Observations	3		Number of Distinct Observations	3
15					Number of Missing Observations	84
16		Minimum	0.0064		Mean	0.179
17		Maximum	0.42		Median	0.11
18		SD	0.215		Std. Error of Mean	0.124
19		Coefficient of Variation	1.204		Skewness	1.292
20						
21	Note: Sam	ple size is small (e.g., <10), if data ar	e collected using ISM app	roach, you should use	
22	guidance pi	rovided in ITRC Tech Reg	Guide on IS	SM (ITRC, 2012) to compu	te statistics of interest.	
23	For	example, you may want to	use Cheby	shev UCL to estimate EPC	C (ITRC, 2012).	
24	Chebyshe	v UCL can be computed us	sing the No	nparametric and All UCL C	Options of ProUCL 5.0	
25						
26			Normal C			
27		Shapiro Wilk Test Statistic	0.923		hapiro Wilk GOF Test	
28	5% S	hapiro Wilk Critical Value	0.767	Data appear	r Normal at 5% Significance Level	
29		Lilliefors Test Statistic	0.292		Lilliefors GOF Test	
30	5	i% Lilliefors Critical Value	0.512		r Normal at 5% Significance Level	
31		Data appea	r Normal at	5% Significance Level		
32		-				
33			uming Norr	nal Distribution		
34	95% N	ormal UCL	0.540		CLs (Adjusted for Skewness)	
35		95% Student's-t UCL	0.542		i% Adjusted-CLT UCL (Chen-1995)	0.482
36				9	5% Modified-t UCL (Johnson-1978)	0.557
37			0			
38		NI_1 F	Gamma (
39			ugn Data to	Perform GOF Test		
40			Gamma	Statiation		
			Gamma : 0.622	5101151165		N/A
41			11 11 / /		k ator (biog corrected MLE)	IN/A
42		k hat (MLE)			k star (bias corrected MLE)	N/A
42 43		Theta hat (MLE)	0.287		Theta star (bias corrected MLE)	N/A
42 43 44		Theta hat (MLE) nu hat (MLE)	0.287 3.735		Theta star (bias corrected MLE) nu star (bias corrected)	N/A
42 43 44 45	M	Theta hat (MLE)	0.287	٨-	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	N/A N/A
42 43 44 45 46		Theta hat (MLE) nu hat (MLE) LE Mean (bias corrected)	0.287 3.735 N/A	Aŗ	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) oproximate Chi Square Value (0.05)	N/A N/A N/A
42 43 44 45 46 47		Theta hat (MLE) nu hat (MLE)	0.287 3.735	Ap	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	N/A N/A
42 43 44 45 46 47 48		Theta hat (MLE) nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	0.287 3.735 N/A N/A		Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) oproximate Chi Square Value (0.05)	N/A N/A N/A
42 43 44 45 46 47		Theta hat (MLE) nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	0.287 3.735 N/A N/A	ma Distribution	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) oproximate Chi Square Value (0.05)	N/A N/A N/A

	А	В	С	D	E	F	G	н		J	К	
51												
52						Lognorma	GOF Test					
53			S	hapiro Wilk	Fest Statistic	0.959		Shap	oiro Wilk Log	inormal GOF	Test	
54			5% S	hapiro Wilk C	Critical Value	0.767			-	at 5% Signifi		
55				Lilliefors	Fest Statistic				-	ormal GOF T		
56			5		Critical Value				-	at 5% Signifi	cance Level	
57					Data appear	r Lognormal	at 5% Signif	icance Leve				
58												
59						-	I Statistics					
60					Logged Data						logged Data	-2.709
61			ſ	Maximum of I	Logged Data	-0.868				SD of	logged Data	2.137
62												
63							ormal Distrib	ution				
64					95% H-UCL					Chebyshev (I	,	0.746
65					MVUE) UCL				97.5%	Chebyshev (I	MVUE) UCL	1.321
66			99%	Chebyshev (MVUE) UCL	1.978						
67												
68					•		tion Free UC					
69				Data appea	r to follow a	Discernible	Distribution a	at 5% Signifi	cance Leve			
70												
71					•		tribution Fre	e UCLs				
72					5% CLT UCL	0.383					ckknife UCL	0.542
73					otstrap UCL						tstrap-t UCL	N/A
74				5% Hall's Bo	•	N/A			95% I	Percentile Bo	otstrap UCL	N/A
75					ootstrap UCL							
76					an, Sd) UCL					ebyshev(Me		0.72
77			97.5% Cł	ebyshev(Me	an, Sd) UCL	0.955			99% Ch	ebyshev(Me	an, Sd) UCL	1.415
78												
79							UCL to Use					
80				95% Stu	dent's-t UCL	0.542						
81									-			
82				Re	commended	UCL exceed	is the maxim	num observa	ition	1		
83												
84	Ν		-	-		-		-		nost appropria		
85		These rec							-	n, Singh, and	laci (2002)	
86			and Singh		2003). Howev					d data sets.		
87				For ad	ditional insig	ht the user m	ay want to c	onsult a stati	stician.			
88												

A B C	D E	F	G H I J K	L
	UCL Statis	tics for Data	Sets with Non-Detects	
Date/Time of Computation	1/9/2016 2:33:10 PM			
From File	VOCs Soil.xls			
Full Precision				
Number of Bootstrap Operations	2000			
1,3,5-Trimethylbenzene				
lotal	Number of Observations	20		20
		- 10		67
				1
N				1
				4.1
				4.1
				5%
				1.11
				2.066
				9.809
	Mean of Logged Detects	-2.268	SD of Logged Detects	2.149
	N			
			-	
			-	
5% 5	•			
J				
	Delected Data			
Kanlan	Moior (KM) Statistics usir	a Normal C	ritical Values and other Nonparametric LICLs	
Каріан		-	-	0.246
				1.01
				0.962
				2.591
(-	1.597
	-		-	2.971
				,
	Gamma GOF	Tests on De	etected Observations Only	
			-	
	5% A-D Critical Value	0.823	_	e Level
	K-S Test Statistic	0.177	Kolmogrov-Smirnoff GOF	
	5% K-S Critical Value	0.213		e Level
	Gamma	Statistics or	Detected Data Only	
	Guilling		-	
	k hat (MLE)	0.4	k star (bias corrected MLE)	0.372
		0.4 1.345	k star (bias corrected MLE) Theta star (bias corrected MLE)	0.372
	Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 1,3,5-Trimethylbenzene Total Number of Bootstrap Operations Number of Bootstra	From File VOCs Soil.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 1,3,5-Trimethylbenzene Image: Solar	Date/Time of Computation 1/9/2016 2:33:10 PM From File VOCs Soil.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 1,3,5-Trimethylbenzene Z0 Interpret Source Z0 Total Number of Observations 20 Number of Detects 19 Number of Distinct Detects 1233 Mean Detects 0.537 Median Detects 0.16 Skewness Detects 3.109 Mean of Logged Detects 2.268 Construct Shapiro Wilk Test Statistic 0.508 Shapiro Wilk Test Statistic 0.508 0.508 Shapiro Wilk Critical Value 0.203 0.203 Detected Data Normal Co 0.526 Shapiro Wilk Critical Value 0.203 0.526 Soft All (1) UCL 0.951 0.5626 Soft KM (2) UC	Date/Time of Computation 19/2016 2:33 10 PM From File VOCS Solit.xls OFF Confidence Coefficient Confidence Coefficient 95% Number of Bootstrap Operations 2000 13,5-Trimethylberzene 20 Number of Distinct Observations 20 Number of Observations 20 Number of Distinct Detects 19 Mainmum Detect 0.002 Mainmum Non-Detect 16 Variance Detects 1.537 Skewmess Detects 3.109 Kurtosis Detects 0.507 Skewness Detects 3.279 Kearo I-Logged Detects -2.268 Skewness Detects 3.79 Skewness Detects 3.79 Skapiro Wilk Critical Value 0.901 Detected Data Not Normal at 5% Significance Level Detected Data Not Normal at 5% Significance Level Skapiro Wilk Critical Value 0.203

	A B C D E	F	G H I J K	L
51	MLE Mean (bias corrected)	0.537	MLE Sd (bias corrected)	0.882
52				
53	Gamm	a Kaplan-M	eier (KM) Statistics	
54	k hat (KM)	0.246	nu hat (KM)	9.836
55	Approximate Chi Square Value (9.84, α)	3.839	Adjusted Chi Square Value (9.84, β)	3.548
56	95% Gamma Approximate KM-UCL (use when n>=50)	1.349	95% Gamma Adjusted KM-UCL (use when n<50)	1.46
57				
58			sing Imputed Non-Detects	
59	-		NDs with many tied observations at multiple DLs	
60	-		f detected data is small such as < 0.1	
61			to yield inflated values of UCLs and BTVs	
62			y be computed using gamma distribution on KM estimates	
63	Minimum	0.002	Mean	0.514
64	Maximum	4.5	Median	0.135
65	SD	1.086	CV	2.111
66	k hat (MLE)	0.405	k star (bias corrected MLE)	0.378
67	Theta hat (MLE)	1.269	Theta star (bias corrected MLE)	1.361
68	nu hat (MLE)	16.21	nu star (bias corrected)	15.12
69	MLE Mean (bias corrected)	0.514	MLE Sd (bias corrected)	0.837
70			Adjusted Level of Significance (β)	0.038
71	Approximate Chi Square Value (15.12, α)	7.342	Adjusted Chi Square Value (15.12, β)	6.916
72	95% Gamma Approximate UCL (use when n>=50)	1.059	95% Gamma Adjusted UCL (use when n<50)	1.124
73				
74			etected Observations Only	
75	Shapiro Wilk Test Statistic	0.95	Shapiro Wilk GOF Test	
76	5% Shapiro Wilk Critical Value	0.901	Detected Data appear Lognormal at 5% Significance Le	vel
77	Lilliefors Test Statistic	0.158	Lilliefors GOF Test	
78	5% Lilliefors Critical Value	0.203	Detected Data appear Lognormal at 5% Significance Le	vel
79		pear Logno	rmal at 5% Significance Level	
80		- Statistica I	Using Imputed Non-Detects	
81	Mean in Original Scale	0.515	Mean in Log Scale	-2.277
82	SD in Original Scale	1.085	SD in Log Scale	2.092
83	95% t UCL (assumes normality of ROS data)	0.935	95% Percentile Bootstrap UCL	0.936
84	95% BCA Bootstrap UCL	1.127	95% Bootstrap t UCL	2.655
85	95% H-UCL (Log ROS)	7.82		2.000
86		7.02		
87	UCI s using Lognormal Distribution and	KM Estimat	es when Detected data are Lognormally Distributed	
88	KM Mean (logged)	-2.278	95% H-UCL (KM -Log)	7.595
89	KM SD (logged)	2.085	95% Critical H Value (KM-Log)	4.459
90	KM Standard Error of Mean (logged)	0.49		
91		53		
92 93		DL/2 S	tatistics	
	DL/2 Normal		DL/2 Log-Transformed	
94	Mean in Original Scale	0.613	Mean in Log Scale	-2.119
95	SD in Original Scale	1.132	SD in Log Scale	2.195
96	95% t UCL (Assumes normality)	1.051	95% H-Stat UCL	13.99
97 98	· · · · · · · · · · · · · · · · · · ·		ded for comparisons and historical reasons	-
98			·	
	Nonparame	tric Distribu	tion Free UCL Statistics	
100				

	А	В	С	D	Е	F	G	Н		J	K	L
101				Detected	Data appea	r Gamma Di	istributed at	5% Significa	ance Level			
102												
103						Suggested	UCL to Use					
104			95	% KM (Cheb	yshev) UCL	1.597			95% GRC	S Adjusted C	Gamma UCL	1.124
105			95% Ac	ljusted Gam	ma KM-UCL	1.46						
106												
107		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	Ip the user to	o select the m	nost appropria	ate 95% UCI	
108			R	ecommenda	tions are ba	sed upon dat	ta size, data	distribution,	and skewnes	S.		
109		These reco	mmendations	are based u	pon the resu	Its of the sin	nulation stud	ies summari:	zed in Singh,	Maichle, and	d Lee (2006).	
110	H	owever, simu	lations result	s will not cov	er all Real V	/orld data se	ts; for additio	onal insight t	he user may	want to cons	ult a statistic	ian.
111												

	A	В	С	D	E	F	G	н		J	К	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Selec	cted Options									
4	Dat	e/Time of Co	omputation	1/9/2016 2:	34:05 PM							
5			From File	VOCs Soil.	xls							
6		Ful	I Precision	OFF								
7		Confidence		95%								
8	Number o	f Bootstrap (Operations	2000								
9												
10												
11	2-Butanone	(MEK										
12												
13						General	Statistics					
14			Total	Number of (Observations	1					Observations	1
15									Numbe	er of Missing	Observations	86
16					Minimum	0.0079					Mean	0.0079
17					Maximum	0.0079					Median	0.0079
18												
19							•	bservations!				
20			Dat		small to comp			-		nates!		
21				The da	ata set for var	riable 2-Buta	none (MEK	was not pro	cessed!			
22												
23					ect at least 8			-				
24		lf po	ossible, com	pute and co	llect Data Qu	ality Object	ves (DQO) I	based samp	e size and	analytical re	sults.	
25												
26												

	Α	В	С	D	E	F	G	н	I	J	К	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Seleo	cted Options									
4	Dat	e/Time of Co	omputation	1/9/2016 2:	34:51 PM							
5			From File	VOCs Soil.	xls							
6		Ful	I Precision	OFF								
7		Confidence		95%								
8	Number o	f Bootstrap (Operations	2000								
9												
10												
11	Acetone											
12												
13							Statistics					
14			Total	Number of (Observations	2					Observations	2
15									Numbe	er of Missing (Observations	85
16					Minimum	0.014					Mean	0.025
17					Maximum	0.036					Median	0.025
18												
19					-		-	bservations!				
20			Dat		small to comp			<u> </u>		nates!		
21				Т	he data set fo	or variable A	cetone was	not process	ed!			
22								<u> </u>		<u> </u>		
23					ect at least 8			-				
24		lf po	ossible, com	pute and co	llect Data Qu	ality Object	ves (DQO) l	based samp	le size and	analytical res	sults.	
25												
26												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:35:32 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Benzene				
12			0		
13	T-t-l	Number of Observations		Statistics	15
14	lotal	Number of Observations	16	Number of Distinct Observations	15
15		N dissions and	0.000	Number of Missing Observations	71
16		Minimum	0.003	Mean	0.403
17		Maximum SD	3.8 0.962	Median Std. Error of Mean	0.0435
18		Coefficient of Variation	2.389		3.365
19		Coefficient of Variation	2.309	Skewness	3.305
20			Normal (GOF Test	
21	<u> </u>	hapiro Wilk Test Statistic	0.47	Shapiro Wilk GOF Test	
22		hapiro Wilk Critical Value	0.47	Data Not Normal at 5% Significance Level	
23	570 51	Lilliefors Test Statistic	0.376	Lilliefors GOF Test	
24	5	% Lilliefors Critical Value	0.370	Data Not Normal at 5% Significance Level	
25				% Significance Level	
26		244.00			
27		Ass	sumina Norr	nal Distribution	
28 29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	0.825	95% Adjusted-CLT UCL (Chen-1995)	1.015
31				95% Modified-t UCL (Johnson-1978)	0.858
32					
33			Gamma	GOF Test	
34		A-D Test Statistic	0.929	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.828	Data Not Gamma Distributed at 5% Significance Leve	
36		K-S Test Statistic	0.196	Kolmogrov-Smirnoff Gamma GOF Test	
37		5% K-S Critical Value	0.232	Detected data appear Gamma Distributed at 5% Significance	e Level
38		Detected data follow App	or. Gamma	Distribution at 5% Significance Level	
39					
40			Gamma	Statistics	
41		k hat (MLE)	0.345	k star (bias corrected MLE)	0.322
42		Theta hat (MLE)	1.167	Theta star (bias corrected MLE)	1.25
43		nu hat (MLE)	11.05	nu star (bias corrected)	10.31
44	MI	LE Mean (bias corrected)	0.403	MLE Sd (bias corrected)	0.71
45				Approximate Chi Square Value (0.05)	4.138
46	Adjus	sted Level of Significance	0.0335	Adjusted Chi Square Value	3.702
47					
48				ma Distribution	
_					
49	95% Approximate Gamma	a UCL (use when n>=50)	1.004	95% Adjusted Gamma UCL (use when n<50)	1.122

	A	В	С	D	E	F	G	Н		J	K		L
51							I GOF Test						
52				•	Test Statistic	0.963		-		normal GO			
53			5% Sh	apiro Wilk (Critical Value	0.887		Data appea	0	0		evel	
54				Lilliefors	Test Statistic	0.114		Lill	iefors Logn	ormal GOF	Fest		
55			5%	% Lilliefors (Critical Value	0.222		Data appea	r Lognormal	at 5% Signi	ficance Le	evel	
56					Data appear	Lognormal	at 5% Signif	icance Level					
57													
58						Lognorma	I Statistics						
59			Ν	linimum of	Logged Data	-5.809				Mean of	logged D	Data	-2.861
60			Μ	laximum of	Logged Data	1.335				SD of	logged D	Data	2.094
61													
62					Assu	ming Logno	ormal Distrib	ution					
63					95% H-UCL	6.321			90%	Chebyshev	(MVUE) l	JCL	1.04
64				-	(MVUE) UCL	1.345			97.5%	Chebyshev	(MVUE) l	JCL	1.768
65			99% C	Chebyshev ((MVUE) UCL	2.6							
66													
67					Nonparame	tric Distribu	tion Free UC	L Statistics					
67 68				Data appea	Nonparame ar to follow a [cance Leve	I			
68				Data appea	-				cance Leve	1			
68 69				Data appea	ar to follow a [Discernible		at 5% Signifi	cance Leve	1			
68 69 70					ar to follow a [Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife l	JCL	0.825
68 69 70 71				95	ar to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi	cance Leve	95% Ja	ackknife l		
68 69 70 71 72			95% \$	95 Standard Bo	nr to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi		95% Ja	otstrap-t l	JCL	2.913
68 69 70 71 72 73			95% s 95	95 Standard Bo 5% Hall's Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible ametric Dis 0.799 0.786	Distribution a	at 5% Signifi	95%	95% Ja 95% Boo Percentile Bo	otstrap-t l	JCL	2.913
			95% \$ 95 95	9t Standard Bo 5% Hall's Bo 5% BCA Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible ametric Dis 0.799 0.786 2.387	Distribution a	at 5% Signifi	95%	95% Ja 95% Boo	otstrap-t l	JCL	2.913 0.815
68 69 70 71 72 73 74 75			95% 5 95 95 90% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 55% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76			95% 5 95 95 90% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 55% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	2.913 0.815 1.451
68 69 70 71 72 73 74			95% 5 95 95 90% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 55% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76 77 78			95% \$ 95 9 90% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo sbyshev(Me sbyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76 77 78 79			95% \$ 95 9 90% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo sbyshev(Me sbyshev(Me	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905 Suggested	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76 77		Note: Sugges	95% \$ 95 90% Che 97.5% Che 95%	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905 Suggested 1.122	UCL to Use	e UCLs	95% Cr 95% Cr 99% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76 77 78 79 80 81			95% \$ 95 90% Che 97.5% Che 95% 95%	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the select	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905 Suggested 1.122 UCL are pr	UCL to Use	e UCLs	95% 95% Cr 99% Cr select the n	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL JCL UCL.	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76 77 78 79 80			95% stions regardi ommendation	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the select s are based	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL Dan, Sd) UCL Gamma UCL	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905 Suggested 1.122 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel mulation stud	e UCLs	95% Cr 95% Cr 99% Cr select the n	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me nost appropr n, Singh, and	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL JCL UCL.	2.913 0.815 1.451
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			95% stions regardi ommendation	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the select s are based and Singh (2	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL Ction of a 95% I upon the resi	Discernible ametric Dis 0.799 0.786 2.387 1.105 1.125 1.905 Suggested 1.122 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel mulation stud ons results wi	e UCLs UCLs p the user to dies summar	95% Cr 95% Cr 99% Cr select the n ized in Singl	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me nost appropr n, Singh, and	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL JCL UCL.	0.825 2.913 0.815 1.451 2.797

	A	В	С	D	E	F	G	Н		J	К		L
1					UCL Statis	tics for Data	Sets with I	Non-Detects	5				
2													
3		User Sele	cted Options										
4	Dat	te/Time of Co	omputation	1/9/2016 2:3	36:17 PM								
5			From File	VOCs Soil.>	ds								
6		Fu	II Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number o	of Bootstrap	Operations	2000									
9													
10													
11	cis-1,2-Dich	loroethene											
12													
13						General	Statistics						
14			Total	Number of C	Observations	1				ber of Disting			1
15									Numt	per of Missin	•		86
16					Minimum	0.005					Ν	lean	0.005
17					Maximum	0.005					Me	dian	0.005
18													
19					Warning: Th		-						
20			Dat		small to comp			•					
21				The data	set for varial	ble cis-1,2-D	Dichloroethe	ene was not	processed				
22													
23					ect at least 8			-					
24		lf p	ossible, com	pute and col	llect Data Qu	ality Object	ives (DQO)	based sam	ple size and	d analytical	results.		
25													
26													

	A B C	D E	F	G H I J K	L
1		UCL Statist	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:37:16 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Ethylbenzene				
12			Conoral	Charlie and Charli	
13	Tatal	Number of Observations	22	Statistics Number of Distinct Observations	01
14	Iotai	Number of Observations	22		21 65
15		Minimum	0.0038	Number of Missing Observations	
16				Mean	0.644
17		Maximum SD	3.9 0.923	Median Std. Error of Mean	0.16
18					
19		Coefficient of Variation	1.433	Skewness	2.3
20			Namal		
21		h and in Mills Tarat Otatiatia		GOF Test	
22		hapiro Wilk Test Statistic	0.712	Shapiro Wilk GOF Test	
23	5% 5	hapiro Wilk Critical Value	0.911	Data Not Normal at 5% Significance Level	
24	r	Lilliefors Test Statistic	0.244	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.189	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	i% Significance Level	
27		٨٠		nal Distribution	
28	05% N	ormal UCL		nal Distribution 95% UCLs (Adjusted for Skewness)	
29	95% NG	95% Student's-t UCL	0.002	95% Adjusted-CLT UCL (Chen-1995)	1.071
30		95% Student S-t UCL	0.983	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.999
31				95 % Modified-t OCE (Johnson-1978)	0.999
32			Gamma	GOF Test	
33		A-D Test Statistic	0.63	Anderson-Darling Gamma GOF Test	
34		5% A-D Critical Value	0.815	Detected data appear Gamma Distributed at 5% Significance	
35		K-S Test Statistic	0.815	Kolmogrov-Smirnoff Gamma GOF Test	
36		5% K-S Critical Value	0.182	Detected data appear Gamma Distributed at 5% Significance	elevel
37				stributed at 5% Significance Level	
38					
39			Gamma	Statistics	
40		k hat (MLE)	0.451	k star (bias corrected MLE)	0.42
41		Theta hat (MLE)	1.428	Theta star (bias corrected MLE)	1.535
42		nu hat (MLE)	19.84	nu star (bias corrected)	18.47
43	M	LE Mean (bias corrected)	0.644	MLE Sd (bias corrected)	0.994
44		(Approximate Chi Square Value (0.05)	9.73
45 46	Adius	sted Level of Significance	0.0386	Adjusted Chi Square Value	9.258
46				.,	
47		Ass	umina Garr	ma Distribution	
48	95% Approximate Gamm		1.223	95% Adjusted Gamma UCL (use when n<50)	1.285
49 50					
50					

	A	В	С	D	E	F	G	Н		J	K		L
51						Lognorma	I GOF Test						
52			Sł	napiro Wilk	Test Statistic	0.931		Shap	iro Wilk Log	normal GO	F Test		
53			5% Sh	apiro Wilk (Critical Value	0.911		Data appea	r Lognormal	at 5% Signif	ficance Le	vel	
54				Lilliefors	Test Statistic	0.185		Lill	iefors Logn	ormal GOF	Fest		
55			5%	% Lilliefors (Critical Value	0.189		Data appea	r Lognormal	at 5% Signif	ficance Le	vel	
56					Data appear	Lognormal	at 5% Signif	icance Leve					
57													
58						Lognorma	al Statistics						
59			Ν	/linimum of	Logged Data	-5.573				Mean of	logged Da	ata	-1.872
60			Μ	laximum of	Logged Data	1.361				SD of	logged Da	ata	2.107
61													
62		Assuming Lognormal Distribution											
63					95% H-UCL	10.56			90%	Chebyshev	(MVUE) U	CL	2.946
64	95% Chebyshev (MVUE) L					3.788			97.5%	Chebyshev	(MVUE) U	CL	4.955
65	99% Chebyshev (MVUE) L					7.248							
66												1	
00													
67					Nonparame	tric Distribu	tion Free UC	L Statistics					
				Data appea	Nonparame ar to follow a [cance Leve				
67 68				Data appea	-				cance Leve	I			
67				Data appea	ir to follow a [Discernible		at 5% Signifi	cance Leve	l			
67 68 69					ir to follow a [Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife U	CL	0.983
67 68 69 70				95	r to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi	cance Leve	95% Ja	ackknife U otstrap-t U	-	
67 68 69 70 71			95% \$	95 Standard Bo	nr to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi		95% Ja	otstrap-t U	CL	
67 68 69 70 71 72 73			95% s 95	95 Standard Bo 5% Hall's Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible ametric Dis 0.968 0.956	Distribution a	at 5% Signifi		95% Ja 95% Boo	otstrap-t U	CL	1.155
67 68 69 70 71 72			95% \$ 95 95	95 Standard Bo 5% Hall's Bo 5% BCA Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible ametric Dis 0.968 0.956 1.594	Distribution a	at 5% Signifi	95%	95% Ja 95% Boo	otstrap-t U ootstrap U	CL CL	1.155 0.97
67 68 69 70 71 72 73 74			95% 5 95 95 90% Che	95 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo 95% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75			95% 5 95 95 90% Che	95 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo 95% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76			95% 5 95 95 90% Che	95 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo 95% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76 77 78			95% \$ 95 9 90% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76 77			95% \$ 95 9 90% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873 Suggested	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76 77 78 79		Note: Sugges	95% \$ 95 90% Che 97.5% Che 95%	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo 5% BCA Bo 5% BCA Me ebyshev(Me byshev(Me byshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873 Suggested 1.285	UCL to Use	e UCLs	95% I 95% Cr 99% Cr	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me	otstrap-t U potstrap U ean, Sd) U ean, Sd) U		1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			95% \$ 95 90% Che 97.5% Che 95% 95%	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the select	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873 Suggested 1.285 UCL are pr	UCL to Use	e UCLs	95% I 95% Cr 99% Cr select the n	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t U potstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76 77 78 79 80			95% stions regardi ommendation	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo byshev(Me byshev(M	Nonpar Nonpar 5% CLT UCL botstrap UCL botstrap UCL botstrap UCL ban, Sd) UCL can, Sd) UCL Gamma UCL	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873 Suggested 1.285 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel imulation stud	e UCLs	95% I 95% Cr 99% Cr 99% Cr select the n	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me nost appropri-	otstrap-t U potstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL CL	1.155 0.97 1.502
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			95% stions regardi ommendation	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the seleo s are based and Singh (2	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL can, Sd) UCL Gamma UCL ction of a 95% upon the resi	Discernible ametric Dis 0.968 0.956 1.594 1.083 1.235 1.873 Suggested 1.285 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs UCLs p the user to dies summar	95% I 95% Cr 99% Cr select the n ized in Singl	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me nost appropri-	otstrap-t U potstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL CL	0.983 1.155 0.97 1.502 2.602

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:38:07 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	Isopropylbenzene				
11			-		
12				Statistics	
13	Total	Number of Observations	21	Number of Distinct Observations	21
14				Number of Missing Observations	66
15		Number of Detects	16	Number of Non-Detects	5
16	N	umber of Distinct Detects	16	Number of Distinct Non-Detects	5
17		Minimum Detect	0.007	Minimum Non-Detect	0.014
18		Maximum Detect	1.2	Maximum Non-Detect	1.4
19		Variance Detects	0.138	Percent Non-Detects	23.81%
20		Mean Detects	0.326	SD Detects	0.371
21		Median Detects	0.18	CV Detects	1.139
22		Skewness Detects	1.203	Kurtosis Detects	0.787
23		Mean of Logged Detects	-2.124	SD of Logged Detects	1.728
24					
25				t on Detects Only	
26		hapiro Wilk Test Statistic	0.822	Shapiro Wilk GOF Test	
27	5% Sr	hapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level	
28		Lilliefors Test Statistic	0.217	Lilliefors GOF Test	
29	5`	% Lilliefors Critical Value	0.222	Detected Data appear Normal at 5% Significance Level e Normal at 5% Significance Level	el
30		Delected Data appear	Approximat	e Normai at 5% Significance Level	
31	Kanlan	Major (KM) Statiation wait		ritical Values and other Nonparametric UCLs	
32	Каріан-і	Meier (KW) Statistics usir Mean	0.27	Standard Error of Mean	0.0802
33		SD	0.27	95% KM (BCA) UCL	0.0802
34		95% KM (t) UCL	0.343	95% KM (Percentile Bootstrap) UCL	0.399
35		95% KM (t) UCL 95% KM (z) UCL	0.408	95% KM (Percentile Bootstrap) OCL 95% KM Bootstrap t UCL	0.411
36	a	00% KM Chebyshev UCL	0.402	95% KM Boolstrap (OCL 95% KM Chebyshev UCL	0.458
37		.5% KM Chebyshev UCL	0.771	99% KM Chebyshev UCL	1.068
38	57.		5.771		1.000
39		Gamma GOF	Tests on De	etected Observations Only	
40		A-D Test Statistic	0.615	Anderson-Darling GOF Test	
41		5% A-D Critical Value	0.786	Detected data appear Gamma Distributed at 5% Significance	e Level
42		K-S Test Statistic	0.216	Kolmogrov-Smirnoff GOF	
43		5% K-S Critical Value	0.225	Detected data appear Gamma Distributed at 5% Significance	e Level
44				stributed at 5% Significance Level	
45				•	
46		Gamma	Statistics or	Detected Data Only	
47		k hat (MLE)	0.614	k star (bias corrected MLE)	0.541
48		Theta hat (MLE)	0.531	Theta star (bias corrected MLE)	0.603
49		nu hat (MLE)	19.65	nu star (bias corrected)	17.3
50		()			

	A B C D E	F	G H I J K	1 1
51	MLE Mean (bias corrected)	0.326	MLE Sd (bias corrected	l) 0.443
52				
53	Gamm	a Kaplan-Me	eier (KM) Statistics	
54	k hat (KM)	0.612	nu hat (KN	l) 25.72
55	Approximate Chi Square Value (25.72, α)	15.17	Adjusted Chi Square Value (25.72,	3) 14.54
56	95% Gamma Approximate KM-UCL (use when n>=50)	0.457	95% Gamma Adjusted KM-UCL (use when n<5) 0.477
57				
58	Gamma ROS	Statistics us	ing Imputed Non-Detects	
59	GROS may not be used when data se	et has > 50%	NDs with many tied observations at multiple DLs	
60	GROS may not be used v	when kstar o	f detected data is small such as < 0.1	
61	For such situations, GROS m	ethod tends	to yield inflated values of UCLs and BTVs	
62	For gamma distributed detected data, BTVs a	nd UCLs ma	y be computed using gamma distribution on KM estimates	
63	Minimum	0.007	Mea	n 0.261
64	Maximum	1.2	Media	n 0.0898
65	SD	0.344	С	V 1.321
66	k hat (MLE)	0.549	k star (bias corrected ML	
67	Theta hat (MLE)	0.475	Theta star (bias corrected ML	E) 0.519
	nu hat (MLE)	23.05	nu star (bias corrected	,
68	MLE Mean (bias corrected)	0.261	MLE Sd (bias corrected	'
69			Adjusted Level of Significance (·
70	Approximate Chi Square Value (21.09, α)	11.66	Adjusted Chi Square Value (21.09, j	·
71	95% Gamma Approximate UCL (use when n>=50)	0.471	95% Gamma Adjusted UCL (use when n<50	
72		••••		
73	Lognormal GO	F Test on D	etected Observations Only	
74	Shapiro Wilk Test Statistic	0.904	Shapiro Wilk GOF Test	
75	5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance	level
76	Lilliefors Test Statistic	0.2	Lilliefors GOF Test	
77	5% Lilliefors Critical Value	0.222	Detected Data appear Lognormal at 5% Significance	level
78			mal at 5% Significance Level	
79		pear legner		
80	Lognormal ROS	S Statistics I	Jsing Imputed Non-Detects	
81	Mean in Original Scale	0.256	Mean in Log Sca	e -2.554
82	SD in Original Scale	0.347	SD in Log Sca	
83	95% t UCL (assumes normality of ROS data)	0.386	95% Percentile Bootstrap UC	
84	95% BCA Bootstrap UCL	0.393	95% Bootstrap t UC	
85	95% H-UCL (Log ROS)	1.582		
86	(
87	UCLs using Lognormal Distribution and	KM Estimat	es when Detected data are Lognormally Distributed	
88	KM Mean (logged)	-2.572	95% H-UCL (KM -Lo	ı) 1.902
89	KM SD (logged)	1.819	95% Critical H Value (KM-Log	
90	KM Standard Error of Mean (logged)	0.43		
91		53		
92		DL/2 St	atistics	
93	DL/2 Normal		DL/2 Log-Transformed	
94 05	Mean in Original Scale	0.297	Mean in Log Sca	e -2.368
95	SD in Original Scale	0.353	SD in Log Sca	
96	95% t UCL (Assumes normality)	0.43	95% H-Stat UC	
97			led for comparisons and historical reasons	
98				
99	Nonparame	tric Distribut	ion Free UCL Statistics	
100	Nonparalle			

	А	В	С	D	Е	F	G	Н		J	K	L
101			De	tected Data	appear Appr	oximate Nor	mal Distribut	ted at 5% Sig	gnificance L	evel		
102												
103						Suggested	UCL to Use					
104				95%	KM (t) UCL	0.408			95% KM (P	ercentile Boo	otstrap) UCL	0.411
105												
106		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropri	ate 95% UCL.	
107			F	Recommenda	tions are bas	sed upon dat	a size, data o	distribution, a	and skewnes	S.		
108		These recor	nmendations	s are based u	pon the resu	Its of the sim	nulation studi	es summariz	ed in Singh,	Maichle, and	d Lee (2006).	
109	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statisticia	an.
110												

	A B C	D E	F	G H I J K	L
1		UCL Statist	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options	i			
4	Date/Time of Computation	1/9/2016 2:38:52 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9		.1			
10	m,p-Xylenes				
11					
12			General	Statistics	
13	Total	Number of Observations	18	Number of Distinct Observations	18
14				Number of Missing Observations	69
15		Number of Detects	17	Number of Non-Detects	1
16	N	umber of Distinct Detects	17	Number of Distinct Non-Detects	1
17		Minimum Detect	0.0097	Minimum Non-Detect	11
18		Maximum Detect	2.8	Maximum Non-Detect	11
19		Variance Detects	0.509	Percent Non-Detects	5.556%
20		Mean Detects	0.54	SD Detects	0.714
21		Median Detects	0.3	CV Detects	1.322
22		Skewness Detects	2.193	Kurtosis Detects	5.827
23		Mean of Logged Detects	-1.671	SD of Logged Detects	1.747
24					
25		Norm	al GOF Tes	t on Detects Only	
26	S	hapiro Wilk Test Statistic	0.744	Shapiro Wilk GOF Test	
27	5% S	hapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level	
28		Lilliefors Test Statistic	0.229	Lilliefors GOF Test	
29	5	% Lilliefors Critical Value	0.215	Detected Data Not Normal at 5% Significance Level	
30		Detected Data	Not Norma	al at 5% Significance Level	
31					
32	Kaplan-	Meier (KM) Statistics usir	ng Normal C	Critical Values and other Nonparametric UCLs	
33		Mean	0.54	Standard Error of Mean	0.173
34					0.170
57		SD	0.692	95% KM (BCA) UCL	0.847
35		SD 95% KM (t) UCL	0.692 0.841	95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	
35 36					0.847
36		95% KM (t) UCL	0.841	95% KM (Percentile Bootstrap) UCL	0.847 0.857
36 37		95% KM (t) UCL 95% KM (z) UCL	0.841 0.824	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	0.847 0.857 1.057
36 37 38		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	0.841 0.824 1.059	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	0.847 0.857 1.057 1.294
36 37 38 39		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 7.5% KM Chebyshev UCL	0.841 0.824 1.059 1.621	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	0.847 0.857 1.057 1.294
36 37 38 39 40		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 7.5% KM Chebyshev UCL	0.841 0.824 1.059 1.621	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	0.847 0.857 1.057 1.294
36 37 38 39 40 41		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF	0.841 0.824 1.059 1.621 Tests on De	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	0.847 0.857 1.057 1.294 2.262
36 37 38 39 40 41 42		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic	0.841 0.824 1.059 1.621 Tests on De 0.367	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test	0.847 0.857 1.057 1.294 2.262
36 37 38 39 40 41 42 43		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic 5% A-D Critical Value	0.841 0.824 1.059 1.621 Tests on De 0.367 0.79	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance	0.847 0.857 1.057 1.294 2.262 e Level
36 37 38 39 40 41 42 43 44		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.841 0.824 1.059 1.621 Tests on De 0.367 0.79 0.174 0.22	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff GOF	0.847 0.857 1.057 1.294 2.262 e Level
36 37 38 39 40 41 42 43 44 45		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.841 0.824 1.059 1.621 Tests on De 0.367 0.79 0.174 0.22	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff GOF Detected data appear Gamma Distributed at 5% Significance	0.847 0.857 1.057 1.294 2.262 e Level
36 37 38 39 40 41 42 43 44 45 46		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	0.841 0.824 1.059 1.621 Tests on De 0.367 0.79 0.174 0.22 Gamma Dis	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff GOF Detected data appear Gamma Distributed at 5% Significance	0.847 0.857 1.057 1.294 2.262 e Level
36 37 38 39 40 41 42 43 44 45 46 47		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	0.841 0.824 1.059 1.621 Tests on De 0.367 0.79 0.174 0.22 Gamma Dis	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff GOF Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	0.847 0.857 1.057 1.294 2.262 e Level
36 37 38 39 40 41 42 43 44 45 46		95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	0.841 0.824 1.059 1.621 Tests on De 0.367 0.79 0.174 0.22 Gamma Dis Statistics or	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff GOF Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	0.847 0.857 1.057 1.294 2.262 e Level

	A B C D E	F	GHIJK	1
51	A B C D E MLE Mean (bias corrected)	F 0.54	G H I J K MLE Sd (bias corrected)	0.746
52				
	Gamm	a Kaplan-M	eier (KM) Statistics	
53 54	k hat (KM)	0.608	nu hat (KM)	21.87
-	Approximate Chi Square Value (21.87, α)	12.24	Adjusted Chi Square Value (21.87, β)	11.55
55	95% Gamma Approximate KM-UCL (use when n>=50)	0.964	95% Gamma Adjusted KM-UCL (use when n<50)	1.022
56				-
57	Gamma ROS	Statistics us	ing Imputed Non-Detects	
58			NDs with many tied observations at multiple DLs	
59	-		f detected data is small such as < 0.1	
60	-		to yield inflated values of UCLs and BTVs	
61			y be computed using gamma distribution on KM estimates	
62	Minimum	0.0097	Mean	0.526
63	Maximum	2.8	Median	0.292
64	SD	0.695	CV	1.322
65	k hat (MLE)	0.613	k star (bias corrected MLE)	0.548
66	Theta hat (MLE)	0.857	Theta star (bias corrected MLE)	0.959
67	nu hat (MLE)	22.07	nu star (bias corrected)	19.72
68	MLE Mean (bias corrected)	0.526	MLE Sd (bias corrected)	0.71
69			Adjusted Level of Significance (β)	0.0357
70	Approximate Chi Square Value (19.72, α)	10.65	Adjusted Chi Square Value (19.72, β)	10.01
71	95% Gamma Approximate UCL (use when n>=50)	0.974	95% Gamma Adjusted UCL (use when n<50)	1.035
72		0.071		
73	Lognormal GO	F Test on D	etected Observations Only	
74	Shapiro Wilk Test Statistic	0.939	Shapiro Wilk GOF Test	
75	5% Shapiro Wilk Critical Value	0.892	Detected Data appear Lognormal at 5% Significance Le	vel
76	Lilliefors Test Statistic	0.138	Lilliefors GOF Test	
77	5% Lilliefors Critical Value	0.215	Detected Data appear Lognormal at 5% Significance Le	vel
78			mal at 5% Significance Level	-
79				
80	Lognormal ROS	S Statistics I	Jsing Imputed Non-Detects	
81 82	Mean in Original Scale	0.52	Mean in Log Scale	-1.671
83	SD in Original Scale	0.697	SD in Log Scale	1.695
	95% t UCL (assumes normality of ROS data)	0.806	95% Percentile Bootstrap UCL	0.814
84 85	95% BCA Bootstrap UCL	0.899	95% Bootstrap t UCL	0.966
86	95% H-UCL (Log ROS)	3.727	· · ·	
87				
88	UCLs using Lognormal Distribution and	KM Estimat	es when Detected data are Lognormally Distributed	
89	KM Mean (logged)	-1.671	95% H-UCL (KM -Log)	3.727
90	KM SD (logged)	1.695	95% Critical H Value (KM-Log)	3.77
90 91	KM Standard Error of Mean (logged)	0.424		
91				
92 93		DL/2 St	atistics	
93 94	DL/2 Normal		DL/2 Log-Transformed	
94 95	Mean in Original Scale	0.815	Mean in Log Scale	-1.484
96	SD in Original Scale	1.359	SD in Log Scale	1.873
90	95% t UCL (Assumes normality)	1.372	95% H-Stat UCL	8.372
97	· · · · · · · · · · · · · · · · · · ·		led for comparisons and historical reasons	
99		-		
99 100	Nonparame	tric Distribu	tion Free UCL Statistics	
100	F			

	А	В	С	D	E	F	G	Н		J	K	L
101				Detected	Data appea	r Gamma Di	stributed at	5% Significa	nce Level			
102												
103						Suggested	UCL to Use					
104			95	% KM (Cheb	yshev) UCL	1.294			95% GRO	S Adjusted C	Gamma UCL	1.035
105			95% Ad	ljusted Gam	ma KM-UCL	1.022						
106												
107		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	lp the user to	select the m	nost appropria	ate 95% UCL	
108			R	ecommenda	tions are bas	sed upon dat	a size, data	distribution, a	and skewnes	S.		
109		These record	mmendations	are based u	pon the resu	Its of the sim	nulation studi	es summariz	ed in Singh,	Maichle, and	d Lee (2006).	
110	Ho	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additic	onal insight th	ne user may	want to cons	ult a statistici	an.
111												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options	i			
4	Date/Time of Computation	1/9/2016 2:39:46 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	Naphthalene				
11					
12			General	Statistics	
13	Total	Number of Observations	27	Number of Distinct Observations	24
14				Number of Missing Observations	60
15		Number of Detects	21	Number of Non-Detects	6
16	Ν	umber of Distinct Detects	20	Number of Distinct Non-Detects	6
17		Minimum Detect	0.0056	Minimum Non-Detect	0.0062
18		Maximum Detect	51	Maximum Non-Detect	9.3
19		Variance Detects	120	Percent Non-Detects	22.22%
20		Mean Detects	3.598	SD Detects	10.96
21		Median Detects	0.49	CV Detects	3.045
22		Skewness Detects	4.455	Kurtosis Detects	20.17
23		Mean of Logged Detects	-0.932	SD of Logged Detects	2.399
24					
25		Norm	al GOF Tes	t on Detects Only	
26	S	Shapiro Wilk Test Statistic	0.328	Shapiro Wilk GOF Test	
27	5% S	hapiro Wilk Critical Value	0.908	Detected Data Not Normal at 5% Significance Level	
28		Lilliefors Test Statistic	0.412	Lilliefors GOF Test	
29	5	% Lilliefors Critical Value	0.193	Detected Data Not Normal at 5% Significance Level	
30		Detected Data	a Not Norma	I at 5% Significance Level	
31					
32	Kaplan-	Meier (KM) Statistics usir	ng Normal C	critical Values and other Nonparametric UCLs	
33		Mean	2.903	Standard Error of Mean	1.881
34		SD	9.53	95% KM (BCA) UCL	6.925
35		95% KM (t) UCL	6.112	95% KM (Percentile Bootstrap) UCL	6.599
36		95% KM (z) UCL	5.997	95% KM Bootstrap t UCL	20.63
37		90% KM Chebyshev UCL	8.547	95% KM Chebyshev UCL	11.1
38	97	.5% KM Chebyshev UCL	14.65	99% KM Chebyshev UCL	21.62
39				1	
40		Gamma GOF	Tests on De	etected Observations Only	
41		A-D Test Statistic	0.979	Anderson-Darling GOF Test	
42		5% A-D Critical Value	0.844	Detected Data Not Gamma Distributed at 5% Significance	Level
43		K-S Test Statistic	0.181	Kolmogrov-Smirnoff GOF	
44		5% K-S Critical Value	0.205	Detected data appear Gamma Distributed at 5% Significance	e Level
45		Detected data follow Ap	pr. Gamma	Distribution at 5% Significance Level	
46					
40		Gamma	Statistics or	n Detected Data Only	
47		k hat (MLE)	0.31	k star (bias corrected MLE)	0.297
49		Theta hat (MLE)	11.61	Theta star (bias corrected MLE)	12.1
50		nu hat (MLE)	13.02	nu star (bias corrected)	12.49
50		· /		(,	

r r		F		
51	A B C D E MLE Mean (bias corrected)	F 3.598	G H I J K MLE Sd (bias corrected)	6.598
52				
52	Gamma	a Kaplan-Mo	eier (KM) Statistics	
53 54	k hat (KM)	0.0928	nu hat (KM)	5.01
54 55	Approximate Chi Square Value $(5.01, \alpha)$	1.157	Adjusted Chi Square Value (5.01, β)	1.045
	95% Gamma Approximate KM-UCL (use when n>=50)	12.57	95% Gamma Adjusted KM-UCL (use when n<50)	13.92
56			sed when k hat (KM) is < 0.1	
57		-,		
58	Gamma ROS	Statistics us	ing Imputed Non-Detects	
59			NDs with many tied observations at multiple DLs	
60	-		f detected data is small such as < 0.1	
61	-		to yield inflated values of UCLs and BTVs	
62			y be computed using gamma distribution on KM estimates	
63	Minimum	0.0056	Mean	2.801
64	Maximum	51	Median	0.13
65	SD	9.729	CV	3.473
66	k hat (MLE)	0.255	k star (bias corrected MLE)	0.251
67	Theta hat (MLE)	10.99	Theta star (bias corrected MLE)	11.15
68	nu hat (MLE)	13.76	nu star (bias corrected)	13.57
69	MLE Mean (bias corrected)	2.801	MLE Sd (bias corrected)	5.588
70		2.001	Adjusted Level of Significance (β)	0.0401
71	Approximate Chi Square Value (13.57, α)	6.275	Adjusted Chi Square Value (13.57, β)	5.959
72	95% Gamma Approximate UCL (use when n>=50)	6.055	95% Gamma Adjusted UCL (use when n<50)	6.376
73		0.000		0.570
74	Da lemona G	F Test on D	etected Observations Only	
75	Shapiro Wilk Test Statistic	0.959	Shapiro Wilk GOF Test	
76	5% Shapiro Wilk Critical Value	0.908	Detected Data appear Lognormal at 5% Significance Le	
77	Lilliefors Test Statistic	0.143	Lilliefors GOF Test	
78	5% Lilliefors Critical Value	0.143	Detected Data appear Lognormal at 5% Significance Le	
79			mal at 5% Significance Level	
80		pour Logilo		
81	l ognormal BOS	Statistics I	Jsing Imputed Non-Detects	
82	Mean in Original Scale	2.821	Mean in Log Scale	-1.404
83	SD in Original Scale	9.723	SD in Log Scale	2.391
84	95% t UCL (assumes normality of ROS data)	6.012	95% Percentile Bootstrap UCL	6.501
85	95% BCA Bootstrap UCL	8.514	95% Bootstrap t UCL	21.4
86	95% H-UCL (Log ROS)	38.74		
87				
88 80	UCLs using Lognormal Distribution and	KM Estimat	es when Detected data are Lognormally Distributed	
89	KM Mean (logged)	-1.444	95% H-UCL (KM -Log)	63.29
90	KM SD (logged)	2.517	95% Critical H Value (KM-Log)	4.911
91	KM Standard Error of Mean (logged)	0.525		
92				
93		DL/2 St	atistics	
94 05	DL/2 Normal		DL/2 Log-Transformed	
95	Mean in Original Scale	3.157	Mean in Log Scale	-1.089
96	SD in Original Scale	9.685	SD in Log Scale	2.535
97	95% t UCL (Assumes normality)	6.337	95% H-Stat UCL	97.77
98	, , , , , , , , , , , , , , , , , , ,		led for comparisons and historical reasons	
99				
100				

	А	В	С	D	E	F	G	Н	I	J	K	L
101					Nonparame	etric Distribu	tion Free UC	L Statistics				
102			Dete	ected Data a	appear Appro	oximate Gar	nma Distribu	ted at 5% Si	gnificance L	evel		
103												
104						Suggested	UCL to Use					
105			959	% KM (Cheb	yshev) UCL	11.1			95% GRO	S Adjusted C	Gamma UCL	6.376
106			95% Ad	justed Gam	ma KM-UCL	13.92						
107												
108		Note: Sugges	stions regardi	ng the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropria	ate 95% UC	
109			R	ecommenda	tions are ba	sed upon dat	ta size, data o	distribution, a	and skewnes	S.		
110		These recor	nmendations	are based u	ipon the resu	Its of the sin	nulation studi	es summariz	ed in Singh,	Maichle, and	l Lee (2006)	•
111	Н	lowever, simul	lations results	s will not cov	er all Real V	Vorld data se	ts; for additio	onal insight th	ie user may	want to cons	ult a statistic	ian.
112												

	A B C	D E	F	G H I J K	L
1		UCL Statist	tics for Data	Sets with Non-Detects	
2		1			
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:40:32 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9	D. H. H. S. S. S.				
10	n-Butylbenzene				
11			Conorol	Statistics	
12	Total	Number of Observations	20	Number of Distinct Observations	20
13	10(3)	Number of Observations	20	Number of Distinct Observations	67
14		Number of Detects	17	Number of Missing Observations	3
15	N	umber of Distinct Detects	17	Number of Distinct Non-Detects	3
16		Minimum Detect	0.0011	Minimum Non-Detect	0.025
17		Minimum Detect Maximum Detect	3.4	Minimum Non-Detect Maximum Non-Detect	2.5
18		Variance Detects	0.668	Percent Non-Detects	15%
19		Mean Detects	0.008	SD Detects	0.817
20		Median Detects	0.477	CV Detects	1.712
21		Skewness Detects	3.162	Kurtosis Detects	11.33
22			-2.194		2.163
23		Mean of Logged Detects	-2.194	SD of Logged Detects	2.103
24		Norm	al GOF Tes	t on Detects Only	
25	9	Shapiro Wilk Test Statistic	0.587	Shapiro Wilk GOF Test	
26		hapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level	
27		Lilliefors Test Statistic	0.28	Lilliefors GOF Test	
28	5	5% Lilliefors Critical Value	0.215	Detected Data Not Normal at 5% Significance Level	
29 30			Not Norma	I at 5% Significance Level	
31				•	
32	Kaplan-	Meier (KM) Statistics usir	ng Normal C	critical Values and other Nonparametric UCLs	
33		Mean	0.427	Standard Error of Mean	0.173
34		SD	0.746	95% KM (BCA) UCL	0.776
35		95% KM (t) UCL	0.726	95% KM (Percentile Bootstrap) UCL	0.756
36		95% KM (z) UCL	0.712	95% KM Bootstrap t UCL	1.085
37		90% KM Chebyshev UCL	0.946	95% KM Chebyshev UCL	1.182
38	97	7.5% KM Chebyshev UCL	1.508	99% KM Chebyshev UCL	2.15
39				1	
40		Gamma GOF	Tests on De	etected Observations Only	
41		A-D Test Statistic	0.393	Anderson-Darling GOF Test	
42		5% A-D Critical Value	0.81	Detected data appear Gamma Distributed at 5% Significanc	e Level
43		K-S Test Statistic	0.14	Kolmogrov-Smirnoff GOF	
44		5% K-S Critical Value	0.223	Detected data appear Gamma Distributed at 5% Significanc	e Level
45		Detected data appear	Gamma Di	stributed at 5% Significance Level	
46					
47		Gamma	Statistics or	n Detected Data Only	
		k hat (MLE)	0.445	k star (bias corrected MLE)	0.405
48					
48 49		Theta hat (MLE)	1.073	Theta star (bias corrected MLE)	1.177

	A B C D E	F	G	Н	1	JK	
51	MLE Mean (bias corrected)	г 0.477	G	Π	I	MLE Sd (bias corrected)	0.75
52							
53	Gamm	a Kaplan-Me	eier (KM) Sta	atistics			
54	k hat (KM)	0.327				nu hat (KM)	13.07
55	Approximate Chi Square Value (13.07, α)	5.939			Adjusted Ch	i Square Value (13.07, β)	5.562
56	95% Gamma Approximate KM-UCL (use when n>=50)	0.939		95% Gamma	a Adjusted k	(M-UCL (use when n<50)	1.003
57							
58	Gamma ROS	Statistics us	ing Imputed	Non-Detec	ts		
59	GROS may not be used when data se	et has > 50%	NDs with ma	any tied obse	ervations at	multiple DLs	
60	GROS may not be used v	when kstar o	f detected da	ata is small s	uch as < 0.1		
61	For such situations, GROS m	ethod tends	to yield inflat	ed values of	UCLs and E	BTVs	
62	For gamma distributed detected data, BTVs a	nd UCLs ma	y be compute	ed using gan	nma distribu	tion on KM estimates	
63	Minimum	0.0011				Mean	0.411
64	Maximum	3.4				Median	0.0824
65	SD	0.767				CV	1.865
66	k hat (MLE)	0.419			k	star (bias corrected MLE)	0.39
67	Theta hat (MLE)	0.981			Theta	star (bias corrected MLE)	1.055
68	nu hat (MLE)	16.78				nu star (bias corrected)	15.59
69	MLE Mean (bias corrected)	0.411				MLE Sd (bias corrected)	0.659
70					Adjusted	Level of Significance (β)	0.038
71	Approximate Chi Square Value (15.59, α)	7.676			Adjusted Ch	i Square Value (15.59, β)	7.239
72	95% Gamma Approximate UCL (use when n>=50)	0.836		95% Ga	mma Adjust	ed UCL (use when n<50)	0.886
73							
74	Lognormal GO	F Test on D	etected Obs	ervations Or	nly		
75	Shapiro Wilk Test Statistic	0.949			Shapiro Wi	lk GOF Test	
76	5% Shapiro Wilk Critical Value	0.892	Dete	ected Data ap	opear Logno	ormal at 5% Significance Le	evel
77	Lilliefors Test Statistic	0.176			Lilliefors	GOF Test	
78	5% Lilliefors Critical Value	0.215	Dete	ected Data ap	opear Logno	ormal at 5% Significance Le	evel
79	Detected Data ap	pear Lognoi	rmal at 5% S	ignificance l	Level		
80							
81	Lognormal ROS	S Statistics l	Jsing Impute	ed Non-Dete	cts		
82	Mean in Original Scale	0.412				Mean in Log Scale	-2.393
83	SD in Original Scale	0.767				SD in Log Scale	2.078
84	95% t UCL (assumes normality of ROS data)	0.709			95%	Percentile Bootstrap UCL	0.719
85	95% BCA Bootstrap UCL	0.909				95% Bootstrap t UCL	1.108
86	95% H-UCL (Log ROS)	6.592					
87							
88	UCLs using Lognormal Distribution and		es when Det	tected data a	are Lognorn	-	
89	KM Mean (logged)	-2.412				95% H-UCL (KM -Log)	8.652
90	KM SD (logged)	2.15			95% (Critical H Value (KM-Log)	4.578
91	KM Standard Error of Mean (logged)	0.523					
92							
93		DL/2 St	tatistics				
94	DL/2 Normal				DL/2 Log-1	Fransformed	
95	Mean in Original Scale	0.483				Mean in Log Scale	-2.136
96	SD in Original Scale	0.779				SD in Log Scale	2.131
97	95% t UCL (Assumes normality)	0.784				95% H-Stat UCL	10.53
98	DL/2 is not a recommended me	ethod, provid	led for comp	arisons and	historical re	easons	
90							
99 99			tion Free UC				

	А	В	С	D	Е	F	G	Н		J	K	L
101				Detected	Data appea	r Gamma Di	stributed at	5% Significa	nce Level			
102												
103						Suggested	UCL to Use					
104			95	% KM (Cheb	yshev) UCL	1.182			95% GRO	S Adjusted C	Gamma UCL	0.886
105			95% Ad	ljusted Gam	ma KM-UCL	1.003						
106												
107		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	lp the user to	select the m	lost appropria	ate 95% UCL	
108			R	ecommenda	tions are bas	sed upon dat	a size, data	distribution, a	and skewnes	s.		
109		These recor	mmendations	are based u	pon the resu	Its of the sim	nulation studi	ies summariz	ed in Singh,	Maichle, and	d Lee (2006).	
110	Ho	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistic	ian.
111												

	A B C	D E	F	G H I J K	L
1		UCL Statist	ics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:41:20 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	n-Propylbenzene				
11					
12				Statistics	
13	Total	Number of Observations	22	Number of Distinct Observations	22
14				Number of Missing Observations	65
15		Number of Detects	16	Number of Non-Detects	6
16	Ν	umber of Distinct Detects	16	Number of Distinct Non-Detects	6
17		Minimum Detect	0.013	Minimum Non-Detect	0.0036
18		Maximum Detect	1.9	Maximum Non-Detect	2.6
19		Variance Detects	0.348	Percent Non-Detects	27.27%
20		Mean Detects	0.53	SD Detects	0.59
21		Median Detects	0.335	CV Detects	1.113
22		Skewness Detects	1.132	Kurtosis Detects	0.633
23		Mean of Logged Detects	-1.612	SD of Logged Detects	1.694
24		· · · ·			
25			al GOF Tes	t on Detects Only	
26	S	hapiro Wilk Test Statistic	0.823	Shapiro Wilk GOF Test	
27	5% S	hapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level	
28		Lilliefors Test Statistic	0.227	Lilliefors GOF Test	
29	5	% Lilliefors Critical Value	0.222	Detected Data Not Normal at 5% Significance Level	
30		Detected Data	Not Norma	I at 5% Significance Level	
31					
32	Kaplan-	Meier (KM) Statistics usir	-	critical Values and other Nonparametric UCLs	
33		Mean	0.419	Standard Error of Mean	0.124
34		SD	0.545	95% KM (BCA) UCL	0.633
35		95% KM (t) UCL	0.633	95% KM (Percentile Bootstrap) UCL	0.621
36		95% KM (z) UCL	0.623	95% KM Bootstrap t UCL	0.697
37		90% KM Chebyshev UCL	0.791	95% KM Chebyshev UCL	0.96
38	97	.5% KM Chebyshev UCL	1.194	99% KM Chebyshev UCL	1.653
39					
40				etected Observations Only	
41		A-D Test Statistic	0.775	Anderson-Darling GOF Test	
42		5% A-D Critical Value	0.785	Detected data appear Gamma Distributed at 5% Significance	e Level
43		K-S Test Statistic	0.24	Kolmogrov-Smirnoff GOF	
44		5% K-S Critical Value	0.225	Detected Data Not Gamma Distributed at 5% Significance	Level
45		Detected data follow App	or. Gamma	Distribution at 5% Significance Level	
46					
47				n Detected Data Only	
48		k hat (MLE)	0.628	k star (bias corrected MLE)	0.552
49		Theta hat (MLE)	0.844	Theta star (bias corrected MLE)	0.961
50		nu hat (MLE)	20.09	nu star (bias corrected)	17.66

	A B C D E	F	G	Н	1	JK	
51	MLE Mean (bias corrected)	0.53	G	11	I	MLE Sd (bias corrected) 0.714
52							
53	Gamma	a Kaplan-M	eier (KM) Stat	istics			
54	k hat (KM)	0.592				nu hat (KN) 26.03
55	Approximate Chi Square Value (26.03, α)	15.41		/	Adjusted Ch	i Square Value (26.03, ß) 14.8
56	95% Gamma Approximate KM-UCL (use when n>=50)	0.708	9	5% Gamma	a Adjusted k	M-UCL (use when n<50) 0.737
57							
58	Gamma ROS	Statistics us	sing Imputed	Non-Detect	ts		
59	GROS may not be used when data se	et has > 50%	6 NDs with ma	ny tied obse	ervations at	multiple DLs	
60	GROS may not be used v	when kstar c	of detected dat	a is small s	uch as < 0.1		
61	For such situations, GROS m	ethod tends	to yield inflate	d values of	UCLs and E	BTVs	
62	For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed	d using gan	nma distribu	tion on KM estimates	
63	Minimum	0.01				Mea	n 0.404
64	Maximum	1.9				Media	n 0.108
65	SD	0.543				C'	/ 1.344
66	k hat (MLE)	0.504			k	star (bias corrected MLE) 0.466
67	Theta hat (MLE)	0.802			Theta	star (bias corrected MLE) 0.868
68	nu hat (MLE)	22.18				nu star (bias corrected) 20.49
69	MLE Mean (bias corrected)	0.404				MLE Sd (bias corrected) 0.592
70					Adjusted	Level of Significance (f) 0.0386
70	Approximate Chi Square Value (20.49, α)	11.21			Adjusted Ch	i Square Value (20.49, f) 10.7
72	95% Gamma Approximate UCL (use when n>=50)	0.739		95% Ga	mma Adjust	ed UCL (use when n<50) 0.774
73							·
74	Lognormal GO	F Test on D	etected Obse	rvations Or	nly		
75	Shapiro Wilk Test Statistic	0.888			Shapiro Wi	lk GOF Test	
76	5% Shapiro Wilk Critical Value	0.887	Detec	ted Data ap	opear Logno	rmal at 5% Significance	Level
77	Lilliefors Test Statistic	0.213			Lilliefors	GOF Test	
78	5% Lilliefors Critical Value	0.222	Detec	ted Data ap	opear Logno	rmal at 5% Significance	Level
79	Detected Data ap	pear Logno	rmal at 5% Sig	gnificance l	_evel		
80							
81	Lognormal ROS	S Statistics	Using Imputed	I Non-Dete	cts		
82	Mean in Original Scale	0.396				Mean in Log Scal	e -2.257
83	SD in Original Scale	0.548				SD in Log Scal	e 1.902
84	95% t UCL (assumes normality of ROS data)	0.597			95% I	Percentile Bootstrap UC	0.594
85	95% BCA Bootstrap UCL	0.629				95% Bootstrap t UC	0.685
86	95% H-UCL (Log ROS)	3.378					
87			1				1
88	UCLs using Lognormal Distribution and	KM Estimat	tes when Dete	cted data a	are Lognorm	ally Distributed	
89	KM Mean (logged)	-2.295				95% H-UCL (KM -Log) 4.779
90	KM SD (logged)	2.009			95% (Critical H Value (KM-Log) 4.201
91	KM Standard Error of Mean (logged)	0.471					
92							1
93		DL/2 S	tatistics				
94	DL/2 Normal				DL/2 Log-1	ransformed	
95	Mean in Original Scale	0.469				Mean in Log Scal	e -2.066
96	SD in Original Scale	0.57				SD in Log Scal	e 2.036
97	95% t UCL (Assumes normality)	0.678				95% H-Stat UC	6.655
98	DL/2 is not a recommended me	thod, provid	ded for compa	risons and	historical re	asons	1
99							
100	Nonparame	tric Distribu	tion Free UCL	. Statistics			
100	•						

	А	В	С	D	Е	F	G	Н		J	K	L
101			Det	ected Data a	ppear Appro	oximate Gan	nma Distribu	ited at 5% Si	gnificance L	evel		
102												
103						Suggested	UCL to Use					
104			95	% KM (Cheb	yshev) UCL	0.96			95% GRO	S Adjusted C	Gamma UCL	0.774
105			95% Ad	ljusted Gam	ma KM-UCL	0.737						
106												
107		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	lp the user to	select the m	iost appropria	ate 95% UCL	
108			R	ecommenda	tions are bas	sed upon dat	a size, data	distribution, a	and skewnes	S.		
109		These record	mmendations	are based u	pon the resu	Its of the sim	nulation studi	ies summariz	ed in Singh,	Maichle, and	d Lee (2006).	
110	Ho	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistici	an.
111												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2		-			
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:42:08 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	. Walawa				
11	o-Xylene				
12			Conoral	Chaniching.	
13	Tatal	Number of Observations	10	Statistics Number of Distinct Observations	10
14	Iotai	Number of Observations	10		77
15		D dia inc	0.005	Number of Missing Observations	
16		Minimum		Mean	0.579
17		Maximum	5.1	Median	0.0325
18		SD	1.592	Std. Error of Mean	0.503
19		Coefficient of Variation	2.75	Skewness	3.14
20			Normal	GOF Test	
21		haming Wills Tast Statistic	0.414		
22		hapiro Wilk Test Statistic hapiro Wilk Critical Value	0.414	Shapiro Wilk GOF Test	
23	5% 5	Lilliefors Test Statistic	0.842	Data Not Normal at 5% Significance Level Lilliefors GOF Test	
24	5	% Lilliefors Critical Value	0.477	Data Not Normal at 5% Significance Level	
25	5			Significance Level	
26					
27		Δο	sumina Nor	nal Distribution	
28	95% N	ormal UCL		95% UCLs (Adjusted for Skewness)	
29	00,011	95% Student's-t UCL	1.501	95% Adjusted-CLT UCL (Chen-1995)	1.941
30			1.001	95% Modified-t UCL (Johnson-1978)	1.585
31					
32			Gamma	GOF Test	
33		A-D Test Statistic	1.174	Anderson-Darling Gamma GOF Test	
34 35		5% A-D Critical Value	0.825	Data Not Gamma Distributed at 5% Significance Leve	
36		K-S Test Statistic	0.284	Kolmogrov-Smirnoff Gamma GOF Test	
30		5% K-S Critical Value	0.29	Detected data appear Gamma Distributed at 5% Significanc	e Level
37		Detected data follow Ap	or. Gamma	Distribution at 5% Significance Level	
30 39					
39 40			Gamma	Statistics	
40		k hat (MLE)	0.272	k star (bias corrected MLE)	0.257
41		Theta hat (MLE)	2.128	Theta star (bias corrected MLE)	2.252
42		nu hat (MLE)	5.439	nu star (bias corrected)	5.141
43	М	LE Mean (bias corrected)	0.579	MLE Sd (bias corrected)	1.142
45				Approximate Chi Square Value (0.05)	1.218
46	Adjus	sted Level of Significance	0.0267	Adjusted Chi Square Value	0.921
47					
47		Ass	suming Gam	ma Distribution	
40	95% Approximate Gamm		2.443	95% Adjusted Gamma UCL (use when n<50)	3.23
49 50					
50					

	A	В	С	D	E	F	G	Н		J	K		L
51						Lognorma	I GOF Test						
52			Sł	napiro Wilk	Test Statistic	0.88		Shap	iro Wilk Log	normal GO	F Test		
53			5% Sh	apiro Wilk (Critical Value	0.842		Data appea	r Lognormal	at 5% Signif	ficance Le	evel	
54				Lilliefors	Test Statistic	0.19		Lill	iefors Logno	ormal GOF	Test		
55			59	% Lilliefors (Critical Value	0.28		Data appea	r Lognormal	at 5% Signif	ficance Le	evel	
56					Data appear	Lognormal	at 5% Signif	icance Leve					
57													
58						Lognorma	al Statistics						
59			Ν	/linimum of	Logged Data	-5.298				Mean of	flogged D	ata	-3.123
60			N	laximum of	Logged Data	1.629				SD of	flogged D	ata	2.277
61													
62					Assu	ming Logno	ormal Distrib	ution					
63					95% H-UCL	58.8			90%	Chebyshev	(MVUE) U	JCL	1.014
64			95% (Chebyshev ((MVUE) UCL	1.328			97.5%	Chebyshev	(MVUE) U	JCL	1.764
65			99% (Chebyshev ((MVUE) UCL	2.62							
66													
00													
67					Nonparame	tric Distribu	tion Free UC	L Statistics					
				Data appea	Nonparame ar to follow a [cance Leve				
67				Data appea					cance Leve	l			
67 68				Data appea	ar to follow a [Discernible		at 5% Signifi	cance Leve	1			
67 68 69					ar to follow a [Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife U	JCL	1.501
67 68 69 70				95	ar to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi	cance Leve	95% Ja	ackknife U otstrap-t U	-	
67 68 69 70 71			95%	99 Standard Bo	nr to follow a I Nonpar	Discernible ametric Dis 1.407	Distribution a	at 5% Signifi		95% Ja	otstrap-t U	JCL	12.04
67 68 69 70 71 72 73			95% s 95	99 Standard Bo 5% Hall's Bo	Nonpar 5% CLT UCL	Discernible ametric Dis 1.407 1.382	Distribution a	at 5% Signifi		95% Ja 95% Boo	otstrap-t U	JCL	12.04
67 68 69 70 71 72			95% - 95 95	99 Standard Bo 5% Hall's Bo 5% BCA Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible ametric Dis 1.407 1.382 10.27	Distribution a	at 5% Signifi	95%	95% Ja 95% Boo	otstrap-t U ootstrap U	ICL	12.04 1.566
67 68 69 70 71 72 73 74			95% : 9! 9 90% Che	99 Standard Bo 5% Hall's Bo 55% BCA Bo sbyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U ean, Sd) U	ICL ICL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75			95% : 9! 9 90% Che	99 Standard Bo 5% Hall's Bo 55% BCA Bo sbyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	ICL ICL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76			95% 5 95 95 90% Che	99 Standard Bo 5% Hall's Bo 55% BCA Bo sbyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	ICL ICL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76 77 78			95% 9 9! 90% Che 97.5% Che	99 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	ICL ICL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76 77			95% 9 9! 90% Che 97.5% Che	99 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722 Suggested	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	ICL ICL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76 77 78 79	1	Note: Sugges	95% 9 99 90% Che 97.5% Che 95%	99 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722 Suggested 3.23	UCL to Use	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U	JCL JCL JCL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76 77 78 79 80	1		95% - 9! 90% Che 97.5% Che 95% 95%	99 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted o ng the select	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL gamma UCL	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722 Suggested 3.23 UCL are pr	UCL to Use	e UCLs	95% I 95% Ch 99% Ch select the m	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U iate 95% I	JCL JCL JCL JCL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	1		95% 90% Che 97.5% Che 95% stions regardi	99 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the select s are based	Ar to follow a D Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL Dan, Sd) UCL Canno d a 95%	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722 Suggested 3.23 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel imulation stud	e UCLs	95% I 95% Ch 99% Ch 99% Ch	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me rebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U iate 95% I	JCL JCL JCL JCL	12.04 1.566 2.773
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	1		95% 90% Che 97.5% Che 95% stions regardi	99 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me 6 Adjusted 0 ng the seleo s are based and Singh (2	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL ction of a 95% upon the rest	Discernible ametric Dis 1.407 1.382 10.27 2.102 2.089 3.722 Suggested 3.23 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs UCLs p the user to dies summar	95% I 95% Ch 99% Ch select the m ized in Singl	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me rebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U iate 95% I	JCL JCL JCL JCL	1.501 12.04 1.566 2.773 5.587

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:42:51 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	p-Isopropyltoluene				
12			Conoral	Chanichian	
13	Tatal	Number of Observations	22	Statistics Number of Distinct Observations	20
14	lotai	Number of Observations	22		20
15		N dia income	0.0027	Number of Missing Observations	65 0.573
16		Minimum		Mean	
17		Maximum	2.2 0.71	Median	0.285
18		SD		Std. Error of Mean	
19		Coefficient of Variation	1.238	Skewness	1.191
20			N a mar a l d		
21					
22		hapiro Wilk Test Statistic	0.791	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.911	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.225	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.189	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27					
28	05%)		suming Nori	nal Distribution	
29	95% No	ormal UCL	0.004	95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	0.834	95% Adjusted-CLT UCL (Chen-1995)	0.863
31				95% Modified-t UCL (Johnson-1978)	0.84
32					
33					
34		A-D Test Statistic	0.698	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.814	Detected data appear Gamma Distributed at 5% Significance	e Level
36		K-S Test Statistic	0.2	Kolmogrov-Smirnoff Gamma GOF Test	1
37		5% K-S Critical Value	0.197	Data Not Gamma Distributed at 5% Significance Level	
38		Detected data follow App	or. Gamma	Distribution at 5% Significance Level	
39			0	Statistics	
40				Statistics	0.400
41		k hat (MLE)	0.454	k star (bias corrected MLE)	0.423
42		Theta hat (MLE)	1.262	Theta star (bias corrected MLE)	1.357
43		nu hat (MLE)	19.99	nu star (bias corrected)	18.6
44	M	LE Mean (bias corrected)	0.573	MLE Sd (bias corrected)	0.882
45	A 11	ted Level - f O' 'f'	0.0000	Approximate Chi Square Value (0.05)	9.824
46	Adjus	sted Level of Significance	0.0386	Adjusted Chi Square Value	9.349
47				Distribution	
48					
	u Shy Approximate Gamm	a UCL (use when n>=50)	1.085	95% Adjusted Gamma UCL (use when n<50)	1.141
49			1.000		1.141

	A	В	C	D	E	F	G	Н		J	K		L
51						Lognorma	I GOF Test						
52			Sł	napiro Wilk	Test Statistic	0.912		Shap	oiro Wilk Log	normal GO	F Test		
53			5% Sh	apiro Wilk (Critical Value	0.911		Data appea	r Lognormal	at 5% Signi	ficance Le	vel	
54				Lilliefors	Test Statistic	0.192		Lill	liefors Logn	ormal GOF	Test		
55			5%	% Lilliefors (Critical Value	0.189	0.189 Data Not Lognormal at 5% Significance Level						
56				Data a	appear Approx	kimate Logr	normal at 5%	Significanc	e Level				
57													
58						Lognorma	I Statistics						
59			Ν	Minimum of	Logged Data	-5.915					flogged D		-1.975
60			Μ	laximum of	Logged Data	0.788				SD of	flogged D	ata	2.16
61													
62							ormal Distrib	ution					
63					95% H-UCL	11.74				Chebyshev	,		2.966
64				-	(MVUE) UCL	3.821			97.5%	Chebyshev	(MVUE) U	CL	5.007
65			99% C	Chebyshev ((MVUE) UCL	7.338							
66													
67					-		tion Free UC						
				Data appea	Nonparame ar to follow a [icance Leve	I			
67				Data appea	ar to follow a [Discernible	Distribution a	at 5% Signifi	icance Leve				
67 68					ar to follow a I Nonpar	Discernible ametric Dis		at 5% Signifi	cance Leve				
67 68 69				95	nr to follow a I Nonpar	Discernible	Distribution a	at 5% Signifi	icance Leve		ackknife U	CL	
67 68 69 70			95% \$	99 Standard Bo	Nonpar 5% CLT UCL	Discernible ametric Dis	Distribution a	at 5% Signifi		95% Ja 95% Boo	otstrap-t U	CL	
67 68 69 70 71			95% \$	99 Standard Bo	nr to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi		95% Ja	otstrap-t U	CL	0.898
67 68 69 70 71 72			95% \$ 95 95	98 Standard Bo 5% Hall's Bo 95% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854	Distribution a	at 5% Signifi	95%	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U	CL	0.898
67 68 69 70 71 72 73			95% 5 95 9 90% Che	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027	Distribution a	at 5% Signifi	95% I 95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	0.898
67 68 69 70 71 72 73 74			95% 5 95 9 90% Che	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854	Distribution a	at 5% Signifi	95% I 95% Cr	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	0.898 0.835 1.233
67 68 69 70 71 72 73 74 75			95% 5 95 9 90% Che	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518	Distribution a	at 5% Signifi	95% I 95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	0.898
67 68 69 70 71 72 73 74 75 76			95% 5 95 90% Che 97.5% Che	99 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518 Suggested	Distribution a	at 5% Signifi	95% I 95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	0.898
67 68 69 70 71 72 73 74 75 76 77			95% 5 95 90% Che 97.5% Che	99 Standard Bo 5% Hall's Bo 95% BCA Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518	Distribution a	at 5% Signifi	95% I 95% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL CL	0.898
67 68 69 70 71 72 73 74 75 76 77 78 79			95% 9 99 90% Che 97.5% Che 95%	99 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me 80 80 80 80 80 80 80 80 80 80 80 80 80	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518 Suggested 1.141	UCL to Use	e UCLs	95% I 95% Cr 99% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U	CL CL CL CL	0.898
67 68 69 70 71 72 73 74 75 76 77 78			95% 3 95 90% Che 97.5% Che 95% 95%	93 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me % Adjusted o ing the select	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL Dan, Sd) UCL Gamma UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518 Suggested 1.141 UCL are pr	UCL to Use	e UCLs	95% I 95% Cr 99% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL.	0.898
67 68 69 70 71 72 73 74 75 76 77 78 79 80			95% stions regardi	99 Standard Bo 5% Hall's Bo 25% BCA BO 25% B	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL Ction of a 95% I upon the resi	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518 Suggested 1.141 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel mulation stud	e UCLs	95% I 95% Cr 99% Cr 99% Cr	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me rebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL.	0.898
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			95% stions regardi	99 Standard Bo 5% Hall's Bo 25% BCA BO 25% B	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL Dan, Sd) UCL Gamma UCL	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518 Suggested 1.141 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel mulation stud	e UCLs	95% I 95% Cr 99% Cr 99% Cr	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me rebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL.	0.898
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			95% stions regardi	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me % Adjusted 0 ing the select is are based and Singh (2)	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL Ction of a 95% I upon the resi	Discernible ametric Dis 0.822 0.817 0.843 0.854 1.027 1.518 Suggested 1.141 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel mulation stud ons results wi	e UCLs UCLs p the user to dies summar	95% I 95% Cr 99% Cr 99% Cr select the n ized in Singl all Real Worl	95% Ja 95% Boo Percentile Bo rebyshev(Me rebyshev(Me rebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL.	0.834 0.898 0.835 1.233 2.079

	A B C	D E	F	G H I J K	L
1		UCL Statist	ics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 2:43:38 PM			
5	From File	VOCs Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	sec-Butylbenzene				
12					
13			General		
14	lotal	Number of Observations	23	Number of Distinct Observations	22
15			0.0011	Number of Missing Observations	64
16		Minimum	0.0011	Mean	0.351
17		Maximum	1.4	Median	0.034
18		SD	0.449	Std. Error of Mean	0.0936
19		Coefficient of Variation	1.28	Skewness	1.182
20			Nemeral		
21			Normal C		
22		hapiro Wilk Test Statistic	0.772	Shapiro Wilk GOF Test	
23	5% 5	hapiro Wilk Critical Value	0.914	Data Not Normal at 5% Significance Level	
24	r	Lilliefors Test Statistic	0.282	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value		Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27		٨٥٩	uming Nor	nol Distribution	
28	05% N/	ormal UCL		nal Distribution 95% UCLs (Adjusted for Skewness)	
29	90 % NG	95% Student's-t UCL	0.511	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0.529
30		95% Student S-t UCL	0.511	95% Modified-t UCL (Johnson-1978)	0.529
31				33 % Wodified-t OCE (301113011-1378)	0.515
32			Gamma (
33		A-D Test Statistic	1.016	Anderson-Darling Gamma GOF Test	
34		5% A-D Critical Value	0.819	Data Not Gamma Distributed at 5% Significance Leve	1
35		K-S Test Statistic	0.242	Kolmogrov-Smirnoff Gamma GOF Test	1
36		5% K-S Critical Value	0.193	Data Not Gamma Distributed at 5% Significance Leve	
37				ed at 5% Significance Level	•
38					
39			Gamma	Statistics	
40		k hat (MLE)	0.438	k star (bias corrected MLE)	0.41
41		Theta hat (MLE)	0.801	Theta star (bias corrected MLE)	0.856
42		nu hat (MLE)	20.13	nu star (bias corrected)	18.84
43	M	LE Mean (bias corrected)	0.351	MLE Sd (bias corrected)	0.548
44		(Approximate Chi Square Value (0.05)	10
45	Adius	sted Level of Significance	0.0389	Adjusted Chi Square Value	9.535
46					
47		Ass	umina Gam	ma Distribution	
48	95% Approximate Gamma		0.661	95% Adjusted Gamma UCL (use when n<50)	0.693
49 50					1.000
50					

	A	В	С	D	E	F	G	Н		J	K		L
51							I GOF Test						
52				•	Test Statistic	0.914		-		gnormal GO			
53			5% Sh	apiro Wilk (Critical Value	0.914		Data appea	•	•		vel	
54				Lilliefors	Test Statistic	0.187		Lill	iefors Logn	ormal GOF	Test		
55			5%		Critical Value	0.185			-	t 5% Signific	ance Leve	el	
56				Data a	appear Approx	ximate Logr	normal at 5%	Significance	e Level				
57													
58						Lognorma	al Statistics						
59					Logged Data	-6.812				Mean of	logged D	ata	-2.53
60			М	laximum of	Logged Data	0.336				SD of	logged D	ata	2.152
61													
62					Assu	iming Logno	ormal Distrib	ution					
63					95% H-UCL	5.811			90%	Chebyshev	(MVUE) U	CL	1.678
64					MVUE) UCL	2.159			97.5%	Chebyshev	(MVUE) U	CL	2.826
65			99% C	Chebyshev (MVUE) UCL	4.137							
66													
67					Nonparame	tric Distribu	tion Free UC	L Statistics					
67 68				Data appea	Nonparame Ir to follow a [cance Leve	1			
68				Data appea	-				cance Leve	I			
68 69				Data appea	r to follow a [Discernible		at 5% Signifi	cance Leve	1			
68 69 70					r to follow a [Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife U	CL	0.511
68 69 70 71				95	r to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi	cance Leve	95% Ja	ackknife U otstrap-t U	_	
68 69 70 71 72			95% \$	95 Standard Bo	Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi		95% Ja	otstrap-t U	CL	0.541
68 69 70 71 72 73			95% s 95	95 Standard Bo 5% Hall's Bo	Nonpar	Discernible ametric Dis 0.504 0.495	Distribution a	at 5% Signifi	95%	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U	CL	0.541
			95% \$ 95 95	95 Standard Bo 5% Hall's Bo 5% BCA Bo	Nonpar Nonpar % CLT UCL potstrap UCL	Discernible ametric Dis 0.504 0.495 0.526	Distribution a	at 5% Signifi	95%	95% Ja 95% Bo	otstrap-t U ootstrap U	CL	0.541
68 69 70 71 72 73 74 75			95% 5 95 9 90% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U ean, Sd) U	CL CL	0.541
68 69 70 71 72 73 74 75 76			95% 5 95 9 90% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Bo Percentile B nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	0.541
68 69 70 71 72 73 74 75 76 77			95% 5 95 9 90% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL an, Sd) UCL an, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Bo Percentile B nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	0.541
68 69 70 71 72 73 74 75 76 77 78			95% \$ 95 90% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL an, Sd) UCL an, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Bo Percentile B nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	0.541
68 69 70 71 72 73 74 75 76 77 78 79			95% \$ 95 90% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935 Suggested	Distribution a	at 5% Signifi	95% Cr	95% Ja 95% Bo Percentile B nebyshev(Me	otstrap-t U ootstrap U ean, Sd) U	CL CL	0.541
68 69 70 71 72 73 74 75 76 77 78 79 80		Note: Sugges	95% \$ 95 90% Che 97.5% Che 97.5% Che	95 Standard Bo 5% Hall's Bo 5% BCA Bo 5% BCA Bo 5% BCA Bo 5% BCA Me byshev(Me byshev (Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935 Suggested 0.935	UCL to Use	e UCLs	95% Cr 95% Cr 99% Cr	95% Ja 95% Boo Percentile Bo nebyshev(Me nebyshev(Me	otstrap-t U potstrap U ean, Sd) U ean, Sd) U	CL CL CL CL	0.541
68 69 70 71 72 73 74 75 76 77 78 79 80 81			95% \$ 95 90% Che 97.5% Che 97.5% Che stions regardi	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me byshev (Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935 Suggested 0.935	UCL to Use	e UCLs	95% 95% Cr 99% Cr select the n	95% Ja 95% Bo Percentile Bo nebyshev(Me nebyshev(Me nebyshev(Me	otstrap-t U potstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL	0.541
68 69 70 71 72 73 74			95% s 95 90% Che 97.5% Che 97.5% Che stions regardi ommendation	95 Standard Bo 5% Hall's Bo 5% BCA Bo byshev(Me byshev(Me byshev (Me byshev (Me byshev (Me	Nonpar Nonpar 5% CLT UCL botstrap UCL botstrap UCL botstrap UCL an, Sd) UCL an, Sd) UCL an, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935 Suggested 0.935 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel imulation stud	e UCLs e UCLs p the user to dies summari	95% Cr 95% Cr 99% Cr select the n	95% Ja 95% Bo Percentile B nebyshev(Me nebyshev(Me nost appropr h, Singh, and	otstrap-t U potstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL	0.541
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			95% s 95 90% Che 97.5% Che 97.5% Che stions regardi ommendation	95 Standard Bo 5% Hall's Bo 5% BCA Bo ebyshev(Me ebyshev(Me byshev (Me byshev (Me s are based and Singh (2	Nonpar Nonpar % CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 0.504 0.495 0.526 0.521 0.631 0.935 Suggested 0.935 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs e UCLs p the user to dies summari Il not cover a	95% Cr 95% Cr 99% Cr select the n ized in Sing Il Real Worl	95% Ja 95% Bo Percentile B nebyshev(Me nebyshev(Me nost appropr h, Singh, and	otstrap-t U potstrap U ean, Sd) U ean, Sd) U ean, Sd) U	CL CL CL CL JCL	0.511 0.541 0.503 0.758 1.281

	A B C D E	F	G H I J K	L
1		tics for Data	Sets with Non-Detects	
2				
3	User Selected Options			
4	Date/Time of Computation 1/9/2016 2:44:36 PM			
5	From File VOCs Soil.xls			
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
10				
11	Toluene			
12				
13		General		
14	Total Number of Observations	8	Number of Distinct Observations	8
15			Number of Missing Observations	79
16	Minimum	0.002	Mean	0.529
17	Maximum	2.6		0.0056
18	SD	1.006	Std. Error of Mean	0.356
19	Coefficient of Variation	1.902	Skewness	1.731
20				
21		-	e collected using ISM approach, you should use	
22			SM (ITRC, 2012) to compute statistics of interest.	
23		-	shev UCL to estimate EPC (ITRC, 2012).	
24	Chebyshev UCL can be computed u	ising the No	nparametric and All UCL Options of ProUCL 5.0	
25				
26			GOF Test	
27	Shapiro Wilk Test Statistic	0.61	Shapiro Wilk GOF Test	
28	5% Shapiro Wilk Critical Value	0.818	Data Not Normal at 5% Significance Level	
29	Lilliefors Test Statistic	0.447	Lilliefors GOF Test	
30	5% Lilliefors Critical Value	0.313	Data Not Normal at 5% Significance Level	
31	Data Not	Normal at 5	% Significance Level	
32				
33		suming Norr	nal Distribution	
34	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
35	95% Student's-t UCL	1.203	95% Adjusted-CLT UCL (Chen-1995)	1.346
36			95% Modified-t UCL (Johnson-1978)	1.239
37				
38			GOF Test	
39	A-D Test Statistic	1.446	Anderson-Darling Gamma GOF Test	
40	5% A-D Critical Value	0.826	Data Not Gamma Distributed at 5% Significance Level	
41	K-S Test Statistic	0.437	Kolmogrov-Smirnoff Gamma GOF Test	
42	5% K-S Critical Value	0.321	Data Not Gamma Distributed at 5% Significance Level	
I	Data Not Gamr	na Distribute	ed at 5% Significance Level	
43				
43 44			Statistics	
44	k hat (MLE)	0.226	k star (bias corrected MLE)	0.225
44 45	Theta hat (MLE)	0.226 2.339	Theta star (bias corrected MLE)	2.355
44 45 46	Theta hat (MLE) nu hat (MLE)	0.226 2.339 3.618	Theta star (bias corrected MLE) nu star (bias corrected)	2.355 3.594
44 45 46 47	Theta hat (MLE)	0.226 2.339	Theta star (bias corrected MLE)	2.355

	A	—	В	-	С	Τ	D		E	ΓF	G	Н	<u> </u>		К	
51					-	sted		of Sig	nificance	-	<u> </u>		A	djusted C	hi Square Value	0.338
52																
53									A	ssuming Gar	nma Distribu	ition				
54		95%	Approx	imate	Gamma	a UC	L (use	whe	n n>=50)) 3.345		95% Ac	ljusted Gam	ma UCL ((use when n<50)	5.629
55											1					
56										Lognorma	I GOF Test					
57						•			t Statisti			-	oiro Wilk Log	-		
58					5% S				cal Value				0	•	nificance Level	
59									t Statistie				liefors Logn			
60					5	5% Li	lliefors		cal Value				Lognormal a	it 5% Sigi	nificance Level	
61									Data Not	Lognormal a	t 5% Signific	ance Level				
62																
63										-	al Statistics					1
64								-	ged Data						n of logged Data	
65						Maxi	mum of	f Log	ged Data	a 0.956				SI	D of logged Data	2.838
66																
67											ormal Distrib	oution	000/	<u>.</u>		4 4 9 4
68					050/				% H-UCI					•	nev (MVUE) UCL	
69							•	•	UE) UCI				97.5%	Chebysh	nev (MVUE) UCL	2.102
70					99%	Che	oyshev	(MV	UE) UCI	3.151						
71																
72									•			CL Statistics				
73								Dat	a do not	tollow a Dise	cernible Dist	ribution (0.0)			
74									Mann		tribution Fra					
75										arametric Dis				050	% Jackknife UCL	1.203
76					050/	Cto										
77									strap UCI				0.5%		Bootstrap-t UCL e Bootstrap UCL	1.126
78									strap UCI				95%	Percentin		1.120
79									Sd) UCI				95% C	obychov	(Mean, Sd) UCL	2.079
80						-	-		Sd) UCI					-	(Mean, Sd) UCL	4.067
81					1.0 /0 01			icun,	00,001	2.70				lebyonev		4.007
82										Suggested	UCL to Use					
83					ç	95%	Hall's E	Boots	strap UCI							
84 85																
85							R	ecor	nmende	UCL excee	ds the maxir	num observa	ation			
86 87																
87 88	In	Case	Bootstr	apta	nd/or H	lall's	Bootst	rap \	/ields an	unreasonab	ly large UCL	value, use 9	97.5% or 99	% Chebv	shev (Mean, Sd) UCL
88 89												,	_	, 	, ,	
89 90		Not	e: Sugg	estion	s regard	ding	he sele	ectio	n of a 95	% UCL are p	rovided to he	Ip the user to	select the n	nost appr	opriate 95% UC	 L.
90 91					-	-						-			and laci (2002)	
91								-				vill not cover a				
92					-		-	-	-			consult a stat				
93 94																
94																

From File N Full Precision C Confidence Coefficient 9 Number of Bootstrap Operations 2 rsenic Total N	D E UCL Statist 1/9/2016 3:41:51 PM Metals Soil.xls DFF 25% 2000	General 3	G H I J K Sets with Non-Detects	
Date/Time of Computation 1 From File N Full Precision 0 Confidence Coefficient 9 Number of Bootstrap Operations 2 rsenic Total N	Metals Soil.xls DFF 25% 2000 Number of Observations Number of Detects		Statistics	
Date/Time of Computation 1 From File N Full Precision 0 Confidence Coefficient 9 Number of Bootstrap Operations 2 rsenic Total N	Metals Soil.xls DFF 25% 2000 Number of Observations Number of Detects		Statistics	
From File N Full Precision C Confidence Coefficient 9 Number of Bootstrap Operations 2 rsenic Total N	Metals Soil.xls DFF 25% 2000 Number of Observations Number of Detects		Statistics	
Full Precision Confidence Coefficient 9 Number of Bootstrap Operations 2 rsenic Total N	DFF 2000 Number of Observations Number of Detects		Statistics	
Confidence Coefficient 9 Number of Bootstrap Operations 2 rsenic Total N	2000 2000 Number of Observations Number of Detects		Statistics	
Number of Bootstrap Operations 2 rsenic Total N	2000 Number of Observations Number of Detects		Statistics	
rsenic Total N	Number of Observations		Statistics	
Total N	Number of Detects		Statistics	
Total N	Number of Detects		Statistics	
	Number of Detects		Statistics	
	Number of Detects		Statistics	
	Number of Detects	67		
Nur			Number of Distinct Observations	47
Nur	mber of Distinct Dotocto	61	Number of Non-Detects	6
	HEEL OF DISTINCT DETECTS	46	Number of Distinct Non-Detects	1
	Minimum Detect	1.1	Minimum Non-Detect	1
	Maximum Detect	120	Maximum Non-Detect	1
	Variance Detects	256.1	Percent Non-Detects	8.955%
	Mean Detects	8.976	SD Detects	16
	Median Detects	5.2	CV Detects	1.783
	Skewness Detects	5.862	Kurtosis Detects	39.76
N	lean of Logged Detects	1.635	SD of Logged Detects	0.961
	Norm	al GOF Tes	t on Detects Only	
Sha	apiro Wilk Test Statistic	0.437	Normal GOF Test on Detected Observations Only	
		0	Detected Data Not Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.311	Lilliefors GOF Test	
5%	Lilliefors Critical Value	0.113	Detected Data Not Normal at 5% Significance Level	
	Detected Data	Not Norma		
Kaplan-M	leier (KM) Statistics usir	ng Normal C	ritical Values and other Nonparametric UCLs	
	Mean	8.262	Standard Error of Mean	1.887
	SD	15.32	95% KM (BCA) UCL	11.72
	95% KM (t) UCL	11.41	95% KM (Percentile Bootstrap) UCL	11.62
	95% KM (z) UCL	11.37	95% KM Bootstrap t UCL	15.51
90	% KM Chebyshev UCL	13.92	95% KM Chebyshev UCL	16.49
97.5	5% KM Chebyshev UCL	20.04	99% KM Chebyshev UCL	27.03
	Gamma GOF	Tests on De	tected Observations Only	
	A-D Test Statistic	2.035	Anderson-Darling GOF Test	
	5% A-D Critical Value	0.779	Detected Data Not Gamma Distributed at 5% Significance	Level
	K-S Test Statistic	0.117	Kolmogrov-Smirnoff GOF	
	5% K-S Critical Value	0.117	Detected Data Not Gamma Distributed at 5% Significance	Level
	Detected Data Not G	amma Dist	ributed at 5% Significance Level	
	Gamma	Statistics on	Detected Data Only	
	k hat (MLE)	1.028	k star (bias corrected MLE)	0.988
	Theta hat (MLE)	8.735	Theta star (bias corrected MLE)	9.085
	nu hat (MLE)	125.4	nu star (bias corrected)	120.5
MLE	E Mean (bias corrected)	8.976	MLE Sd (bias corrected)	9.03
	Sh 5 5% Kaplan-M	Mean of Logged Detects Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data Kaplan-Meier (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value K-S Test Statistic 5% K-S Critical Value Cheted Data Not Cheted K hat (MLE) Theta hat (MLE)	Mean of Logged Detects 1.635 Normal GOF Test Shapiro Wilk Test Statistic 0.437 5% Shapiro Wilk P Value 0 Lilliefors Test Statistic 0.311 5% Lilliefors Test Statistic 0.311 5% Lilliefors Test Statistic 0.311 5% Lilliefors Critical Value 0 Detected Data Not Norma Kaplan-Meier (KM) Statistics using Normal C Mean 8.262 SD 15.32 95% KM (t) UCL 11.41 95% KM (z) UCL 11.37 90% KM Chebyshev UCL 13.92 97.5% KM Chebyshev UCL 20.04 Gamma GOF Tests on De A-D Test Statistic 2.035 5% A-D Critical Value 0.779 K-S Test Statistic 0.117 Detected Data Not Gamma Distu Gamma Statistics on K hat (MLE) A hat (MLE)	Mean of Logged Detects 1.635 SD of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.437 Normal GOF Test on Detected Observations Only 5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.311 Lilliefors GOF Test 5% Lilliefors Critical Value 0.113 Detected Data Not Normal at 5% Significance Level Detected Data Not Normal at 5% Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (t) UCL 11.41 95% KM (BCA) UCL 95% KM (t) UCL 11.37 95% KM (Detroentile Bootstrap) UCL 95% KM Chebyshev UCL 20.04 99% KM Chebyshev UCL 97.5% KM Chebyshev UCL 20.04 99% KM Chebyshev UCL 97.5% KM Chebyshev UCL 2.035 Anderson-Darling GOF Test Statistic Critical Value 0.779 97.5% KM Chebyshev UCL 0.117 Kolmogrov-Smirnoff GOF

	А	В		С	—	D	<u> </u>	E	F	G	Н			<u> </u>	J		К	┳	
51					_								•						
52								Gamn	na Kaplan-M	eier (KM) S	tatistics								
53							k٢	at (KM)	0.291							n	u hat (K	M)	39
54		A	pprox	imate Cl	ni Squ	are Val	lue (3	9.00, α)	25.69			A	djusted	Chi	Square	Value	(39.00,	β)	25.45
55	95%	Gamma A	Approx	imate K	M-UC	L (use	when	n>=50)	12.54		95% Gar	nma	Adjuste	ed KN	/I-UCL (use w	hen n<5	;0)	12.66
56										1									
57						(Gamr	na ROS	Statistics u	sing Impute	d Non-De	tect	s						
58			GF	ROS ma	y not l	oe usec	d whe	n data s	et has > 50%	6 NDs with r	many tied o	obse	rvations	at m	nultiple I	DLs			
59					GR	OS may	y not l	oe used	when kstar of	of detected of	lata is sma	all su	ich as <	0.1					
60				Fo	r such	situatio	ons, (GROS n	nethod tends	to yield infla	ated value	s of	UCLs ar	nd BT	۲Vs				
61		For g	jamma	a distribu	ited de	etected	data	, BTVs a	and UCLs ma	ay be compu	ited using	gam	ma distr	ributio	on on K	M esti	mates		
62							Ν	linimum	0.01								Me	an	8.173
63							М	aximum	120								Medi	an	4.4
64								SD	15.48								(CV	1.893
65							k ha	t (MLE)	0.602					k st	ar (bias	corre	cted ML	E)	0.585
66						The	eta ha	t (MLE)	13.57				The	eta st	ar (bias	corre	cted ML	E)	13.96
67							nu ha	t (MLE)	80.73						nu star	(bias	correcte	;d)	78.45
68				Ν	ILE M	ean (bia	as co	rrected)	8.173					Ν	MLE Sd	(bias	correcte	;d)	10.68
69													Adjus	sted L	_evel of	Signif	ficance ((β)	0.0464
70		A	pprox	imate Cl	ni Squ	are Val	lue (7	8.45, α)	59.04			A	djusted	Chi	Square	Value	(78.45,	β)	58.67
71	9	5% Gamı	ma Ap	proxima	te UC	L (use	when	n>=50)	10.86		95%	Gar	nma Adj	juste	d UCL (use w	hen n<5	i0)	10.93
72																			
73						L	ogno	rmal GC	OF Test on D	etected Ob	servations	s On	ly						
74					Li	lliefors	Test	Statistic	0.1				Lillief	ors G	OF Te	st			
75				ļ	5% Lil	liefors (Critica	al Value	0.113	De	tected Dat	а ар	pear Lo	gnorr	mal at 5	% Sig	nificanc	e Le	vel
76					Det	ected D	Data a	appear /	Approximate	Lognormal	at 5% Sig	nific	ance Le	evel					
77																			
78						Lo	ognor	mal RO	S Statistics	Using Impu	ted Non-D	etec	ts						
79					Me	ean in C	Drigin	al Scale	8.224						Me	ean in	Log Sca	le	1.436
80					:	SD in C	Drigin	al Scale	15.45							SD in	Log Sca	зle	1.122
81		95%	t UCL	(assum	es nor	mality	of RC)S data)	11.37				95	5% Pe	ercentile	e Boot	strap U	CL	11.95
82					95%	BCA Bo	ootstr	ap UCL	13.66						95%	Boots	trap t U	CL	15.32
83					95%	6 H-UC	CL (Lc	g ROS)	10.75										
84																		I	
85			UCLs	using L	ognor	mal Dis	stribu	tion and	I KM Estima	tes when D	etected da	ita a	re Logn	orma	ally Dist	ribute	d		
86						KM M	lean (logged)	1.488						95% H	I-UCL	(KM -Lc)g)	9.927
87						KM	1 SD (logged)	1.023				95	5% Cr	ritical H	Value	e (KM-Lo	yg)	2.258
88			K١	/I Standa	ard Er	ror of M	lean (logged)	0.126									\top	
89																			
90									DL/2 S	tatistics									
91				DL/2	Norm	al							DL/2 Lo	og-Tra	ansforn	ned			
92					Me	an in C	Drigin	al Scale	8.217						Me	ean in	Log Sca	ale	1.426
93					:	SD in C	Drigin	al Scale	15.45							SD in	Log Sca	ale	1.135
94				95% t	UCL (Assum	es no	rmality)	11.37						ę	95% H	I-Stat U	CL	10.84
95				DL/2	is no	t a reco	omme	ended m	ethod, provi	ded for com	parisons a	and	historica	al rea	asons				
96																			
97							No	nparam	etric Distribu	tion Free U	CL Statist	ics							
98				Det	ected	Data a	ppea	r Approx	kimate Logn	ormal Distri	buted at 5	% S	ignificar	nce L	.evel				
99																			
100									Suggested	UCL to Use	•								

	А	В	С	D	Е	F	G	Н		J	K	L
101			95	% KM (Chet	yshev) UCL	16.49						
102												
103		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCI	
104			F	Recommenda	tions are bas	sed upon dat	a size, data o	distribution, a	and skewnes	s.		
105		These recon	nmendations	are based u	pon the resu	Its of the sim	nulation studi	es summariz	ed in Singh,	Maichle, and	d Lee (2006)	•
106	He	owever, simul	ations result	s will not cov	er all Real W	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistic	ian.
107												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:43:24 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Barium				
12					
13				Statistics	
14	Total	Number of Observations	67	Number of Distinct Observations	53
15				Number of Missing Observations	0
16		Minimum	29	Mean	236.3
17		Maximum	1100	Median	150
18		SD	208.2	Std. Error of Mean	25.43
19		Coefficient of Variation	0.881	Skewness	1.858
20					
21				GOF Test	
22		hapiro Wilk Test Statistic	0.796	Shapiro Wilk GOF Test	
23		5% Shapiro Wilk P Value		Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.211	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.108	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27					
28	05% N		suming Nori	nal Distribution	
29	95% NG		070 7	95% UCLs (Adjusted for Skewness)	004.0
30		95% Student's-t UCL	278.7	95% Adjusted-CLT UCL (Chen-1995)	284.3
31				95% Modified-t UCL (Johnson-1978)	279.7
32			Commo	GOF Test	
33		A-D Test Statistic	1.49		
34		5% A-D Critical Value	0.766	Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve	
35		K-S Test Statistic	0.766	Kolmogrov-Smirnoff Gamma GOF Test	51
36		5% K-S Critical Value	0.142	Data Not Gamma Distributed at 5% Significance Leve	<u></u>
37				ed at 5% Significance Level	
38					
39			Gamma	Statistics	
40		k hat (MLE)	1.736	k star (bias corrected MLE)	1.668
41		Theta hat (MLE)	136.1	Theta star (bias corrected MLE)	141.6
42		nu hat (MLE)	232.6	nu star (bias corrected)	223.6
43	MI	LE Mean (bias corrected)	236.3	MLE Sd (bias corrected)	182.9
44				Approximate Chi Square Value (0.05)	190
45	Adius	sted Level of Significance	0.0464	Adjusted Chi Square Value	189.3
46	. 1900	<u></u>			
47		Ass	umina Garr	ma Distribution	
48	95% Approximate Gamma		278.1	95% Adjusted Gamma UCL (use when n<50)	279.1
49					
50					

	А	В		С	Т	D		E	F	G	н		J			К	Т	L
51	7.				_				-	GOF Test			, v					
52				5	Shapir	o Wilk	Test	Statistic	0.971		Sha	piro Wilk Lo	gnormal	GO	FTe	st		
53					5% S	hapiro	Wilk	P Value	0.28		Data appe	ar Lognorma	al at 5% S	Signi	ifican	ce Leve	el	
54					Lil	lliefors	Test	Statistic	0.0894		Li	illiefors Logr	normal G	OF	Test			
55				Ę	5% Lill	liefors	Critica	al Value	0.108		Data appe	ar Lognorma	al at 5% S	Signi	ifican	ce Leve	el	
56							Data	appea	r Lognormal	at 5% Signi	ficance Lev	el						
57																		
58									Lognorma	I Statistics								
59					Minim	num of	f Logg	ed Data	3.367				Me	an o	flogg	ged Dat	ta	5.15
60					Maxim	num of	f Logg	ed Data	7.003				S	SD o	flogg	ged Dat	ta	0.787
61									1	I								
62								Ass	uming Logno	ormal Distrib	ution							
63							95%	H-UCL	287.7			90%	Chebys	hev	(MVl	JE) UC	:L :	309.3
64				95%	Cheb	yshev	(MVU	E) UCL	343.6			97.5%	Chebys	hev	(MVl	JE) UC	:L :	391.2
65				99%	Cheb	yshev	(MVU	E) UCL	484.7									
66									1	I								
67							Nor	nparame	etric Distribu	tion Free U	CL Statistics	5						
68					Data	a appea	ar to f	ollow a	Discernible	Distribution	at 5% Signi	ficance Lev	el					
69																		
70								Nonpa	rametric Dis	tribution Fre	e UCLs							
71						9	95% C	LT UCL	278.1				95	% J	ackkr	nife UC	L 2	278.7
72				95%	6 Stan	dard B	Bootstr	ap UCL	278.4				95%	b Bo	otstra	ap-t UC	L 2	286.8
73				Ģ	95% H	lall's B	Bootstr	ap UCL	284.5			95%	Percenti	ile B	ootst	rap UC	L	275.2
74					95%	BCA B	Bootstr	ap UCL	282.8									
75				90% CI	hebys	hev(Me	ean, S	6) UCL	312.6			95% C	hebyshe	v(Me	ean, S	Sd) UC	:L :	347.2
76			97	7.5% CI	hebys	hev(Me	ean, S	6) UCL	395.1			99% C	hebyshe	v(Me	ean, S	Sd) UC	L 4	489.4
77																		
78									Suggested	UCL to Use								
79							95%	H-UCL	287.7									
80																		
81	1		•	0	•				6 UCL are pr		•			•				
82		These re					•		sults of the si							i (2002))	
83			an	d Singh	ו and נ		. ,		ver, simulatio				rld data s	ets.				
84						For a	dditior	nal insig	ht the user m	hay want to c	consult a sta	tistician.						
85																		
86								-	uts H-statisti									
87		H-statis	tic ofte				•	-	and low) valu			-		ech	nical	Guide.	•	
88									ed to avoid t									
89	Us	e of nonp	aramet	ric met	thods :	are pre	eferre	d to con	npute UCL9	o for skewed	data sets v	which do not	follow a	gan	nma	distribu	ition.	
90																		

	А	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statist	ics for Data	Sets with N	on-Detects				
2												
3		User Sele	cted Options	\$								
4	Date	e/Time of Co	omputation	1/9/2016 3:44	1:05 PM							
5			From File	Metals Soil.xl	S							
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap (Operations	2000								
9												
10	Beryllium											
11												
12							Statistics					
13			Tota	I Number of Ob	servations	67			Numbe	r of Distinct C	bservations)	3
14					of Detects	1					Non-Detects	66
15			N	lumber of Distin	nct Detects	1			Numbe	er of Distinct I	Non-Detects	2
16												
17		-	-	nct data value v								
18	It is sugge	sted to use	alternative	site specific va	lues determ	nined by the	Project Tea	am to estimat	e environm	ental parame	eters (e.g., EF	°C, BTV).
19												
20				The	data set for	variable B	eryllium was	not process	ed!			
21												
22												

	A B C	DE	F	G H I J K	1
1			•	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:44:49 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	Cadmium				
11					
12			General	Statistics	
13	Total	Number of Observations	67	Number of Distinct Observations	4
14		Number of Detects	4	Number of Non-Detects	63
14	Ν	umber of Distinct Detects	3	Number of Distinct Non-Detects	2
		Minimum Detect	1	Minimum Non-Detect	0.5
16 17		Maximum Detect	3.2	Maximum Non-Detect	1
		Variance Detects	1.176	Percent Non-Detects	94.03%
18		Mean Detects	1.575	SD Detects	1.084
19		Median Detects	1.05	CV Detects	0.688
20		Skewness Detects	1.989	Kurtosis Detects	3.961
21		Mean of Logged Detects	0.315	SD of Logged Detects	0.567
22					
23		Norm	al GOF Tes	t on Detects Only	
24 25	S	hapiro Wilk Test Statistic	0.662	Shapiro Wilk GOF Test	
25 26		hapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level	
20		Lilliefors Test Statistic	0.419	Lilliefors GOF Test	
27	5	% Lilliefors Critical Value	0.443	Detected Data appear Normal at 5% Significance Lev	el
20 29		Detected Data appear	Approximat	e Normal at 5% Significance Level	
30				-	
31	Kaplan-	Meier (KM) Statistics usin	g Normal C	ritical Values and other Nonparametric UCLs	
32		Mean	0.564	Standard Error of Mean	0.0484
33		SD	0.343	95% KM (BCA) UCL	N/A
33		95% KM (t) UCL	0.645	95% KM (Percentile Bootstrap) UCL	N/A
35		95% KM (z) UCL	0.644	95% KM Bootstrap t UCL	N/A
36		90% KM Chebyshev UCL	0.709	95% KM Chebyshev UCL	0.775
30		.5% KM Chebyshev UCL	0.866	99% KM Chebyshev UCL	1.045
37		-		· · · · ·	
39		Gamma GOF	Tests on De	tected Observations Only	
40		A-D Test Statistic	0.837	Anderson-Darling GOF Test	
40		5% A-D Critical Value	0.659	Detected Data Not Gamma Distributed at 5% Significance	Level
41		K-S Test Statistic	0.433	Kolmogrov-Smirnoff GOF	
42		5% K-S Critical Value	0.396	Detected Data Not Gamma Distributed at 5% Significance	Level
43		Detected Data Not G	amma Dist	ributed at 5% Significance Level	
44 45				-	
45 46		Gamma	Statistics or	Detected Data Only	
46		k hat (MLE)	3.739	k star (bias corrected MLE)	1.101
47		Theta hat (MLE)	0.421	Theta star (bias corrected MLE)	1.43
		nu hat (MLE)	29.91	nu star (bias corrected)	8.812
49	M	LE Mean (bias corrected)	1.575	MLE Sd (bias corrected)	1.501
50		(

┝──┢	A B C D E	F	G	Н				J		K		1
51		•	5									
52	Gamma	a Kaplan-M	eier (KM) S	tatistics								
53	k hat (KM)	2.708							nı	ı hat	(KM)	362.9
54	Approximate Chi Square Value (362.92, α)	319.8			Adju	sted Cl	hi Sq	uare Va	alue (3	362.9	2, β)	318.9
55	95% Gamma Approximate KM-UCL (use when n>=50)	0.64		95% Gan	nma A	djustec	I KM	UCL (u	ise wł	nen n	<50)	0.642
56	L		I									
57	Gamma ROS S	Statistics us	sing Impute	d Non-De	tects							
58	GROS may not be used when data se	t has > 50%	NDs with n	nany tied o	bserv	ations a	at mu	Itiple D	Ls			
59	GROS may not be used w	vhen kstar o	of detected d	lata is sma	II such	n as < ().1					
60	For such situations, GROS me	ethod tends	to yield infla	ated values	s of UC	CLs and	dΒT	/s				
61	For gamma distributed detected data, BTVs ar	nd UCLs ma	y be compu	ted using o	gamma	a distril	butio	n on KN	l estir	nates	6	
62	Minimum	0.01								Ν	/lean	0.103
63	Maximum	3.2								Me	edian	0.01
64	SD	0.439									CV	4.248
65	k hat (MLE)	0.332					k sta	r (bias o	correc	cted N	MLE)	0.327
66	Theta hat (MLE)	0.312				Thet	a sta	r (bias o	correc	ted N	MLE)	0.316
67	nu hat (MLE)	44.49					r	u star (bias d	corre	cted)	43.83
68	MLE Mean (bias corrected)	0.103					М	LE Sd (bias d	corre	cted)	0.181
69						Adjust	ed Le	evel of S	Signifi	canc	e (β)	0.0464
70	Approximate Chi Square Value (43.83, α)	29.65			Adj	usted (Chi S	quare \	/alue	(43.8	3, β)	29.39
71	95% Gamma Approximate UCL (use when n>=50)	0.153		95%	Gamn	na Adju	isted	UCL (u	ise wł	nen n	<50)	N/A
72												
73	Lognormal GOF	- Test on D	etected Ob	servations	Only							
74	Shapiro Wilk Test Statistic	0.688			Sh	apiro \	Wilk	GOF T	est			
/4	5% Shapiro Wilk Critical Value	0.748			te Ne	tloand		-+ E0/	Signif	icano		vol
75		0.748	U D	etected Da	ata NO	LUYIIC	ormai	at 5%	Sigim	iounic	C LCV	
75 76	Lilliefors Test Statistic	0.748	D	etected Da				DF Tes	-		e Lev	
76				etected Data		Lilliefo	rs G(OF Tes	t			
76 77	Lilliefors Test Statistic	0.4 0.443	Det	ected Data	a appe	Lilliefor	rs GC norm	OF Tes	t			
76 77 78	Lilliefors Test Statistic 5% Lilliefors Critical Value	0.4 0.443	Det	ected Data	a appe	Lilliefor	rs GC norm	OF Tes	t			
76 77 78 79	Lilliefors Test Statistic 5% Lilliefors Critical Value	0.4 0.443 oproximate	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Logi ice Lev	rs GC norm	OF Tes	t			
76 77 78 79 80	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ap	0.4 0.443 oproximate	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Logi ice Lev	rs GC norm	DF Tes al at 59	t	nifica	nce Lo	
76 77 78 79 80 81	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ap Lognormal ROS	0.4 0.443 oproximate	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Logi ice Lev	rs GC norm	DF Tes al at 5%	t 6 Sigr	nifica	nce Lo Scale	evel
76 77 78 79 80 81 82	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ap Lognormal ROS Mean in Original Scale	0.4 0.443 oproximate S Statistics 0.159	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Log ce Lev	rs G(norm /el	DF Tes al at 5%	t 6 Sigr an in I 6D in I	nifica Log S Log S	nce Lo Scale	evel -3.513
76 77 78 79 80 81 82 83	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ap Lognormal ROS Mean in Original Scale SD in Original Scale	0.4 0.443 oproximate 3 Statistics 0.159 0.439	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Log ce Lev	rs G(norm /el	DF Tes al at 5% Mea	t 6 Sigr an in I SD in I Boots	Log S Log S	nce Lo Scale Scale UCL	evel -3.513 1.888
76 77 78 79 80 81 82	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ap Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	0.4 0.443 oproximate 5 Statistics 0.159 0.439 0.249	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Log ce Lev	rs G(norm /el	DF Tes al at 5% Mea S	t 6 Sigr an in I SD in I Boots	Log S Log S	nce Lo Scale Scale UCL	-3.513 1.888 0.26
76 77 78 79 80 81 82 83 84 85	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 0 Statistics 0.159 0.439 0.249 0.304	Det Lognormal	tected Data at 5% Sign	a appe nifican	Lilliefor ar Log ce Lev	rs G(norm /el	DF Tes al at 5% Mea S	t 6 Sigr an in I SD in I Boots	Log S Log S	nce Lo Scale Scale UCL	-3.513 1.888 0.26
76 77 78 79 80 81 82 83 84 85 86	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.343	Det Lognormal Using Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ce Lev 95%	rs G(norm rel	DF Tes al at 5% Mea S rcentile 95% E	t 6 Sigr an in I 3D in I Boots 30otst	Log S Log S Log S Rtrap rap t	nce Lo Scale Scale UCL	-3.513 1.888 0.26
76 77 78 79 80 81 82 83 84 85	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.343	Det Lognormal Using Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ce Lev 95%	rs G(norm rel % Per	DF Tes al at 5% Mea S rcentile 95% E	t 6 Sigr an in I D in I Boots 300tst	Log S Log S Trap t	Scale Scale UCL UCL	-3.513 1.888 0.26
76 77 78 79 80 81 82 83 84 85 86 87 88	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ap Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat	Det Lognormal Using Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ce Lev 95% Logno	rs GC norm rel % Per	DF Tes al at 5% Mea S centile 95% E	t 6 Sigr an in 1 Boots 800tst	_og S _og S strap rap t	Cale Cale UCL UCL Log)	-3.513 1.888 0.26 0.367
76 77 78 79 80 81 82 83 84 85 86 87	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ag Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and KM Mean (logged)	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.343 KM Estimat -0.633	Det Lognormal Using Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ce Lev 95% Logno	rs GC norm rel % Per	DF Tes al at 59 Mea S rcentile 95% E	t 6 Sigr an in 1 Boots 800tst	_og S _og S strap rap t	Cale Cale UCL UCL Log)	evel -3.513 1.888 0.26 0.367 0.583
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat -0.633 0.267	Det Lognormal Using Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ce Lev 95% Logno	rs GC norm rel % Per	DF Tes al at 59 Mea S rcentile 95% E	t 6 Sigr an in 1 Boots 800tst	_og S _og S strap rap t	Cale Cale UCL UCL Log)	evel -3.513 1.888 0.26 0.367 0.583
76 77 78 79 80 81 82 83 84 85 86 87 88 89	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat -0.633 0.267 0.0377	Det Lognormal Using Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ce Lev 95% Logno	rs GC norm rel % Per	DF Tes al at 59 Mea S rcentile 95% E	t 6 Sigr an in 1 Boots 800tst	_og S _og S strap rap t	Cale Cale UCL UCL Log)	evel -3.513 1.888 0.26 0.367 0.583
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat -0.633 0.267 0.0377	Det Lognormal Jsing Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ice Lev 95% Logno 95%	rs G(norm /el % Per	DF Tes al at 59 Mea S rcentile 95% E	t 6 Sigr an in I 5D in I Boots Bootst UCL (/alue	_og S _og S strap rap t	Cale Cale UCL UCL Log)	evel -3.513 1.888 0.26 0.367 0.583
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ag Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat -0.633 0.267 0.0377	Det Lognormal Jsing Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ice Lev 95% Logno 95%	rs G(norm /el % Per	DF Tes al at 5% Mea S centile 95% E 95% H- ical H \	t 6 Sigr an in I 5D in I Boots Bootst UCL (/alue	Log S Log S Strap rap t (KM - (KM-	Cale Cale UCL UCL Log) Log)	evel -3.513 1.888 0.26 0.367 0.583
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 3 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat -0.633 0.267 0.0377 DL/2 S	Det Lognormal Jsing Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ice Lev 95% Logno 95%	rs G(norm /el % Per	DF Tes al at 5% Mea S Ccentile 95% E 95% H- ical H N ical H N nsform Mea	t 6 Sigr an in I 5D in I Boots 300tst UCL (/alue ed	Log S Log S Log S Strap rap t (KM - (KM-	Cale Cale UCL UCL Log) Log) Cale	evel -3.513 1.888 0.26 0.367 0.583 1.741
76 77 78 79 80 81 82 83 84 85 86 87 88 89 900 91 92 93 94 95	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 0proximate 5 Statistics 0.159 0.439 0.249 0.304 0.304 0.343 KM Estimat -0.633 0.267 0.0377 0.0377	Det Lognormal Jsing Imput	tected Data at 5% Sign ted Non-Do	a appe nifican etects	Lilliefor Par Log Ice Lev 95% Logno 95%	rs G(norm /el % Per	DF Tes al at 59 Mea S rcentile 95% E 95% H- tical H N ical H N	t 6 Sigr an in I 5D in I Boots Bootst UCL (/alue ed an in I	Log S Log S Strap rap t (KM - (KM- (KM-	Cale Scale UCL UCL Log) Log) Scale	evel -3.513 1.888 0.26 0.367 0.583 1.741 -0.695
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Ag Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) CL/2 Normal	0.4 0.443 oproximate 5 Statistics 0.159 0.439 0.249 0.304 0.343 KM Estimat -0.633 0.267 0.0377 0.0377 DL/2 S 0.542 0.357 0.615	Det Lognormal Using Imput	ected Data at 5% Sign ted Non-Do betected data	a appe nifican etects	Lilliefor Par Log Ce Lev 95% Logno 95%	rs GC norm rel % Per % Per % Criti	DF Tes al at 5% Mea S Ccentile 95% E 95% H- ical H N ical H N ical H N Mea S 99	t 6 Sigr an in I Boots Bootst UCL (/alue ed an in I BD in I	Log S Log S Strap rap t (KM - (KM- (KM-	Cale Scale UCL UCL Log) Log) Scale	evel -3.513 1.888 0.26 0.367 0.583 1.741 -0.695 0.346
76 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate 5 Statistics 0.159 0.439 0.249 0.304 0.343 KM Estimat -0.633 0.267 0.0377 0.0377 DL/2 S 0.542 0.357 0.615	Det Lognormal Using Imput	ected Data at 5% Sign ted Non-Do betected data	a appe nifican etects	Lilliefor Par Log Ce Lev 95% Logno 95%	rs GC norm rel % Per % Per % Criti	DF Tes al at 5% Mea S Ccentile 95% E 95% H- ical H N ical H N ical H N Mea S 99	t 6 Sigr an in I Boots Bootst UCL (/alue ed an in I BD in I	Log S Log S Strap rap t (KM - (KM- (KM-	Cale Scale UCL UCL Log) Log) Scale	evel -3.513 1.888 0.26 0.367 0.583 1.741 -0.695 0.346
76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96	Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear App	0.4 0.443 oproximate Statistics 0.159 0.439 0.249 0.304 0.343 KM Estimat -0.633 0.267 0.0377 DL/2 S 0.542 0.357 0.615 thod, provio	Det Lognormal Using Imput	ected Data at 5% Sign ted Non-Do betected data parisons a	a appendition of the second se	Lilliefor Par Log Ce Lev 95% Logno 95%	rs GC norm rel % Per % Per % Criti	DF Tes al at 5% Mea S Ccentile 95% E 95% H- ical H N ical H N ical H N Mea S 99	t 6 Sigr an in I Boots Bootst UCL (/alue ed an in I BD in I	Log S Log S Strap rap t (KM - (KM- (KM-	Cale Scale UCL UCL Log) Log) Scale	evel -3.513 1.888 0.26 0.367 0.583 1.741 -0.695 0.346

	А	В	С	D	E	F	G	Н	I	J	K	L
101												
102						Suggested	UCL to Use					
103				95%	KM (t) UCL	0.645			95% KM (F	Percentile Boo	otstrap) UCL	N/A
104				Warn	ing: One or	more Recon	nmended UC	L(s) not ava	ilable!			
105												
106	I	Note: Sugges	stions regardi	ng the selec	tion of a 95%	% UCL are pi	rovided to hel	p the user to	select the n	nost appropri	ate 95% UC	L.
107			R	ecommenda	tions are ba	sed upon da	ta size, data (distribution,	and skewnes	SS.		
108		These recon	nmendations	are based u	pon the resu	ults of the sin	nulation studi	es summariz	zed in Singh,	Maichle, and	d Lee (2006)	
109	Ho	wever, simul	ations results	s will not cov	er all Real V	Vorld data se	ets; for additic	onal insight t	he user may	want to cons	ult a statistic	ian.
110												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:45:37 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Chromium				
12					
13				Statistics	
14	Total	Number of Observations	67	Number of Distinct Observations	30
15				Number of Missing Observations	0
16		Minimum	5.7	Mean	19.28
17		Maximum	61	Median	19
18		SD	8.076	Std. Error of Mean	0.987
19		Coefficient of Variation	0.419	Skewness	2.866
20					
21			Normal C	GOF Test	
22		hapiro Wilk Test Statistic	0.766	Shapiro Wilk GOF Test	
23		5% Shapiro Wilk P Value	2.465E-14	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.202	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.108	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27					
28			suming Norr	nal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	20.93	95% Adjusted-CLT UCL (Chen-1995)	21.28
31				95% Modified-t UCL (Johnson-1978)	20.99
32					
33				GOF Test	
34		A-D Test Statistic	1.551	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.752	Data Not Gamma Distributed at 5% Significance Leve	əl
36		K-S Test Statistic	0.145	Kolmogrov-Smirnoff Gamma GOF Test	
37		5% K-S Critical Value	0.109	Data Not Gamma Distributed at 5% Significance Leve	ÐI
38		Data Not Gamr	na Distribute	ed at 5% Significance Level	
39			0	Otestiesties	
40				Statistics	7 400
41		k hat (MLE)	7.745	k star (bias corrected MLE)	7.409
42		Theta hat (MLE)	2.49	Theta star (bias corrected MLE)	2.603
43		nu hat (MLE)		nu star (bias corrected)	992.7
44	MI	LE Mean (bias corrected)	19.28	MLE Sd (bias corrected)	7.085
45	A 11		0.0404	Approximate Chi Square Value (0.05)	920.6
46	Adjus	sted Level of Significance	0.0464	Adjusted Chi Square Value	919.1
47				Distribution	
48					00.00
49	95% Approximate Gamma	a UCL (use when n>=50))	20.79	95% Adjusted Gamma UCL (use when n<50)	20.83
50					

	A	В	С	D	E	F	G	Н		J	К	L
51							GOF Test		· · · · ·			
52			S	hapiro Wilk	Fest Statistic	0.949		Sha	oiro Wilk Lo	gnormal GOF	Test	
53				5% Shapiro	Wilk P Value	0.0188		Data Not	Lognormal a	at 5% Significa	ance Level	
54				Lilliefors	Fest Statistic	0.122		Lil	liefors Logn	ormal GOF T	est	
55			5	% Lilliefors C	Critical Value	0.108		Data Not	Lognormal a	at 5% Significa	ance Level	
56					Data Not L	ognormal at	5% Signific	ance Level				
57												
58						Lognorma	I Statistics					
59				Minimum of	ogged Data	1.74					logged Data	2.893
60			I	Maximum of	ogged Data	4.111				SD of	logged Data	0.357
61												
62					Assı	uming Logno	ormal Distrib	ution				
63					95% H-UCL	20.81			90%	Chebyshev (MVUE) UCL	21.81
64			95%	Chebyshev (MVUE) UCL	22.98			97.5%	Chebyshev (MVUE) UCL	24.61
65			99%	Chebyshev (MVUE) UCL	27.8						
66												
67					Nonparame	etric Distribu	tion Free UC	CL Statistics				
68					Data do not f	ollow a Disc	ernible Distr	ibution (0.08	5)			
69												
70							tribution Fre	e UCLs				
71					5% CLT UCL	20.91					ckknife UCL	20.93
72				Standard Bo		20.93					tstrap-t UCL	21.5
73			ç	95% Hall's Bo	otstrap UCL	23.19			95%	Percentile Bo	otstrap UCL	20.97
74					otstrap UCL	21.26						
75				nebyshev(Me	,	22.24				hebyshev(Me		23.58
76			97.5% Cł	nebyshev(Me	an, Sd) UCL	25.45			99% C	hebyshev(Me	an, Sd) UCL	29.1
77												
78							UCL to Use					
79				95% Stu	dent's-t UCL	20.93			1	or 95% Mo	dified-t UCL	20.99
80												
81	1									nost appropria		
82		These reco			•					h, Singh, and	laci (2002)	
83			and Singh		2003). Howev					ld data sets.		
84				For ad	ditional insigl	nt the user m	nay want to c	onsult a stat	istician.			
85												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:46:21 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	O. h. ali				
11	Cobalt				
12			Canaral	Statiation	
13	Tatal	Number of Observations	67	Statistics Number of Distinct Observations	46
14	lotai	Number of Observations	67		46
15		NAin income	2.4	Number of Missing Observations	7.117
16		Minimum		Mean	
17		Maximum	12.9	Median Std. Error of Moon	7
18		SD	1.956	Std. Error of Mean	
19		Coefficient of Variation	0.275	Skewness	0.319
20			Nermald		
21				GOF Test	
22		hapiro Wilk Test Statistic 5% Shapiro Wilk P Value	0.987	Shapiro Wilk GOF Test	
23		Lilliefors Test Statistic	0.919	Data appear Normal at 5% Significance Level Lilliefors GOF Test	
24	5	% Lilliefors Critical Value	0.108	Data appear Normal at 5% Significance Level	
25	5			5% Significance Level	
26					
27		As	sumina Norr	nal Distribution	
28	95% N	ormal UCL		95% UCLs (Adjusted for Skewness)	
29	00,010	95% Student's-t UCL	7.516	95% Adjusted-CLT UCL (Chen-1995)	7.52
30			7.010	95% Modified-t UCL (Johnson-1978)	7.518
31					
32			Gamma	GOF Test	
33		A-D Test Statistic	0.335	Anderson-Darling Gamma GOF Test	
34 35		5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significant	ce Level
36		K-S Test Statistic	0.0783	Kolmogrov-Smirnoff Gamma GOF Test	
37		5% K-S Critical Value	0.109	Detected data appear Gamma Distributed at 5% Significand	ce Level
37		Detected data appear		stributed at 5% Significance Level	
30 39				·	
39 40			Gamma	Statistics	
40		k hat (MLE)	12.56	k star (bias corrected MLE)	12.01
41		Theta hat (MLE)	0.567	Theta star (bias corrected MLE)	0.593
42		nu hat (MLE)	1683	nu star (bias corrected)	1609
43	М	LE Mean (bias corrected)	7.117	MLE Sd (bias corrected)	2.054
45				Approximate Chi Square Value (0.05)	1517
46	Adjus	sted Level of Significance	0.0464	Adjusted Chi Square Value	1515
47					
48		Ass	suming Gam	ma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50))	7.55	95% Adjusted Gamma UCL (use when n<50)	7.559
50					
50					

	A	В	C	D	E	F	G	Н		J	K		L
51						Lognorma	I GOF Test						
52			S	hapiro Wilk	Test Statistic	0.965		Shap	oiro Wilk Log	normal GO	F Test		
53			ļ	5% Shapiro	Wilk P Value	0.15		Data appear Lognormal at 5% Significance Level					
54				Lilliefors	Test Statistic	0.0957		Lill	iefors Logno	ormal GOF	Test		
55			5	% Lilliefors (Critical Value	0.108		Data appea	r Lognormal	at 5% Signi	ficance Le	evel	
56					Data appear	Lognormal	at 5% Signif	icance Leve					
57													
58						Lognorma	al Statistics						
59				Minimum of	Logged Data	0.875				Mean of	f logged D	Data	1.922
60			Ν	laximum of	Logged Data	2.557				SD of	f logged D	Data	0.296
61													
62					Assu	ming Logno	ormal Distrib	ution					
63					95% H-UCL	7.615			90%	Chebyshev	(MVUE) L	JCL	7.929
64			95% (Chebyshev ((MVUE) UCL	8.287			97.5%	Chebyshev	(MVUE) L	JCL	8.784
65			99% (Chebyshev ((MVUE) UCL	9.76							
												1	
66													
66 67					Nonparame	tric Distribu	tion Free UC	L Statistics					
				Data appea	Nonparame ar to follow a [cance Level				
67				Data appea	-				cance Leve				
67 68				Data appea	ar to follow a [Discernible		at 5% Signifi	cance Leve				
67 68 69					ar to follow a [Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife L	JCL	7.516
67 68 69 70			95%	95	ar to follow a I Nonpar	Discernible ametric Dis	Distribution a	at 5% Signifi	cance Leve	95% Ja	ackknife L		
67 68 69 70 71				95 Standard Bo	nr to follow a I Nonpar	Discernible ametric Dis 7.51	Distribution a	at 5% Signifi		95% Ja	otstrap-t L	JCL	7.527
67 68 69 70 71 72			9	95 Standard Bo 5% Hall's Bo	Nonpar 5% CLT UCL	Discernible ametric Dis 7.51 7.503	Distribution a	at 5% Signifi		95% Ja 95% Boo	otstrap-t L	JCL	7.527
67 68 69 70 71 72 73			9	95 Standard Bo 5% Hall's Bo 95% BCA Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible ametric Dis 7.51 7.503 7.525	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo	otstrap-t L	JCL	7.527 7.514
67 68 69 70 71 72 73 74			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76 77			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76 77 78			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61 Suggested	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t L ootstrap L ean, Sd) L	JCL JCL	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76 77 78 79		ote: Sugges	9 90% Ch 97.5% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me 95% Stu	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61 Suggested 7.516	UCL to Use	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me	otstrap-t L ootstrap L ean, Sd) L ean, Sd) L	JCL JCL	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch	95% Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me 95% Stu ing the select	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61 Suggested 7.516 UCL are pr	UCL to Use	e UCLs	95% F 95% Ch 99% Ch select the m	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL JCL UCL.	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			9 90% Ch 97.5% Ch stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me 95% Stu 95% Stu	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61 Suggested 7.516 UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel imulation stud	e UCLs	95% F 95% Ch 99% Ch 99% Ch select the m	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me nost appropr	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL JCL UCL.	7.527 7.514 8.159
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me 95% Stu ing the selec ing the selec ins are based and Singh (2	Nonpar Nonpar S% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) VCL pan, Sd) VCL pa	Discernible ametric Dis 7.51 7.503 7.525 7.511 7.834 8.61 Suggested 7.516 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m ized in Singh	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me nost appropr	otstrap-t L potstrap L ean, Sd) L ean, Sd) L	JCL JCL JCL JCL UCL.	7.516 7.527 7.514 8.159 9.496

1	A B C	D E	F	G H I J K	L
1		UCL Statist	ics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:47:07 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Copper				
12					
13			General S	Statistics	
14	Total	Number of Observations	67	Number of Distinct Observations	37
15				Number of Missing Observations	0
16		Minimum	5.3	Mean	27.07
17		Maximum	230	Median	21
18		SD	27.75	Std. Error of Mean	3.39
19		Coefficient of Variation	1.025	Skewness	6.173
20				· · · · · · · · · · · · · · · · · · ·	
21			Normal G	OF Test	
22	S	hapiro Wilk Test Statistic	0.458	Shapiro Wilk GOF Test	
23		5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.266	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.108	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 59	% Significance Level	
27					
28		Ass	suming Norm	nal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	32.72	95% Adjusted-CLT UCL (Chen-1995)	35.38
31				95% Modified-t UCL (Johnson-1978)	33.15
32					
33			Gamma G	GOF Test	
34		A-D Test Statistic	2.613	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.759	Data Not Gamma Distributed at 5% Significance Leve	əl
36		K-S Test Statistic	0.16	Kolmogrov-Smirnoff Gamma GOF Test	
37		5% K-S Critical Value	0.11	Data Not Gamma Distributed at 5% Significance Leve	əl
38		Data Not Gamn	na Distribute	d at 5% Significance Level	
39					
40			Gamma S		
41		k hat (MLE)	2.786	k star (bias corrected MLE)	2.671
42		Theta hat (MLE)	9.716	Theta star (bias corrected MLE)	10.13
43		nu hat (MLE)	373.3	nu star (bias corrected)	357.9
44	MI	LE Mean (bias corrected)	27.07	MLE Sd (bias corrected)	16.56
45				Approximate Chi Square Value (0.05)	315.1
46	Adjus	sted Level of Significance	0.0464	Adjusted Chi Square Value	314.2
47					
		Ass	uming Gam	ma Distribution	
48			· · ·		
	95% Approximate Gamma	UCL (use when n>=50))	30.75	95% Adjusted Gamma UCL (use when n<50)	30.84

	A	В	С	D	E	F	G	Н		J	K		
51						Lognorma	GOF Test						
52			S	hapiro Wilk	Test Statistic	0.944		Shap	oiro Wilk Log	normal GO	F Test		
53			:	5% Shapiro	Wilk P Value	0.00907		Data Not	Lognormal at	t 5% Signific	ance Le	evel	
54				Lilliefors	Test Statistic	0.101		Lil	liefors Logno	ormal GOF	Test		
55			5	% Lilliefors	Critical Value	0.108		Data appea	r Lognormal	at 5% Signi	ficance L	_evel	
56				Data a	appear Appro	ximate Logr	normal at 5%	Significanc	e Level				
57													
58						Lognorma	I Statistics						
59				Minimum of	Logged Data	1.668				Mean of	flogged	Data	3.108
60			Ν	Maximum of	Logged Data	5.438				SD of	flogged	Data	0.54
61													
62							ormal Distrib	ution					
63					95% H-UCL	29.44				Chebyshev	. ,		31.34
64				-	(MVUE) UCL	33.82			97.5%	Chebyshev	(MVUE)	UCL	37.25
65			99%	Chebyshev	(MVUE) UCL	44							
66													
67					Nonparame								
67 68				Data appea	Nonparame ar to follow a l				icance Level				
				Data appea	ar to follow a	Discernible	Distribution a	at 5% Signif	icance Level				
68					ar to follow a l Nonpar	Discernible rametric Dis		at 5% Signif	icance Level				
68 69 70				9	ar to follow a l Nonpar 5% CLT UCL	Discernible rametric Dis 32.65	Distribution a	at 5% Signif	icance Level	95% Ja	ackknife		
68 69 70 71				99 Standard B	n to follow a l Nonpar 5% CLT UCL potstrap UCL	Discernible rametric Dis 32.65 32.75	Distribution a	at 5% Signif		95% Ja 95% Bo	otstrap-t	UCL	39.8
68 69 70 71 72			9	99 Standard Bo 5% Hall's Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible rametric Dis 32.65 32.75 55.69	Distribution a	at 5% Signif		95% Ja	otstrap-t	UCL	39.8
68 69 70 71 72 73			9	9 Standard B 5% Hall's B 95% BCA B	Nonpar 5% CLT UCL ootstrap UCL ootstrap UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31	Distribution a	at 5% Signif	95% F	95% Ja 95% Boo Percentile Bo	otstrap-t ootstrap	UCL UCL	39.8 33.18
68 69 70 71 72 73 74			9 90% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo nebyshev(Me	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24	Distribution a	at 5% Signif	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)	UCL UCL	39.8 33.18 41.85
68 69			9 90% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo nebyshev(Me	Nonpar 5% CLT UCL ootstrap UCL ootstrap UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31	Distribution a	at 5% Signif	95% F 95% Ch	95% Ja 95% Boo Percentile Bo	otstrap-t ootstrap ean, Sd)	UCL UCL	32.72 39.8 33.18 41.85 60.8
68			9 90% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo nebyshev(Me	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24	Distribution a	at 5% Signif	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)	UCL UCL	39.8 33.18 41.85
68			9 90% Ch 97.5% Ch	9 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Mo ebyshev(Mo	Nonpar 5% CLT UCL ootstrap UCL ootstrap UCL ootstrap UCL ootstrap UCL ean, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24 Suggested	Distribution a	at 5% Signif	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)	UCL UCL	39.8 33.18 41.85
68 69 70 71 72 73 74 75 76 77 78			9 90% Ch 97.5% Ch	9 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Mo ebyshev(Mo	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24	Distribution a	at 5% Signif	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)	UCL UCL	39.8 33.18 41.85
68 69 70 71 72 73 74 75 76 77 78 79			9 90% Ch 97.5% Ch 95% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me rebyshev(Me	Nonpar 5% CLT UCL ootstrap UCL ootstrap UCL ootstrap UCL ootstrap UCL ean, Sd) UCL ean, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24 Suggested 41.85	UCL to Use	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile B ebyshev(Me ebyshev(Me	otstrap-t ootstrap ean, Sd) ean, Sd)	UCL UCL UCL	39.8 33.18 41.85 60.8
68			9 90% Ch 97.5% Ch 95% Ch stions regard	9 Standard B 5% Hall's B 95% BCA B ebyshev(Me ebyshev(Me ebyshev(Me	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24 Suggested 41.85 0 UCL are pro-	UCL to Use	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Bo Percentile B ebyshev(Me ebyshev(Me	otstrap-t ootstrap ean, Sd) ean, Sd)		39.8 33.18 41.85 60.8
68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch 95% Ch stions regard ommendation	99 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me rebyshev(Me rebyshev (Me rebyshev (Me	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24 Suggested 41.85 0 UCL are products of the si	Distribution a tribution Free UCL to Use ovided to hel mulation stud	e UCLs	95% F 95% Ch 99% Ch 99% Ch	95% Ja 95% Boo Percentile Boo ebyshev(Me ebyshev(Me ebyshev(Me	otstrap-t ootstrap ean, Sd) ean, Sd)		39.8 33.18 41.85 60.8
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			9 90% Ch 97.5% Ch 95% Ch stions regard ommendation	91 Standard Bd 5% Hall's Bd 95% BCA Bd rebyshev(Me rebyshev(Me rebyshev(Me rebyshev (Me rebyshev (Me rebyshev (Me rebyshev and bound the selection of the selec	Ar to follow a l Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24 Suggested 41.85 0 UCL are privation of the side of the	Distribution a tribution Free UCL to Use Ovided to hel mulation stud ons results wi	e UCLs e UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m rized in Singh all Real World	95% Ja 95% Boo Percentile Boo ebyshev(Me ebyshev(Me ebyshev(Me	otstrap-t ootstrap ean, Sd) ean, Sd)		39.8 33.18 41.85 60.8
68			9 90% Ch 97.5% Ch 95% Ch stions regard ommendation	91 Standard Bd 5% Hall's Bd 95% BCA Bd rebyshev(Me rebyshev(Me rebyshev(Me rebyshev (Me rebyshev (Me rebyshev (Me rebyshev and bound the selection of the selec	Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 32.65 32.75 55.69 35.31 37.24 48.24 Suggested 41.85 0 UCL are privation of the side of the	Distribution a tribution Free UCL to Use Ovided to hel mulation stud ons results wi	e UCLs e UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m rized in Singh all Real World	95% Ja 95% Boo Percentile Boo ebyshev(Me ebyshev(Me ebyshev(Me	otstrap-t ootstrap ean, Sd) ean, Sd)		39.8 33.18 41.85 60.8

	A B C	D E	F	G H I J K	L
1		UCL Statist	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:47:47 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Lead				
12					
13			General	Statistics	
14	Total	Number of Observations	90	Number of Distinct Observations	71
15				Number of Missing Observations	0
16		Minimum	2	Mean	71.95
17		Maximum	820	Median	10
18		SD	154.7	Std. Error of Mean	16.31
19		Coefficient of Variation	2.15	Skewness	2.97
20					
21			Normal C	GOF Test	
22		hapiro Wilk Test Statistic	0.508	Shapiro Wilk GOF Test	
23		5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.357	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.0934	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27					
28			suming Norr	nal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	101.0
30		95% Student's-t UCL	99.06	95% Adjusted-CLT UCL (Chen-1995)	104.2
31				95% Modified-t UCL (Johnson-1978)	99.91
32			0		
33		A D Test Statistic	8.897	GOF Test	
34		A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve	
35			0.832		
36		K-S Test Statistic 5% K-S Critical Value	0.251	Kolmogrov-Smirnoff Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve	<u></u>
37				ad at 5% Significance Level	/1
38					
39			Gamma	Statistics	
40		k hat (MLE)	0.445	k star (bias corrected MLE)	0.438
41		Theta hat (MLE)	161.7	Theta star (bias corrected MLE)	164.4
42		nu hat (MLE)	80.12	nu star (bias corrected)	78.78
43	М	LE Mean (bias corrected)	71.95	MLE Sd (bias corrected)	108.8
44				Approximate Chi Square Value (0.05)	59.33
45	Adius	sted Level of Significance	0.0473	Adjusted Chi Square Value	59.06
46	, lujuc				
47		Ass	umina Gam	ma Distribution	
48	95% Approximate Gamma		95.54	95% Adjusted Gamma UCL (use when n<50)	95.98
49 50					
50					

	A	В	C	D	E	F	G	Н	I	J	K	L	
51						Lognorma	I GOF Test						
52				•	Test Statistic	0.87		•		gnormal GO			
53				5% Shapiro	Wilk P Value	7.087E-11			•	it 5% Signifi			
54				Lilliefors	Test Statistic	0.175		Lilliefors Lognormal GOF Test					
55			5	% Lilliefors (Critical Value	0.0934		Data Not I	Lognormal a	it 5% Signifi	cance Leve		
56					Data Not L	ognormal at	t 5% Signific	ance Level					
57													
58						Lognorma	I Statistics						
59			I	Minimum of	Logged Data	0.693				Mean o	f logged Da	ta 2.82	
60			Ν	Maximum of	Logged Data	6.709				SD o	f logged Da	ta 1.54	
61													
62							ormal Distrib	ution					
63					95% H-UCL	88.94			90%	Chebyshev	(MVUE) UC	L 91.44	
64				-	(MVUE) UCL	108.3			97.5%	Chebyshev	(MVUE) UC	L 131.6	
65			99%	Chebyshev ((MVUE) UCL	177.5							
66													
67					Nonparame	etric Distribu	tion Free UC	L Statistics					
67 68					Nonparame Data do not fe				5)				
-									5)				
68					Data do not fe	ollow a Disc		ibution (0.05	5)				
68 69					Data do not fe	ollow a Disc	ernible Distr	ibution (0.05	6)	95% J	ackknife UC	L 99.06	
68 69 70			95%	95	Data do not fo Nonpar	ollow a Disc rametric Dis	ernible Distr	ibution (0.05	5)		ackknife UC otstrap-t UC		
68 69 70 71				99 Standard Bo	Data do not fo Nonpar	ollow a Disc rametric Dis 98.78	ernible Distr	ibution (0.05	<u>.</u>		otstrap-t UC	L 107.7	
68 69 70 71 72			9	99 Standard Bo 5% Hall's Bo	Data do not fo Nonpar 5% CLT UCL potstrap UCL	ollow a Disc rametric Dis 98.78 98.28	ernible Distr	ibution (0.05	<u>.</u>	95% Bo	otstrap-t UC	L 107.7	
68 69 70 71 72 73			9	99 Standard Bo 5% Hall's Bo 95% BCA Bo	Data do not fo Nonpar 5% CLT UCL potstrap UCL	ollow a Disc rametric Dis 98.78 98.28 102.1	ernible Distr	ibution (0.05	95%	95% Bo	otstrap-t UC ootstrap UC	L 107.7	
68 69 70 71 72 73 74			9 90% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo nebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	ollow a Disc rametric Dis 98.78 98.28 102.1 105	ernible Distr	ibution (0.05	95% Cł	95% Bo Percentile B	otstrap-t UC ootstrap UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143	
68 69 70 71 72 73 74 75			9 90% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo nebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	a Disc rametric Dis 98.78 98.28 102.1 105 120.9	ernible Distr	ibution (0.05	95% Cł	95% Bo Percentile B nebyshev(M	otstrap-t UC ootstrap UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143	
68 69 70 71 72 73 74 75 76			9 90% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo nebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	a Disc ametric Dis 98.78 98.28 102.1 105 120.9 173.8	ernible Distr	ibution (0.05	95% Cł	95% Bo Percentile B nebyshev(M	otstrap-t UC ootstrap UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143	
68 69 70 71 72 73 74 75 76 77 78			9 90% Ch 97.5% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	a Disc ametric Dis 98.78 98.28 102.1 105 120.9 173.8	ernible Distr	ibution (0.05	95% Cł	95% Bo Percentile B nebyshev(M	otstrap-t UC ootstrap UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143	
68 69 70 71 72 73 74 75 76 77 78 79			9 90% Ch 97.5% Ch	99 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me	Data do not fo Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	ollow a Disc rametric Dis 98.78 98.28 102.1 105 120.9 173.8 Suggested	ernible Distr	ibution (0.05	95% Cł	95% Bo Percentile B nebyshev(M	otstrap-t UC ootstrap UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143	
68 69 70 71 72 73 74 75 76 77 78 79		Note: Sugges	9 90% Ch 97.5% Ch 95% Che	99 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me rebyshev(Me	Data do not fo Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	ametric Dis 98.78 98.28 102.1 105 120.9 173.8 Suggested 143	tribution Free	e UCLs	95% 95% Cł 99% Cł	95% Bo Percentile B nebyshev(M nebyshev(M	otstrap-t UC ootstrap UC ean, Sd) UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143 EL 234.2	
68 69 70 71 72 73 74 75 76 77 78 79 80			9 90% Ch 97.5% Ch 95% Che stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me rebyshev(Me rebyshev(Me rebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	collow a Disc rametric Dis 98.78 98.28 102.1 105 120.9 173.8 Suggested 143 OUCL are pr	UCL to Use	e UCLs	95% 95% Ct 99% Ct 99% th select the n	95% Bo Percentile B nebyshev(Mi nebyshev(Mi nebyshev(Mi	otstrap-t UC ootstrap UC ean, Sd) UC ean, Sd) UC	EL 107.7 EL 100.3 EL 143 EL 234.2 CL.	
68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch 95% Che stions regard	99 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me rebyshev(Me rebyshev(Me rebyshev (Me	Data do not fe Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	cametric Dis 98.78 98.28 102.1 105 120.9 173.8 Suggested 143 0 UCL are pr ults of the si	tribution Free UCL to Use	e UCLs	95% 95% Cł 99% Cł 99% Cł select the n	95% Bo Percentile B nebyshev(M nebyshev(M nost appropri h, Singh, an	otstrap-t UC ootstrap UC ean, Sd) UC ean, Sd) UC ean, Sd) UC iate 95% U d Iaci (2002	EL 107.7 EL 100.3 EL 143 EL 234.2 CL.	
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			9 90% Ch 97.5% Ch 95% Che stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo rebyshev(Me rebyshev(Me rebyshev (Me rebyshev (Me rebyshev (Me rebyshev and bo rebyshev (Me rebyshev and bo rebyshev (Me rebyshev and bo rebyshev (Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	Suggested 143	tribution Free UCL to Use ovided to hel mulation stud	e UCLs	95% 95% Cr 99% Cr 99% Cr select the n ized in Sing all Real Worl	95% Bo Percentile B nebyshev(M nebyshev(M nost appropri h, Singh, an	otstrap-t UC ootstrap UC ean, Sd) UC ean, Sd) UC ean, Sd) UC iate 95% U d Iaci (2002	EL 107.7 EL 100.3 EL 143 EL 234.2 CL.	

	A B C D E	F	GHIJK	1
1		stics for Data	Sets with Non-Detects	
2				
3	User Selected Options			
4	Date/Time of Computation 1/9/2016 3:48:26 PM			
5	From File Metals Soil.xls			
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
10				
	Manganese			
12				
13		General	Statistics	
14	Total Number of Observations	5	Number of Distinct Observations	5
15			Number of Missing Observations	0
16	Minimum	230	Mean	304
17	Maximum	410	Median	290
18	SE	66.18	Std. Error of Mean	29.6
19	Coefficient of Variation	0.218	Skewness	1.106
20				
21	Note: Sample size is small (e.g., <	10), if data aı	e collected using ISM approach, you should use	
22	guidance provided in ITRC Tech Re	g Guide on I	SM (ITRC, 2012) to compute statistics of interest.	
23	For example, you may want	to use Cheby	shev UCL to estimate EPC (ITRC, 2012).	
24	Chebyshev UCL can be computed	using the No	nparametric and All UCL Options of ProUCL 5.0	
25				
26		Normal	GOF Test	
27	Shapiro Wilk Test Statistic	0.919	Shapiro Wilk GOF Test	
28	5% Shapiro Wilk Critical Value	0.762	Data appear Normal at 5% Significance Level	
29	Lilliefors Test Statistic	0.264	Lilliefors GOF Test	
30	5% Lilliefors Critical Value	0.396	Data appear Normal at 5% Significance Level	
31	Data app	ear Normal a	t 5% Significance Level	
32				
33	A	ssuming Nor	mal Distribution	
34	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
35	95% Student's-t UCL	. 367.1	95% Adjusted-CLT UCL (Chen-1995)	368.3
36			95% Modified-t UCL (Johnson-1978)	369.5
37		1	1	
38		Gamma	GOF Test	
39	A-D Test Statistic	0.305	Anderson-Darling Gamma GOF Test	
40	5% A-D Critical Value	0.679	Detected data appear Gamma Distributed at 5% Significance	e Level
41	K-S Test Statistic	0.234	Kolmogrov-Smirnoff Gamma GOF Test	
42	5% K-S Critical Value	0.357	Detected data appear Gamma Distributed at 5% Significance	e Level
43	Detected data appea	r Gamma Di	stributed at 5% Significance Level	
44				
45		Gamma	Statistics	
46	k hat (MLE	28.05	k star (bias corrected MLE)	11.35
47	Theta hat (MLE	10.84	Theta star (bias corrected MLE)	26.78
48	nu hat (MLE	280.5	nu star (bias corrected)	113.5
40	MLE Mean (bias corrected		MLE Sd (bias corrected)	90.22
49 50	· · · ·	1	Approximate Chi Square Value (0.05)	89.93
50				

	A	В	С	D	E	F	G	Н	1		К	
51	Λ	D	-	_	Significance	0.0086	u		Ac	ljusted Chi Squar		80.77
52												
53					As	suming Gam	ma Distribut	tion				
54	9	5% Approxir	mate Gamma	UCL (use w	hen n>=50))	383.8		95% Ad	justed Gamr	na UCL (use whe	en n<50)	427.3
55												
56						Lognormal	GOF Test					
57			S	hapiro Wilk	Fest Statistic	0.954		Shap	oiro Wilk Log	normal GOF Tes	st	
58			5% SI	napiro Wilk C	Critical Value	0.762		Data appea	r Lognormal	at 5% Significan	ce Level	
59				Lilliefors	Fest Statistic	0.229		Lill	iefors Logno	ormal GOF Test		
60			5	% Lilliefors C	Critical Value	0.396		Data appea	r Lognormal	at 5% Significan	ce Level	
61					Data appear	Lognormal	at 5% Signif	icance Leve				
62												
63						-	Statistics					
64					Logged Data	5.438				Mean of logg		5.699
65			Ν	laximum of l	Logged Data	6.016				SD of logg	ed Data	0.209
66												
67						uming Logno	rmal Distrib	ution				
68					95% H-UCL	384.8				Chebyshev (MVL	,	389
69				-	MVUE) UCL	427.6			97.5%	Chebyshev (MVL	JE) UCL	481.1
70			99%	Chebyshev (MVUE) UCL	586.3						
71												
72					•	etric Distribut						
73				Data appea	r to follow a	Discernible I	Distribution a	at 5% Signifi	cance Level			
74												
75						rametric Dist	ribution Free	e UCLs				
76					5% CLT UCL	352.7				95% Jackkr		367.1
77				Standard Bo	•	347.4				95% Bootstra		392.7
78				5% Hall's Bo		651.5			95% H	Percentile Bootst	rap UCL	346
79					otstrap UCL	358						
80					an, Sd) UCL	392.8				ebyshev(Mean, S	'	433
81			97.5% Ch	ebyshev(Me	an, Sd) UCL	488.8			99% Ch	ebyshev(Mean, S	sd) UCL	598.5
82												
83				050/ 03	<u> </u>	Suggested	UCL to Use					
84				95% Stu	dent's-t UCL	367.1			[1 1		
85				· ·								
86	I		-	-				•		iost appropriate 9		
87		These rec							-	n, Singh, and Iaci	(2002)	
88			and Singh		2003). Howev					d data sets.		
89				For ad	ditional insig	ht the user m	ay want to c	onsult a stati	stician.			
90												

A B C User Selected Options	D E UCL Statist	ics for Data	G H I J K Sets with Non-Detects	_
•				
•				
Date/Time of Computation	1/9/2016 3:49:06 PM			
From File	Metals Soil.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Mercury				
		General	Statistics	
Total	Number of Observations	67	Number of Distinct Observations	18
	Number of Detects	19	Number of Non-Detects	48
Νι	umber of Distinct Detects	17	Number of Distinct Non-Detects	2
	Minimum Detect	0.11	Minimum Non-Detect	0.1
	Maximum Detect	1.5	Maximum Non-Detect	0.2
	Variance Detects	0.113	Percent Non-Detects	71.64%
	Mean Detects	0.331	SD Detects	0.336
	Median Detects	0.2	CV Detects	1.016
	Skewness Detects	2.705	Kurtosis Detects	8.214
			SD of Logged Detects	0.727
	Norm	al GOF Tes	t on Detects Only	
SI		0.658	-	
	-	0.901	-	
	Lilliefors Test Statistic	0.256	Lilliefors GOF Test	
5	% Lilliefors Critical Value	0.203	Detected Data Not Normal at 5% Significance Level	
	Detected Data	Not Norma		
			`	
Kaplan-I	Meier (KM) Statistics usin	g Normal C	ritical Values and other Nonparametric UCLs	
· · ·	Mean	0.166	-	0.0255
	SD	0.203	95% KM (BCA) UCL	0.21
				0.211
	95% KM (z) UCL	0.208	95% KM Bootstrap t UCL	0.261
9		0.242	95% KM Chebyshev UCL	0.277
	-	0.325	99% KM Chebyshev UCL	0.42
	-			
	Gamma GOF	Tests on De	etected Observations Only	
	A-D Test Statistic	0.998	Anderson-Darling GOF Test	
	5% A-D Critical Value	0.754	Detected Data Not Gamma Distributed at 5% Significance	Level
	K-S Test Statistic	0.201	Kolmogrov-Smirnoff GOF	
	5% K-S Critical Value	0.201	Detected data appear Gamma Distributed at 5% Significance	e Level
	Detected data follow App	or. Gamma	Distribution at 5% Significance Level	
			· · · · · · · · · · · · · · · · · · ·	
	Gamma	Statistics or	Detected Data Only	
	k hat (MLE)	1.808	k star (bias corrected MLE)	1.558
	Theta hat (MLE)	0.183	Theta star (bias corrected MLE)	0.212
		0.183 68.72	Theta star (bias corrected MLE) nu star (bias corrected)	0.212 59.2
	Confidence Coefficient Number of Bootstrap Operations Mercury Total Nu Nu S S S S S S S S S S S S S S S S S	Confidence Coefficient 95% Number of Bootstrap Operations 2000 Mercury 2000 Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Maximum Detect Variance Detects Median Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic S% Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Mean Sb Sp 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL	Confidence Coefficient 95% Number of Bootstrap Operations 2000 Mercury General Total Number of Observations 67 Number of Detects 19 Number of Distinct Detects 17 Minimum Detect 0.11 Maximum Detect 0.113 Mean Detects 0.331 Mean Detects 0.22 Skewness Detects 2.705 Mean of Logged Detects 1.407 Mean of Logged Detects 1.407 Shapiro Wilk Test Statistic 0.658 5% Shapiro Wilk Test Statistic 0.203 Detected Data Not Normal 20203 Mean of Logged Detects 5% Lilliefors Test Statistic 0.203 Detected Data Not Normal Colspan="2">Colspan="2" Shapiro Wilk Test Statistic	Confidence Coefficient 95% Number of Bootstrap Operations 2000 Mercury Ceneral Statistics Confidence Coefficient 67 Number of Observations 67 Number of Distinct Observations 67 Number of Distinct Detects 19 Number of Distinct Detects 17 Number of Distinct Detects 17 Maximum Detect 0.11 Maximum Non-Detect Maximum Non-Detect Variance Detects 0.331 Stewness Detects 0.331 Stewness Detects 2.705 Kutosis Detects 0.407 Stewness Detects 2.705 Kutosis Detects 1.407 Stewness Detects 2.705 Kutosis Detects 1.407 Stewness Detects 0.208 Stewness Detects 0.208 Stapiro Wilk Test Statistic 0.658 Stapiro Wilk Test Statistic 0.268 Lillefors Critical Value 0.201 Detected Data Not Normal at 5% Significance Level Stapiro Wilk

	A B C D E	F	G	Н		J		K	L
51									
52	Gamma	a Kaplan-M	eier (KM) S	tatistics					
53	k hat (KM)	0.668					nu ł	hat (KM)	89.5
54	Approximate Chi Square Value (89.50, α)	68.69			Adjusted	Chi Square	Value (8	39.50, β)	68.29
55	95% Gamma Approximate KM-UCL (use when n>=50)	0.216		95% Gam	ma Adjuste	d KM-UCL (use whe	en n<50)	0.217
56									
57	Gamma ROS S								
58	GROS may not be used when data se			•			DLs		
59	GROS may not be used v								
60	For such situations, GROS me		-						
61	For gamma distributed detected data, BTVs ar		iy be compi	uted using g	amma distri	bution on K	M estim		
62	Minimum	0.01						Mean	0.101
63	Maximum	1.5						Median	0.01
64	SD	0.228						CV	2.259
65	k hat (MLE)	0.458				k star (bias		,	0.447
66	Theta hat (MLE)	0.221			Ine	ta star (bias		,	0.226
67	nu hat (MLE) MLE Mean (bias corrected)	61.37 0.101				nu star MLE Sd		orrected)	59.96 0.151
68	MLE Mean (blas corrected)	0.101			م باند		•	,	0.151
69	Approximate Chi Square Value (59.96, α)	43.15			-	ted Level of	-		
70	95% Gamma Approximate UCL (use when n>=50)	0.14		0.5% (usted UCL (•	.,	42.84 0.141
71	95% Gamma Approximate OCL (use when h>-50)	0.14		95% (aanina Auji			en n<50)	0.141
72	Lognormal GOI	E Test on D	etected Oh	convotione (Only				
73	Shapiro Wilk Test Statistic	0.905			•	Wilk GOF T	oet		
74	5% Shapiro Wilk Critical Value	0.905	De	tected Data	-			ficance l	evel
75	Lilliefors Test Statistic	0.163			•••	rs GOF Tes	-		
76	5% Lilliefors Critical Value	0.203	De	tected Data				ficance L	evel
77 78	Detected Data ap	pear Logno							
79				-					
80	Lognormal ROS	Statistics	Using Impu	ted Non-De	tects				
81	Mean in Original Scale	0.116				Me	an in Lo	og Scale	-3.199
82	SD in Original Scale	0.223				:	SD in Lo	og Scale	1.477
83	95% t UCL (assumes normality of ROS data)	0.161			959	% Percentile	Bootst	rap UCL	0.163
84	95% BCA Bootstrap UCL	0.176				95%	Bootstra	ap t UCL	0.194
85	95% H-UCL (Log ROS)	0.186							
86									
87	UCLs using Lognormal Distribution and	KM Estimat	tes when D	etected data	a are Logno	ormally Dist	ributed		
88	KM Mean (logged)	-2.045						(M -Log)	0.171
89	KM SD (logged)	0.552			959	% Critical H	Value (ł	KM-Log)	1.902
90	KM Standard Error of Mean (logged)	0.0694							
91									
92		DL/2 S	tatistics						
93	DL/2 Normal				DL/2 Lo	g-Transform			
94	Mean in Original Scale	0.133						og Scale	-2.504
95	SD in Original Scale	0.216						og Scale	0.809
96	95% t UCL (Assumes normality)	0.177					<i>}</i> 5% H-Տ	Stat UCL	0.14
97	DL/2 is not a recommended me	thod, provie	ded for com	nparisons ar	nd historica	l reasons			
98									
99	Nonparamet								
100	Detected Data appear Approx	ximate Gan	nma Distrib	utea at 5% 3	Significanc	e levei			

	А	В	С	D	E	F	G	Н		J	K	L
101												
102						Suggested	UCL to Use					
103				95%	KM (t) UCL	0.208		9	5% GROS A	pproximate (Gamma UCL	0.14
104			95% Appro	ximate Gam	ma KM-UCL	0.216						
105												
106		Note: Sugge	stions regardi	ng the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the n	nost appropri	ate 95% UCL	
107			R	ecommenda	tions are ba	sed upon da	ta size, data o	distribution, a	and skewnes	SS.		
108		These reco	mmendations	are based u	ipon the resu	Its of the sin	nulation studi	es summariz	ed in Singh,	Maichle, an	d Lee (2006).	
109	Ho	wever, simu	lations results	s will not cov	er all Real V	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistic	an.
110												

	A B C	D E	F	G H I J K	1
1			•	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 4:21:34 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
-	Molybdenum				
11					
12			General	Statistics	
13	Total	Number of Observations	67	Number of Distinct Observations	3
14		Number of Detects	6	Number of Non-Detects	61
14	Ν	umber of Distinct Detects	2	Number of Distinct Non-Detects	1
		Minimum Detect	0.5	Minimum Non-Detect	1
16 17		Maximum Detect	0.803	Maximum Non-Detect	1
		Variance Detects	0.0153	Percent Non-Detects	91.04%
18		Mean Detects	0.551	SD Detects	0.124
19		Median Detects	0.5	CV Detects	0.225
20		Skewness Detects	2.449	Kurtosis Detects	6
21		Mean of Logged Detects	-0.614	SD of Logged Detects	0.193
22					
23		Norm	al GOF Tes	t on Detects Only	
24	S	hapiro Wilk Test Statistic	0.496	Shapiro Wilk GOF Test	
25		hapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level	
26		Lilliefors Test Statistic	0.492	Lilliefors GOF Test	
27	5	% Lilliefors Critical Value	0.362	Detected Data Not Normal at 5% Significance Level	
28 29			a Not Norma	l at 5% Significance Level	
30	Kaplan-	Meier (KM) Statistics usir	na Normal C	ritical Values and other Nonparametric UCLs	
31		Mean	0.551	Standard Error of Mean	0.0505
32		SD	0.113	95% KM (BCA) UCL	N/A
33		95% KM (t) UCL	0.635	95% KM (Percentile Bootstrap) UCL	N/A
34		95% KM (z) UCL	0.634	95% KM Bootstrap t UCL	N/A
35 36		90% KM Chebyshev UCL	0.702	95% KM Chebyshev UCL	0.771
36		.5% KM Chebyshev UCL	0.866	99% KM Chebyshev UCL	1.053
37					
38 39		Gamma GOF	Tests on De	tected Observations Only	
39 40		A-D Test Statistic	1.719	Anderson-Darling GOF Test	
-		5% A-D Critical Value	0.697	Detected Data Not Gamma Distributed at 5% Significance	Level
41 42		K-S Test Statistic	0.507	Kolmogrov-Smirnoff GOF	
42		5% K-S Critical Value	0.332	Detected Data Not Gamma Distributed at 5% Significance	Level
				ributed at 5% Significance Level	
44 45					
		Gamma	Statistics or	Detected Data Only	
46		k hat (MLE)	29.13	k star (bias corrected MLE)	14.68
47		Theta hat (MLE)	0.0189	Theta star (bias corrected MLE)	0.0375
48		nu hat (MLE)	349.6	nu star (bias corrected)	176.1
49	M	LE Mean (bias corrected)	0.551	MLE Sd (bias corrected)	0.144
50	101		0.001		¥.1.17

	A B C D E	F	G	н		J		К	L
51		·	5		•				<u> </u>
52	Gamm	a Kaplan-M	eier (KM) St	atistics					
53	k hat (KM)	23.77					nu	hat (KM)	3185
54	Approximate Chi Square Value (N/A, α)	3055			Adjusted	l Chi Squ	are Value	e (N/A, β)	3052
55	95% Gamma Approximate KM-UCL (use when n>=50)	0.574		95% Gamma	a Adjustec	I KM-UCL	(use wh	en n<50)	0.574
56									<u>I</u>
57	Gamma ROS	Statistics us	sing Imputed	Non-Detec	ts				
58	GROS may not be used when data se	et has > 50%	NDs with m	nany tied obse	ervations a	at multiple	DLs		
59	GROS may not be used	when kstar c	f detected d	ata is small s	uch as < ().1			
60	For such situations, GROS m	ethod tends	to yield infla	ted values of	UCLs and	d BTVs			
61	For gamma distributed detected data, BTVs a	nd UCLs ma	y be compu	ted using gan	nma distril	oution on	KM estim	nates	
62	Minimum	0.338						Mean	0.553
63	Maximum	0.82						Median	0.538
64	SD	0.108						CV	0.195
65	k hat (MLE)	27.15				k star (bia	s correc	ted MLE)	25.94
66	Theta hat (MLE)	0.0204			Thet	a star (bia	as correct	ted MLE)	0.0213
67	nu hat (MLE)	3638				nu sta	ar (bias c	orrected)	3477
68	MLE Mean (bias corrected)	0.553				MLE S	d (bias c	orrected)	0.109
69					Adjust	ed Level	of Signific	cance (β)	0.0464
70	Approximate Chi Square Value (N/A, α)	3341			Adjusted	l Chi Squ	are Value	e (N/A, β)	3338
71	95% Gamma Approximate UCL (use when n>=50)	0.575		95% Ga	mma Adju	isted UCL	. (use wh	en n<50)	0.576
72									
73	Lognormal GO	F Test on D	etected Obs	ervations Or	nly				
74	Shapiro Wilk Test Statistic	0.496			Shapiro \	Wilk GOF	Test		
75	5% Shapiro Wilk Critical Value	0.788	D	etected Data	Not Logno	ormal at 5	% Signifi	cance Le	vel
76	Lilliefors Test Statistic	0.492			Lilliefo	rs GOF T	est		
77	5% Lilliefors Critical Value	0.362	D	etected Data	Not Logno	ormal at 5	% Signifi	cance Le	vel
78	Detected Data	Not Lognorm	nal at 5% Sig	gnificance Le	vel				
79									
80	Lognormal ROS	S Statistics	Jsing Imput	ed Non-Dete	cts				
81	Mean in Original Scale	0.548				Ν	lean in L	og Scale	-0.614
82	SD in Original Scale	0.091					SD in L	og Scale	0.162
83	95% t UCL (assumes normality of ROS data)	0.567			95%	6 Percent	ile Boots	trap UCL	0.566
84	95% BCA Bootstrap UCL	0.567				95%	6 Bootstr	ap t UCL	0.567
85	95% H-UCL (Log ROS)	0.567							
86									
87		DL/2 S	atistics						
88	DL/2 Normal				DL/2 Log	J-Transfo	rmed		
89	Mean in Original Scale	0.505				Ν	lean in L	og Scale	-0.686
90	SD in Original Scale	0.037					SD in L	og Scale	0.0579
91	95% t UCL (Assumes normality)	0.512					95% H-	Stat UCL	N/A
92	DL/2 is not a recommended me	ethod, provid	ded for com	parisons and	historical	reasons			
93									
94	Nonparame	etric Distribu	tion Free UC	CL Statistics					
95	Data do not follow a Di	iscernible Di	stribution at	5% Significa	ance Leve				
96									
97		Suggested	UCL to Use						
98	95% KM (t) UCL	0.635			ç	95% KM ('	% Bootst	rap) UCL	N/A
99	Warning: One or n	more Recom	mended UC	L(s) not avai	lable!				L
100									
			L	1			I		<u>,</u>

	А	В	С	D	Е	F	G	Н	I	J	K	L
101		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropria	ate 95% UCL	
102			R	ecommenda	tions are ba	sed upon dat	a size, data o	distribution, a	and skewnes	S.		
103		These recor	nmendations	are based u	pon the resu	lts of the sim	ulation studi	es summariz	ed in Singh,	Maichle, and	Lee (2006).	
104	Ho	owever, simul	lations results	s will not cov	er all Real V	/orld data se	ts; for additio	nal insight th	ie user may	want to consi	ult a statistici	an.
105												

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:50:29 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Nickel				
12					
13			General		
14	Total	Number of Observations	67	Number of Distinct Observations	28
15				Number of Missing Observations	0
16		Minimum	6.5	Mean	16.26
17		Maximum	36	Median	16
18		SD	5.196	Std. Error of Mean	0.635
19		Coefficient of Variation	0.319	Skewness	1.274
20			N a sure a l d		
21		hansing Mills Tarat Otatiatia		GOF Test	
22		hapiro Wilk Test Statistic	0.922	Shapiro Wilk GOF Test	
23		5% Shapiro Wilk P Value Lilliefors Test Statistic		Data Not Normal at 5% Significance Level Lilliefors GOF Test	
24	E	% Lilliefors Critical Value	0.13	Data Not Normal at 5% Significance Level	
25	5			% Significance Level	
26			Normal at 5		
27		۵۵	suming Nor	nal Distribution	
28	95% Nr	ormal UCL	Suming Non	95% UCLs (Adjusted for Skewness)	
29	00/01/10	95% Student's-t UCL	17.32	95% Adjusted-CLT UCL (Chen-1995)	17.41
30			17.02	95% Modified-t UCL (Johnson-1978)	17.34
31					
32			Gamma	GOF Test	
33		A-D Test Statistic	0.553	Anderson-Darling Gamma GOF Test	
34 35		5% A-D Critical Value	0.751	Detected data appear Gamma Distributed at 5% Significan	ce Level
36		K-S Test Statistic	0.0914	Kolmogrov-Smirnoff Gamma GOF Test	
30		5% K-S Critical Value	0.109	Detected data appear Gamma Distributed at 5% Significant	ce Level
38		Detected data appear	Gamma Di	stributed at 5% Significance Level	
39					
40			Gamma	Statistics	
41		k hat (MLE)	10.76	k star (bias corrected MLE)	10.29
42		Theta hat (MLE)	1.511	Theta star (bias corrected MLE)	1.581
43		nu hat (MLE)	1442	nu star (bias corrected)	1379
44	MI	LE Mean (bias corrected)	16.26	MLE Sd (bias corrected)	5.071
45				Approximate Chi Square Value (0.05)	1293
46	Adjus	sted Level of Significance	0.0464	Adjusted Chi Square Value	1292
47					
48		Ass	uming Gam	ma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50)	17.34	95% Adjusted Gamma UCL (use when n<50)	17.36

	A	В	C	D	E	F	G	Н		J	K		L
51						Lognorma	I GOF Test						
52			S	hapiro Wilk	Test Statistic	0.981		Shap	oiro Wilk Log	normal GO	F Test		
53			ļ	5% Shapiro	Wilk P Value	0.667		Data appea	r Lognormal	at 5% Signi	ficance Le	evel	
54				Lilliefors	Test Statistic	0.0985		Lill	iefors Logno	ormal GOF	Test		
55			5	% Lilliefors (Critical Value	0.108		Data appea	r Lognormal	at 5% Signi	ficance Le	evel	
56					Data appear	Lognormal	at 5% Signif	icance Leve					
57													
58						Lognormal Statistics							
59				Minimum of	Logged Data	1.872				Mean of	logged D	ata	2.742
60			Ν	laximum of	Logged Data	3.584				SD of	logged D	ata	0.31
61													
62					Assu	iming Logno	ormal Distrib	ution					
63					95% H-UCL	17.41			90%	Chebyshev	(MVUE) U	ICL	18.16
64			95% (Chebyshev ((MVUE) UCL	19.01			97.5%	Chebyshev	(MVUE) U	ICL	20.2
65			99% (Chebyshev ((MVUE) UCL	22.53							
66					1								
66													
67	Nonnoromotria Distribution Eros UCL Statistics												
				Data appea	Nonparame ar to follow a I				cance Level				
67				Data appea					cance Level				
67 68				Data appea	ar to follow a I	Discernible		at 5% Signifi	cance Level				
67 68 69					ar to follow a I	Discernible	Distribution a	at 5% Signifi	cance Leve		ackknife U	ICL	17.32
67 68 69 70			95%	95	ar to follow a I Nonpar	Discernible rametric Dis	Distribution a	at 5% Signifi	cance Leve	95% Ja	ackknife U otstrap-t U	_	17.32 17.49
67 68 69 70 71				95 Standard Bo	ar to follow a I Nonpar	Discernible rametric Dis 17.31	Distribution a	at 5% Signifi		95% Ja	otstrap-t U	ICL	
67 68 69 70 71 72			9	95 Standard Bo 5% Hall's Bo	n to follow a I Nonpar 5% CLT UCL	Trametric Dis 17.31 17.3	Distribution a	at 5% Signifi		95% Ja 95% Boo	otstrap-t U	ICL	17.49
67 68 69 70 71 72 73			9	95 Standard Bo 5% Hall's Bo 95% BCA Bo	Nonpar 5% CLT UCL potstrap UCL	Discernible rametric Dis 17.31 17.3 17.51	Distribution a	at 5% Signifi	95% F	95% Ja 95% Boo	otstrap-t U ootstrap U		17.49
67 68 69 70 71 72 73 74			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL	Trametric Dis 17.31 17.3 17.5 17.48	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo	otstrap-t U ootstrap U ean, Sd) U		17.49 17.35
67 68 69 70 71 72 73 74 75			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible ametric Dis 17.31 17.3 17.51 17.48 18.17	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76			9 9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 17.31 17.3 17.51 17.48 18.17 20.23	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76 77 78			9 90% Ch 97.5% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 17.31 17.3 17.51 17.48 18.17 20.23	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76 77			9 90% Ch 97.5% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible rametric Dis 17.31 17.3 17.51 17.48 18.17 20.23 Suggested	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76 77 78 79		lote: Sugges	9 90% Ch 97.5% Ch 95% A	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me	Nonpar Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL	Discernible ametric Dis 17.31 17.3 17.51 17.48 18.17 20.23 Suggested 17.34	UCL to Use	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76 77 78 79 80			9 90% Ch 97.5% Ch 95% A 95% A	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me pproximate 0 ing the select	Ar to follow a I Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL Gamma UCL	Discernible rametric Dis 17.31 17.3 17.51 17.48 18.17 20.23 Suggested 17.34	USE to USE	e UCLs	95% F 95% Ch 99% Ch select the m	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82			9 90% Ch 97.5% Ch 95% A stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me pproximate of ing the select ing the select is are based	Ar to follow a I Nonpar 5% CLT UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dotstrap UCL Dan, Sd) UCL Dan, Sd) UCL Dan, Sd) UCL Dan, Sd) UCL	Discernible ametric Dis 17.31 17.3 17.51 17.48 18.17 20.23 Suggested 17.34 0UCL are pr ults of the si	Distribution a tribution Free UCL to Use Ovided to hel imulation stud	e UCLs	95% F 95% Ch 99% Ch 99% Ch select the m	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me nost appropr	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U		17.49 17.35 19.03
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch 95% A stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me pproximate 0 ing the select ing the select ing the select ing the select ing the select	Ar to follow a I Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL ction of a 95% upon the res	Discernible rametric Dis 17.31 17.3 17.51 17.48 18.17 20.23 Suggested 17.34 UCL are pr ults of the si er, simulatic	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs e UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m ized in Singh	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me nost appropr	otstrap-t U ootstrap U ean, Sd) U ean, Sd) U ean, Sd) U		17.49 17.35 19.03

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:51:16 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	N. / II				
11	Vanadium				
12			0		
13			General S		
14	lotal	Number of Observations	67	Number of Distinct Observations	30
15		N 41	10	Number of Missing Observations	0
16		Minimum	12	Mean	30.44
17		Maximum SD	59 7.362	Median Std. Error of Mean	29.5 0.899
18		Coefficient of Variation	0.242	Stu. Erfol of Mean Skewness	0.899
19		Coefficient of variation	0.242	Skewiless	0.009
20			Normal G	:OE Test	
21	9	hapiro Wilk Test Statistic	0.949	Shapiro Wilk GOF Test	
22		5% Shapiro Wilk P Value	0.017	Data Not Normal at 5% Significance Level	
23		Lilliefors Test Statistic	0.155	Lilliefors GOF Test	
24	5	% Lilliefors Critical Value	0.108	Data Not Normal at 5% Significance Level	
25				% Significance Level	
26					
27 28		As	suming Norn	nal Distribution	
20 29	95% No	ormal UCL	-	95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	31.94	95% Adjusted-CLT UCL (Chen-1995)	32.02
31				95% Modified-t UCL (Johnson-1978)	31.96
32					
33			Gamma G	GOF Test	
34		A-D Test Statistic	1.1	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.75	Data Not Gamma Distributed at 5% Significance Lev	el
36		K-S Test Statistic	0.146	Kolmogrov-Smirnoff Gamma GOF Test	
37		5% K-S Critical Value	0.109	Data Not Gamma Distributed at 5% Significance Lev	el
38		Data Not Gamr	na Distribute	d at 5% Significance Level	
39					
40			Gamma S	Statistics	
41		k hat (MLE)	17.48	k star (bias corrected MLE)	16.71
42		Theta hat (MLE)	1.741	Theta star (bias corrected MLE)	1.822
43		nu hat (MLE)	2343	nu star (bias corrected)	2239
44	M	LE Mean (bias corrected)	30.44	MLE Sd (bias corrected)	7.447
45				Approximate Chi Square Value (0.05)	2130
46	Adjus	sted Level of Significance	0.0464	Adjusted Chi Square Value	2128
47					
48			-	ma Distribution	
49	95% Approximate Gamma	a UCL (use when n>=50))	32	95% Adjusted Gamma UCL (use when n<50)	32.03
50					

	A	В	С	D	E	F	G	Н		J	K	(<u> </u>
51						Lognorma	I GOF Test						
52			S	hapiro Wilk	Test Statistic	0.96		Shap	oiro Wilk Log	normal GO	F Test		
53			:	5% Shapiro	Wilk P Value	0.0779		Data appea	r Lognormal	at 5% Signi	ficance	Level	
54				Lilliefors	Test Statistic	0.162		Lil	liefors Logno	ormal GOF	Test		
55			5	% Lilliefors	Critical Value	0.108		Data Not	Lognormal at	5% Signific	ance Le	evel	
56				Data	appear Appro	ximate Logr	normal at 5%	Significanc	e Level				
57													
58						Lognormal Statistics							
59				Minimum of	Logged Data	2.485				Mean of	flogged	Data	3.38
60			Ν	Maximum of	Logged Data	4.078				SD of	flogged	Data	0.246
61													
62							ormal Distrib	ution					
63					95% H-UCL	32.13				Chebyshev	,		33.26
64					(MVUE) UCL	34.52			97.5%	Chebyshev	(MVUE)	UCL	36.27
65			99%	Chebyshev	(MVUE) UCL	39.71							
66													
67	Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level												
67 68				Data appea	•				cance Level				
68				Data appea	ar to follow a	Discernible	Distribution a	at 5% Signifi	cance Level				
-					ar to follow a Nonpa	Discernible		at 5% Signifi	cance Level				
68 69 70				9	ar to follow a Nonpa	Discernible	Distribution a	at 5% Signifi	cance Level	95% Ja	ackknife		31.94
68 69			95%	9	ar to follow a Nonpa	Discernible rametric Dis	Distribution a	at 5% Signifi	cance Level				
68 69 70 71 72				9. Standard B	ar to follow a Nonpa	Discernible rametric Dis 31.92	Distribution a	at 5% Signifi		95% Ja	otstrap-t	UCL	32.06
68 69 70 71 72 73			9	9 Standard B 5% Hall's B 95% BCA B	Nonpa 5% CLT UCL ootstrap UCL ootstrap UCL	Discernible rametric Dis 31.92 31.95	Distribution a	at 5% Signifi	95% F	95% Ja 95% Bo Percentile B	otstrap-t ootstrap	UCL	32.06
68 69 70 71 72 73 74			9 90% Ch	9 Standard B 5% Hall's B 95% BCA B ebyshev(Me	Nonpa 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)		32.06 31.96 34.36
68			9 90% Ch	9 Standard B 5% Hall's B 95% BCA B ebyshev(Me	Nonpa 5% CLT UCL ootstrap UCL ootstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Bo Percentile B	otstrap-t ootstrap ean, Sd)		32.06 31.96 34.36
68 69 70 71 72 73 74 75 76			9 90% Ch	9 Standard B 5% Hall's B 95% BCA B ebyshev(Me	Nonpa 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)		32.06 31.96 34.36
68			9 90% Ch	9 Standard B 5% Hall's B 95% BCA B ebyshev(Me	Nonpa 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd)		32.06 31.96 34.36
68 69 70 71 72 73 74 75 76 77 78			9 90% Ch	9 Standard B 5% Hall's B 95% BCA B ebyshev(Me ebyshev(Me	Nonpa 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06	Distribution a	at 5% Signifi	95% F 95% Ch	95% Ja 95% Bo Percentile B ebyshev(Me	otstrap-t ootstrap ean, Sd) ean, Sd)	UCL	32.06 31.96 34.36 39.39
68 69 70 71 72 73 74 75 76 77 78 79			9 90% Ch 97.5% Ch	9. Standard B 5% Hall's B 95% BCA B rebyshev(Me rebyshev(Me 95% Stu	Ar to follow a Nonpa 5% CLT UCL Dootstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06 Suggested 31.94	Uistribution a	e UCLs	95% F 95% Ch 99% Ch	95% Ja 95% Boo Percentile Bo ebyshev(Me ebyshev(Me or 95% M	otstrap-t ootstrap ean, Sd) ean, Sd) odified-t		32.06 31.96 34.36 39.39 31.96
68 69 70 71 72 73 74 75 76 77 78 79 80			9 90% Ch 97.5% Ch	9 Standard B 5% Hall's B 95% BCA B rebyshev(Me ebyshev(Me 95% Stu	Ar to follow a Nonpa 5% CLT UCL Dootstrap UCL DOOTSTAP UCL DOOTST	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06 Suggested 31.94 5 UCL are pr	USE TO USE	e UCLs	95% F 95% Ch 99% Ch select the m	95% Ja 95% Bo Percentile B ebyshev(Me ebyshev(Me or 95% M	otstrap-t ootstrap ean, Sd) ean, Sd) odified-t		32.06 31.96 34.36 39.39 31.96
68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch	9 Standard B 5% Hall's B 95% BCA B rebyshev(Me ebyshev(Me 95% Stu	Ar to follow a Nonpa 5% CLT UCL Dootstrap UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06 Suggested 31.94 5 UCL are pr	USE TO USE	e UCLs	95% F 95% Ch 99% Ch select the m	95% Ja 95% Bo Percentile B ebyshev(Me ebyshev(Me or 95% M	otstrap-t ootstrap ean, Sd) ean, Sd) odified-t		32.06 31.96 34.36 39.39 31.96
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	1		9 90% Ch 97.5% Ch stions regard ommendation	9 Standard B 5% Hall's B 95% BCA B rebyshev(Me 95% Stu 95% Stu ling the sele ns are based and Singh (Ar to follow a Nonpa 5% CLT UCL Dootstrap UCL DOOTSTAP UCL DOOTST	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06 Suggested 31.94 6 UCL are pr sults of the si ver, simulation	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs e UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m ized in Singh all Real World	95% Ja 95% Boo Percentile Boo ebyshev(Me ebyshev(Me or 95% M or 95% M	otstrap-t ootstrap ean, Sd) ean, Sd) odified-t		32.06 31.96 34.36 39.39 31.96
68 69 70 71	1		9 90% Ch 97.5% Ch stions regard ommendation	9 Standard B 5% Hall's B 95% BCA B rebyshev(Me 95% Stu 95% Stu ling the sele ns are based and Singh (Ar to follow a Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	Discernible rametric Dis 31.92 31.95 32.16 32.03 33.14 36.06 Suggested 31.94 6 UCL are pr sults of the si ver, simulation	Distribution a tribution Free UCL to Use Ovided to hel imulation stud ons results wi	e UCLs e UCLs p the user to dies summar	95% F 95% Ch 99% Ch select the m ized in Singh all Real World	95% Ja 95% Boo Percentile Boo ebyshev(Me ebyshev(Me or 95% M or 95% M	otstrap-t ootstrap ean, Sd) ean, Sd) odified-t		31.94 32.06 31.96 34.36 39.39 31.96

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
4	Date/Time of Computation	1/9/2016 3:51:54 PM			
5	From File	Metals Soil.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Zinc				
12			0		
13	-		General		
14	l otal	Number of Observations	67	Number of Distinct Observations	46
15				Number of Missing Observations	0
16		Minimum	11	Mean	133.3
17		Maximum	4700 569.5	Median Std. Error of Mean	45
18		SD			69.57
19		Coefficient of Variation	4.273	Skewness	8.053
20			Normal C	GOF Test	
21		hapiro Wilk Test Statistic	0.176		
22		5% Shapiro Wilk P Value	0.176	Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level	
23		Lilliefors Test Statistic	0.443	Lilliefors GOF Test	
24	۲	% Lilliefors Critical Value	0.443	Data Not Normal at 5% Significance Level	
25				% Significance Level	
26					
27		As	sumina Norr	nal Distribution	
28		ormal UCL		95% UCLs (Adjusted for Skewness)	
29		95% Student's-t UCL	249.3	95% Adjusted-CLT UCL (Chen-1995)	320.8
30 31				95% Modified-t UCL (Johnson-1978)	260.7
31					
33			Gamma	GOF Test	
34		A-D Test Statistic	11.99	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.798	Data Not Gamma Distributed at 5% Significance Leve	el
36		K-S Test Statistic	0.311	Kolmogrov-Smirnoff Gamma GOF Test	
37		5% K-S Critical Value	0.114	Data Not Gamma Distributed at 5% Significance Leve	el
38		Data Not Gam	na Distribute	ed at 5% Significance Level	
39					
40			Gamma	Statistics	
41		k hat (MLE)	0.687	k star (bias corrected MLE)	0.666
42		Theta hat (MLE)	194	Theta star (bias corrected MLE)	200
43		nu hat (MLE)	92.06	nu star (bias corrected)	89.27
44	M	LE Mean (bias corrected)	133.3	MLE Sd (bias corrected)	163.3
45				Approximate Chi Square Value (0.05)	68.49
46	Adjus	sted Level of Significance	0.0464	Adjusted Chi Square Value	68.09
47				· · · · · · · · · · · · · · · · · · ·	
		Asa	suming Gam	ma Distribution	
48		////			
	95% Approximate Gamma		173.7	95% Adjusted Gamma UCL (use when n<50)	174.7

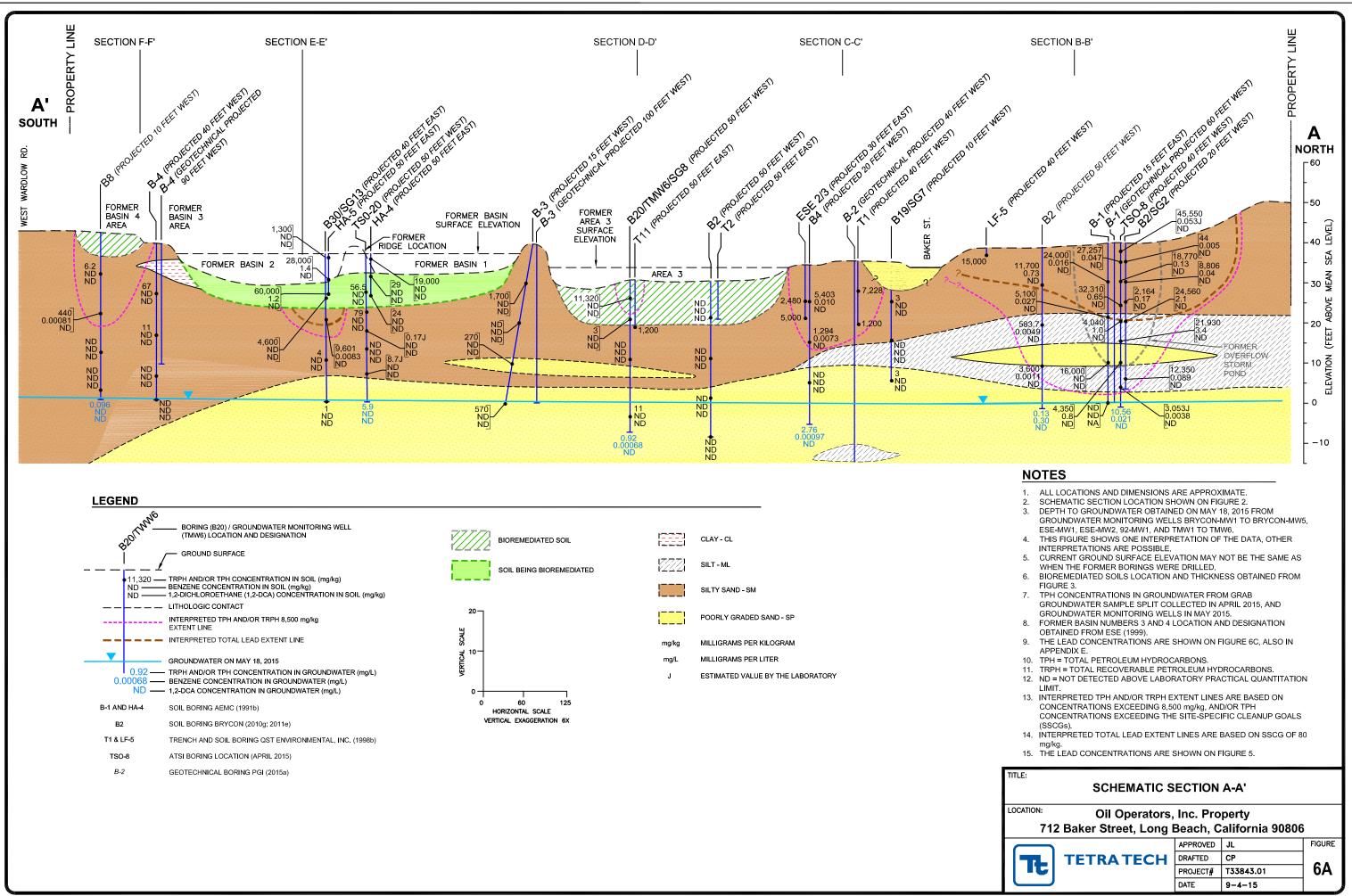
	A	В	С	D	E	F	G	Н		J	K	L
51						-	I GOF Test					
52				•	Test Statistic	0.784		•	oiro Wilk Log	•		
53				5% Shapiro	Wilk P Value	2.847E-13			_ognormal a	-		
54				Lilliefors	Test Statistic	0.17		Lill	iefors Logn	ormal GOF	Test	
55			5	% Lilliefors (Critical Value	0.108		Data Not I	_ognormal a	t 5% Signific	ance Level	
56					Data Not L	ognormal at	5% Signific	ance Level				
57												
58						Lognormal Statistics						
59					Logged Data	2.398					f logged Data	
60			Ν	Aaximum of	Logged Data	8.455				SD of	f logged Data	0.807
61												
62							ormal Distrib	ution				
63					95% H-UCL	94.21			90%	Chebyshev	(MVUE) UCL	101.3
64			95% (Chebyshev (MVUE) UCL	112.8			97.5%	Chebyshev	(MVUE) UCL	128.7
65			99%	Chebyshev (MVUE) UCL	160.1						
66												
67					Nonparame	tria Diatribur	Non Free LIC					
07					Nonparame		tion Free UC	L Statistics				
67 68					Data do not f				i)			
68					•				i)			
68 69					Data do not f	ollow a Disc		ibution (0.05	i)			
68 69 70					Data do not f	ollow a Disc	ernible Distr	ibution (0.05	i)	95% Ja	ackknife UCL	249.3
68 69 70 71			95%	95	Data do not f Nonpa	ollow a Disc rametric Dist	ernible Distr	ibution (0.05	i)		ackknife UCL otstrap-t UCL	
68 69 70 71 72				95 Standard Bo	Data do not f Nonpa	ollow a Disc rametric Dist 247.7	ernible Distr	ibution (0.05	<u>.</u>	95% Bo		
68 69 70 71 72 73			9	9t Standard Bo 5% Hall's Bo	Nonpar Nonpar S% CLT UCL	ollow a Disc rametric Dist 247.7 245.3	ernible Distr	ibution (0.05	<u>.</u>	95% Bo	otstrap-t UCL	1249
68 69 70 71 71 72 73 74			9	95 Standard Bo 5% Hall's Bo 95% BCA Bo	Nonpar Nonpar % CLT UCL potstrap UCL	rametric Dist 247.7 245.3 714.9	ernible Distr	ibution (0.05	95%	95% Boo Percentile B	otstrap-t UCL	1249 268.8
68			9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar % CLT UCL potstrap UCL potstrap UCL potstrap UCL	collow a Disc rametric Dist 247.7 245.3 714.9 347.7	ernible Distr	ibution (0.05	95% Cr	95% Boo Percentile B nebyshev(Me	otstrap-t UCL	1249 268.8
68 69 670 70 711 72 723 73 744 75 766 76			9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar % CLT UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL	rametric Disc 247.7 245.3 714.9 347.7 342	ernible Distr	ibution (0.05	95% Cr	95% Boo Percentile B nebyshev(Me	otstrap-t UCL ootstrap UCL ean, Sd) UCL	1249 268.8 436.5
68 69 70 71 72 73 74 75 76 77			9 90% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me	Nonpar Nonpar % CLT UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL	collow a Disc rametric Dist 247.7 245.3 714.9 347.7 342 567.7	ernible Distr	ibution (0.05	95% Cr	95% Boo Percentile B nebyshev(Me	otstrap-t UCL ootstrap UCL ean, Sd) UCL	1249 268.8 436.5
68 69 70 71 72 73 74 75 76 77 78			9 90% Ch 97.5% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Nonpar Nonpar % CLT UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL botstrap UCL	collow a Disc rametric Dist 247.7 245.3 714.9 347.7 342 567.7	ernible Distr	ibution (0.05	95% Cr	95% Boo Percentile B nebyshev(Me	otstrap-t UCL ootstrap UCL ean, Sd) UCL	1249 268.8 436.5
68 69 70 71 72 73 74 75 76 77 78 79			9 90% Ch 97.5% Ch	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me	Data do not f Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	collow a Disc rametric Dist 247.7 245.3 714.9 347.7 342 567.7 Suggested	ernible Distr	ibution (0.05	95% Cr	95% Boo Percentile B nebyshev(Me	otstrap-t UCL ootstrap UCL ean, Sd) UCL	1249 268.8 436.5
68 69 70 71 72 73 74 75 76 77 78 79 80		Note: Sugges	9 90% Ch 97.5% Ch 95% Che	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me	Data do not f Nonpar 5% CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL	ametric Dist 247.7 245.3 714.9 347.7 342 567.7 Suggested 436.5	ernible Distr tribution Free	e UCLs	95% Cr 95% Cr 99% Cr	95% Boo Percentile B nebyshev(Me	otstrap-t UCL ootstrap UCL ean, Sd) UCL ean, Sd) UCL	1249 268.8 436.5 825.5
68 69 70 71 72 73 74 75 76 77 78 79 80 81			9 90% Ch 97.5% Ch 95% Che stions regard	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me	Nonpar Nonpar Son CLT UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL potstrap UCL pan, Sd) UCL pan, Sd) UCL pan, Sd) UCL	collow a Disc rametric Dist 247.7 245.3 714.9 347.7 342 567.7 Suggested 436.5 OUCL are pro-	UCL to Use	e UCLs	95% P 95% Cr 99% Cr select the n	95% Boo Percentile B nebyshev(Me nebyshev(Me	otstrap-t UCL ootstrap UCL ean, Sd) UCL ean, Sd) UCL iate 95% UC	1249 268.8 436.5 825.5
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	1		9 90% Ch 97.5% Ch 95% Che stions regard ommendatior	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me ebyshev(Me ebyshev (Me	Nonpar Nonpar S% CLT UCL Dotstrap DOTSTRAP DOTSTR	cametric Dist 247.7 245.3 714.9 347.7 342 567.7 Suggested 436.5 OUCL are proults of the si	tribution Free UCL to Use ovided to hel	e UCLs	95% Cr 95% Cr 99% Cr 99% Cr select the n	95% Boo Percentile B nebyshev(Me nebyshev(Me nost appropr	otstrap-t UCL ootstrap UCL ean, Sd) UCL ean, Sd) UCL iate 95% UC	1249 268.8 436.5 825.5
-	1		9 90% Ch 97.5% Ch 95% Che stions regard ommendatior	95 Standard Bo 5% Hall's Bo 95% BCA Bo ebyshev(Me ebyshev(Me ebyshev (Me ing the selec ing the selec ns are based and Singh (2	Nonpar Nonpar S% CLT UCL Dotstrap UCL DOTSTR	Second state Second state rametric Dist 247.7 245.3 714.9 347.7 342 567.7 567.7 Suggested 436.5 o UCL are produits of the side 567.1	UCL to Use	e UCLs	95% 95% Cr 99% Cr 99% Cr select the n ized in Singl	95% Boo Percentile B nebyshev(Me nebyshev(Me nost appropr	otstrap-t UCL ootstrap UCL ean, Sd) UCL ean, Sd) UCL iate 95% UC	1249 268.8 436.5 825.5

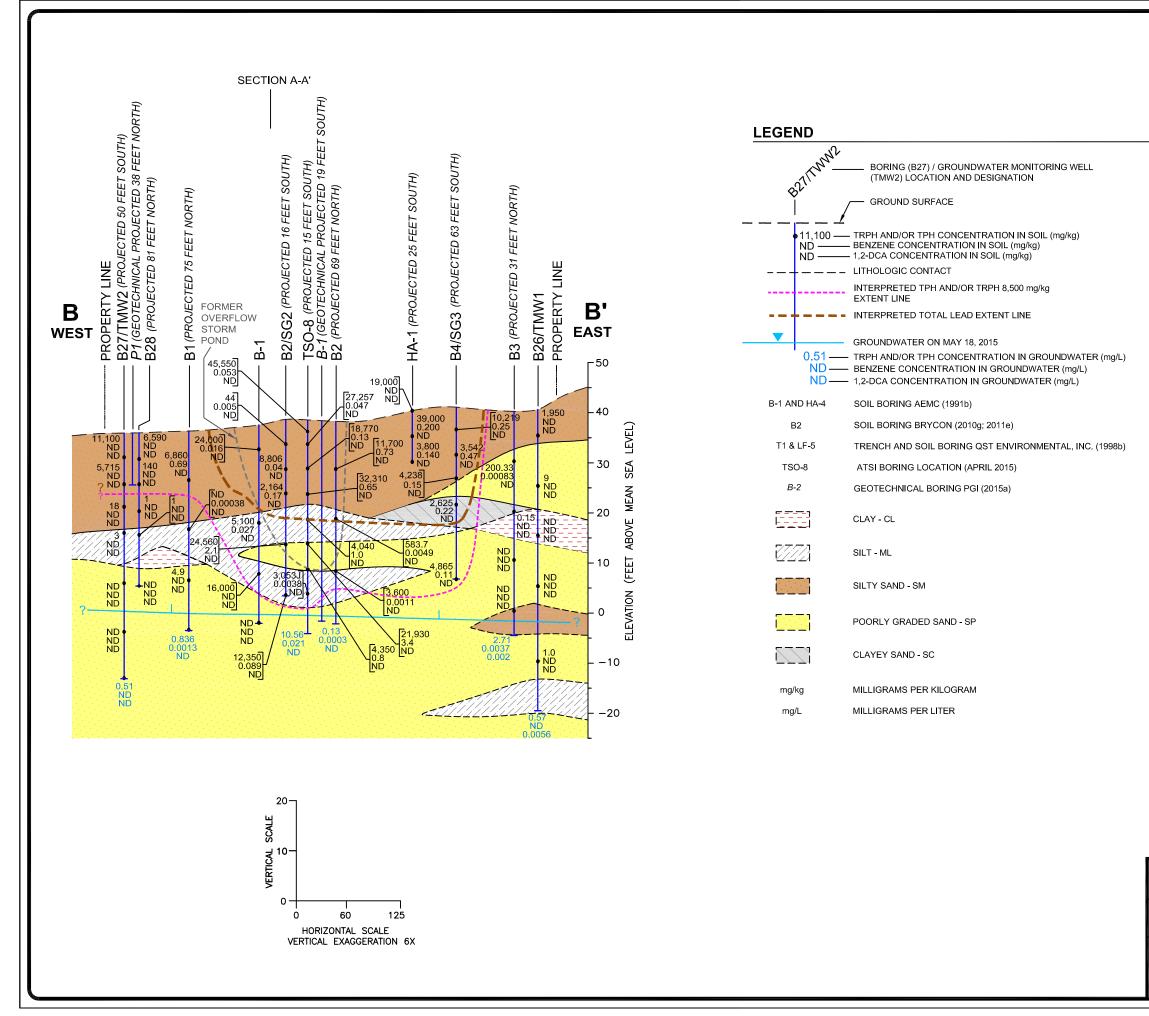
	А	В	С	D	E	F	G	Н	l	J	K	L
1				l	JCL Statist	ics for Data	Sets with N	Ion-Detects				
2												
3		User Sele	cted Options	6								
4	Date	e/Time of Co	omputation	1/9/2016 4:31:	40 PM							
5			From File	SVOCs Soil.xl	s							
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10	2-Methylnap	hthalene										
11												
12						General	Statistics					
13			Tota	I Number of Obs	servations	12			Numbe	r of Distinct (Observations	6
14				Number	of Detects	1				Number of	Non-Detects	11
15			N	lumber of Distin	ct Detects	1			Numbe	er of Distinct	Non-Detects	5
16												
17		-	-	nct data value w				-				
18	It is sugge	sted to use	alternative	site specific val	ues determ	nined by the	e Project Tea	am to estimat	te environm	ental param	eters (e.g., El	°C, BTV).
19												
20				The data se	et for varial	ble 2-Methy	/Inaphthalen	e was not pr	ocessed!			
21												
22												

	А	В	С	D	E	F	G	Н	l	J	K	L
1					UCL Statist	ics for Data	Sets with N	Ion-Detects				
2												
3		User Sele	cted Options	6								
4	Date	e/Time of Co	omputation	1/9/2016 4:32	:41 PM							
5			From File	SVOCs Soil.x	ls							
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10	bis(2-ethylh	exylphthala	te									
11												
12						General	Statistics					
13			Tota	I Number of Ob	servations	12			Numbe	r of Distinct (Observations	7
14				Number	of Detects	1				Number of	Non-Detects	11
15			N	lumber of Distin	ct Detects	1			Numbe	er of Distinct	Non-Detects	6
16												
17		-	-	nct data value v				-				
18	It is sugge	sted to use	alternative	site specific va	lues determ	nined by the	e Project Tea	am to estimat	te environm	ental param	eters (e.g., El	°C, BTV).
19												
20				The data set	for variable	e bis(2-ethy	lhexylphthal	late was not	processed!			
21												
22												

	A B C D E	F	G H I J K	L
1	-	tics for Data	Sets with Non-Detects	
2				
3	User Selected Options			
4	Date/Time of Computation 1/9/2016 3:39:59 PM			
5	From File Pesticides Soil.xls			
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
10	4,4´-DDT			
11				
12		General		
13	Total Number of Observations	5	Number of Distinct Observations	4
14	Number of Detects	3	Number of Non-Detects	2
15	Number of Distinct Detects	3	Number of Distinct Non-Detects	1
16	Minimum Detect	0.0031	Minimum Non-Detect	0.002
17	Maximum Detect		Maximum Non-Detect	0.002
18	Variance Detects		Percent Non-Detects	40%
19	Mean Detects	0.0059	SD Detects	0.00442
20	Median Detects	0.0036	CV Detects	0.75
21	Skewness Detects	1.707	Kurtosis Detects	N/A
22	Mean of Logged Detects	-5.304	SD of Logged Detects	0.692
23	Morring: D		only 3 Detected Values.	
04	warning: D	ata set nas c		
24	This is not anough to comm		-	
25	This is not enough to comp		offul or reliable statistics and estimates.	
25 26	This is not enough to comp		-	
25 26 27		oute meaning	ful or reliable statistics and estimates.	
25 26 27 28	Note: Sample size is small (e.g., <1	oute meaning 0), if data are	or reliable statistics and estimates.	
25 26 27 28 29	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg	oute meaning 0), if data and 9 Guide on IS	oful or reliable statistics and estimates. e collected using ISM approach, you should use GM (ITRC, 2012) to compute statistics of interest.	
25 26 27 28 29 30	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg For example, you may want to	0), if data ard Guide on IS Ouse Cheby	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012).	
25 26 27 28 29 30 31	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg For example, you may want to	0), if data ard Guide on IS Ouse Cheby	oful or reliable statistics and estimates. e collected using ISM approach, you should use GM (ITRC, 2012) to compute statistics of interest.	
25 26 27 28 29 30 31 32	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u	oute meaning 0), if data and g Guide on IS o use Cheby using the Nor	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012).	
25 26 27 28 29 30 31 32 33	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u	oute meaning 0), if data and g Guide on IS o use Cheby using the Nor	e collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). nparametric and All UCL Options of ProUCL 5.0	
25 26 27 28 29 30 31 32 33 34	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm	oute meaning 0), if data and g Guide on IS o use Cheby using the Noi nal GOF Test	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0	21
25 26 27 28 29 30 31 32 33 33 34 35	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic	oute meaning 0), if data and g Guide on IS o use Cheby using the Nor nal GOF Test 0.797	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test	21
25 26 27 28 29 30 31 32 33 34 35 36	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	oute meaning 0), if data and g Guide on IS o use Cheby using the Nor nal GOF Test 0.797 0.767	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve	
25 26 27 28 29 30 31 32 33 33 34 35 36 37	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0), if data and Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512	a collected using ISM approach, you should use E collected using ISM approach, you should use EM (ITRC, 2012) to compute statistics of interest. Shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 It on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test	
25 26 27 28 29 30 31 32 33 34 35 36 37 38	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0), if data and Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a	0), if data and g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Norm	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a	0), if data and g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Norm	a collected using ISM approach, you should use collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve al at 5% Significance Level	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a	oute meaning 0), if data and g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Normal C	a collected using ISM approach, you should use E collected using ISM approach, you should use EM (ITRC, 2012) to compute statistics of interest. Shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 It on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve al at 5% Significance Level Fitical Values and other Nonparametric UCLs	əl
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Kaplan-Meier (KM) Statistics usin	0), if data and g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Norm ng Normal C 0.00434	a collected using ISM approach, you should use collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve al at 5% Significance Level ritical Values and other Nonparametric UCLs Standard Error of Mean	el 0.00186
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Kaplan-Meier (KM) Statistics usin Mean	oute meaning 0), if data and g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Normal ng Normal C 0.00434 0.00339	a collected using ISM approach, you should use a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve al at 5% Significance Level ritical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL	el 0.00186 N/A
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Kaplan-Meier (KM) Statistics usin SD 95% KM (t) UCL	oute meaning 0), if data are g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Normal C 0.00434 0.00339 0.0083	a collected using ISM approach, you should use collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 to n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve all at 5% Significance Level ritical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.00186 N/A N/A
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Mean SD 95% KM (t) UCL	0), if data and g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Norm ng Normal C 0.00434 0.00339 0.0083 0.00739	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve Itiliefors GOF Test Detected Data appear Normal at 5% Significance Leve Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	0.00186 N/A N/A N/A
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Kaplan-Meier (KM) Statistics usin Mean SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	Oy, if data are g Guide on IS o use Cheby using the Nor aal GOF Test 0.797 0.767 0.365 0.512 appear Normal C 0.00434 0.00339 0.00739 0.00991 0.0159	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve al at 5% Significance Level ritical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL	0.00186 N/A N/A N/A 0.0124
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Note: Sample size is small (e.g., <1) guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Kaplan-Meier (KM) Statistics usin Mean SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	Oy, if data are g Guide on IS o use Cheby using the Nor aal GOF Test 0.797 0.767 0.365 0.512 appear Normal C 0.00434 0.00339 0.00739 0.00991 0.0159	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 to n Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve Itical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	0.00186 N/A N/A N/A 0.0124
25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Note: Sample size is small (e.g., <1 guidance provided in ITRC Tech Reg For example, you may want to Chebyshev UCL can be computed u Norm Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data a Kaplan-Meier (KM) Statistics usin Mean SD 95% KM (t) UCL 95% KM (z) UCL 97.5% KM Chebyshev UCL	Oute meaning 0), if data are g Guide on IS o use Cheby using the Nor al GOF Test 0.797 0.767 0.365 0.512 appear Normal C 0.00434 0.00339 0.00739 0.00739 0.00591 0.0159 Tests on De	a collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. shev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.0 t on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Leve Lilliefors GOF Test Detected Data appear Normal at 5% Significance Leve al at 5% Significance Level ritical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL	0.00186 N/A N/A N/A 0.0124

	A B C D E	F	G H I J K	L
51			Detected Data Only	
52	k hat (MLE)	3.071	k star (bias corrected MLE)	N/A
53	Theta hat (MLE)	0.00192	Theta star (bias corrected MLE)	N/A
54	nu hat (MLE)	18.43	nu star (bias corrected)	N/A
55	MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
56				
57			eier (KM) Statistics	
58	k hat (KM)	1.641	nu hat (KM)	16.41
59			Adjusted Level of Significance (β)	0.0086
60	Approximate Chi Square Value (16.41, α)	8.252	Adjusted Chi Square Value (16.41, β)	5.897
61	95% Gamma Approximate KM-UCL (use when n>=50)	0.00863	95% Gamma Adjusted KM-UCL (use when n<50)	0.0121
62				
63		F Test on D	etected Observations Only	
64	Shapiro Wilk Test Statistic	0.837	Shapiro Wilk GOF Test	
65	5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Le	evel
66	Lilliefors Test Statistic	0.346	Lilliefors GOF Test	
67	5% Lilliefors Critical Value	0.512	Detected Data appear Lognormal at 5% Significance Le	evel
68	Detected Data ap	pear Logno	rmal at 5% Significance Level	
69				
70	Lognormal ROS	S Statistics	Using Imputed Non-Detects	
71	Mean in Original Scale	0.00381	Mean in Log Scale	-6.12
72	SD in Original Scale	0.00424	SD in Log Scale	1.244
73	95% t UCL (assumes normality of ROS data)	0.00786	95% Percentile Bootstrap UCL	0.00687
74	95% BCA Bootstrap UCL	0.00741	95% Bootstrap t UCL	0.012
75	95% H-UCL (Log ROS)	0.196		
76				
77	UCLs using Lognormal Distribution and	KM Estimat	tes when Detected data are Lognormally Distributed	
78	KM Mean (logged)	-5.668	95% H-UCL (KM -Log)	0.0121
79	KM SD (logged)	0.625	95% Critical H Value (KM-Log)	3.377
80	KM Standard Error of Mean (logged)	0.342		
81				
82		DL/2 S	tatistics	
83	DL/2 Normal		DL/2 Log-Transformed	
84	Mean in Original Scale	0.00394	Mean in Log Scale	-5.946
85	SD in Original Scale	0.00412	SD in Log Scale	1.005
86	95% t UCL (Assumes normality)	0.00787	95% H-Stat UCL	0.0517
87	DL/2 is not a recommended me	ethod, provid	ded for comparisons and historical reasons	
88				
89	-		tion Free UCL Statistics	
90	Detected Data appear	r Normal Dis	stributed at 5% Significance Level	
91				
92		Suggested	UCL to Use	
93	95% KM (t) UCL	0.0083	95% KM (Percentile Bootstrap) UCL	N/A
94	Warning: One or n	nore Recom	mended UCL(s) not available!	
95				
96	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
97	Recommendations are bas	ed upon dat	a size, data distribution, and skewness.	
	These recommendations are based upon the resul	ts of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
98				
98 99	However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticia	an.


	А	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statist	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	cted Options	6								
4	Dat	e/Time of Co	omputation	1/9/2016 3:40):50 PM							
5			From File	Pesticides So	oil.xls							
6		Fu	Il Precision	OFF								
7		Confidence		95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10	Chlordane											
11												
12						General	Statistics					
13			Tota	Number of Ob	oservations	5			Numbe	r of Distinct C	Observations	2
14					of Detects	1					Non-Detects	4
15			N	umber of Distir	nct Detects	1			Numbe	er of Distinct	Non-Detects	1
16												
17		-	-	nct data value				-				
18	It is sugge	sted to use	alternative	site specific va	alues detern	nined by the	Project Tea	am to estimat	e environm	ental parame	eters (e.g., El	PC, BTV).
19												
20				The	data set for	variable Ch	lordane was	s not process	ed!			
21												
22												

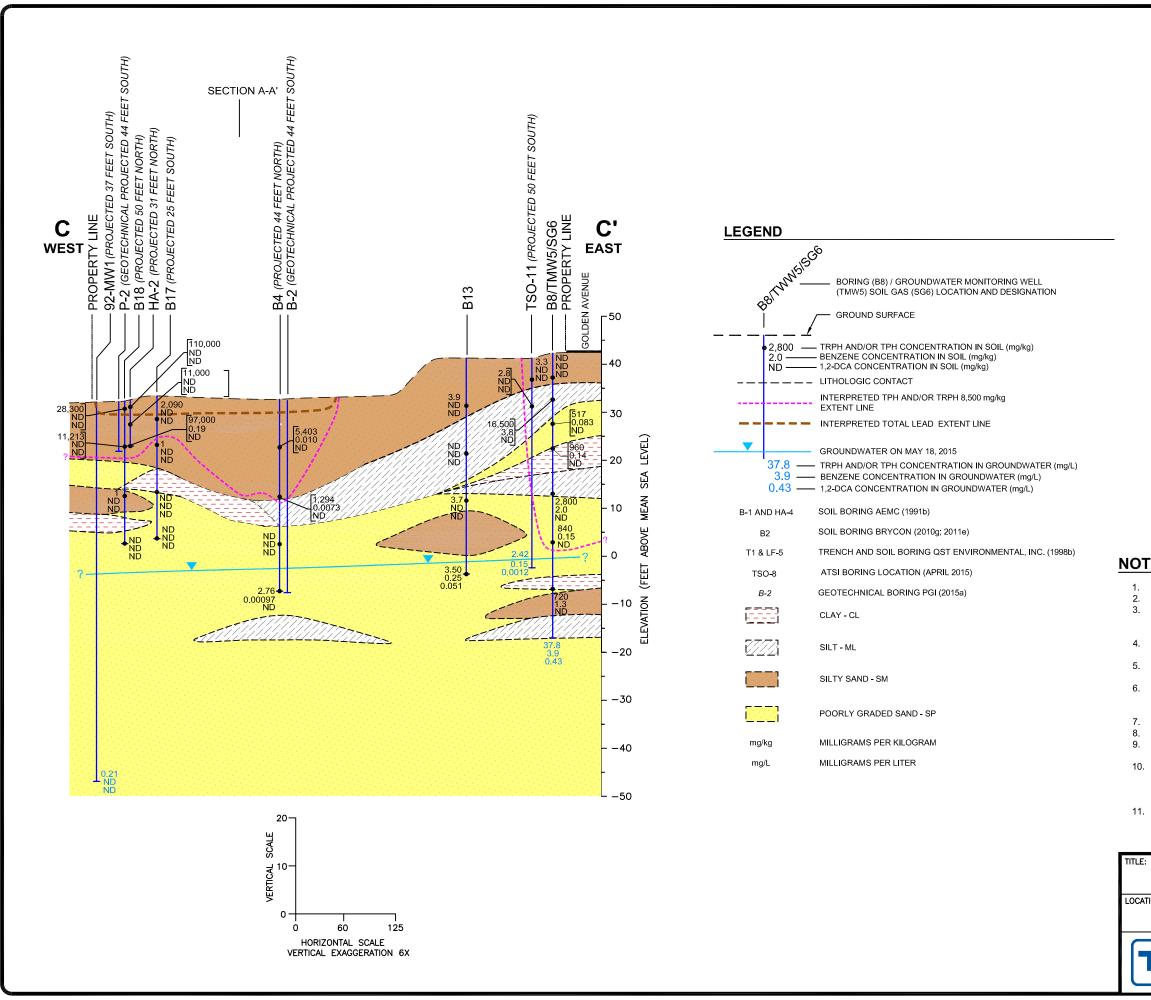

	A	В	С	D	E	F	G	Н	l	J	K	L
1					UCL Statist	tics for Data	a Sets with N	lon-Detects				
2												
3		User Sele	cted Options	6								
4	Date	e/Time of Co	omputation	1/9/2016 3:3	7:48 PM							
5			From File	PCBs Soil.xl	s							
6		-	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10	Aroclor 1254	1										
11												
12							Statistics					
13	Total Number of Observations			bservations	8			Numbe	4			
14					er of Detects	1			Number of Non-Detects			7
15			N	umber of Dist	inct Detects	1			Numbe	er of Distinct	Non-Detects	3
16												
17		-	-	nct data value				-				
18	It is sugge	sted to use	alternative	site specific v	alues detern	nined by the	e Project Tea	am to estimat	te environm	ental param	eters (e.g., El	°C, BTV).
19												
20				The	data set for v	variable Aro	clor 1254 wa	as not proces	sed!			
21												
22												

	А	В	С	D	E	F	G	Н	I	J	К	L
1					UCL Statist	tics for Data	Sets with N	lon-Detects				
2												
3		User Sele	cted Options	3								
4	Dat	e/Time of C	omputation	1/9/2016 3:38	8:50 PM							
5	From File PCBs Soil.xls				S							
6		-	Il Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10	Aroclor 126	0										
11												
12							Statistics					
13	Total Number of Observations			8			Numbe	4				
14					r of Detects	1			Number of Non-Detects			7
15			N	lumber of Distir	nct Detects	1			Numbe	er of Distinct	Non-Detects	3
16												
17		-	-	nct data value				-				
18	It is sugge	sted to use	alternative	site specific va	alues detern	nined by the	Project Tea	am to estimat	te environm	ental param	eters (e.g., El	°C, BTV).
19												
20				The d	lata set for v	ariable Aro	clor 1260 wa	as not proces	sed!			
21												
22												

APPENDIX B

Tetra Tech Geologic Cross Sections

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. SCHEMATIC SECTION LOCATION SHOWN ON FIGURE 2.
- 3. DEPTH TO GROUNDWATER OBTAINED ON MAY 18, 2015 FROM GROUNDWATER MONITORING WELLS BRYCON-MW1 TO BRYCON-MW5, ESE-MW1, ESE-MW2, 92-MW1, AND TMW1 TO TMW6.
- 4. THIS FIGURE SHOWS ONE INTERPRETATION OF THE DATA, OTHER INTERPRETATIONS ARE POSSIBLE.
- 5. CURRENT GROUND SURFACE ELEVATION MAY NOT BE THE SAME AS WHEN THE FORMER BORINGS WERE DRILLED.
- 6. TPH CONCENTRATIONS IN GROUNDWATER FROM GRAB GROUNDWATER SAMPLE SPLIT COLLECTED IN APRIL 2015, AND GROUNDWATER MONITORING WELLS IN MAY 2015.
- TPH = TOTAL PETROLEUM HYDROCARBONS.
- 8. TRPH = TOTAL RECOVERABLE PETROLEUM HYDROCARBONS.
- 9. ND = NOT DETECTED ABOVE LABORATORY PRACTICAL QUANTITATION LIMIT.
- 10. INTERPRETED TPH AND/OR TRPH EXTENT LINES ARE BASED ON CONCENTRATIONS EXCEEDING 8,500 mg/kg, AND/OR TPH CONCENTRATIONS EXCEEDING THE SITE-SPECIFIC CLEANUP GOALS (SSCGs).
- 11. INTERPRETED TOTAL LEAD EXTENT LINES ARE BASED ON SSCG OF 80 mg/kg.
- mg/kg. 12. THE LEAD CONCENTRATIONS ARE SHOWN ON FIGURE 5.

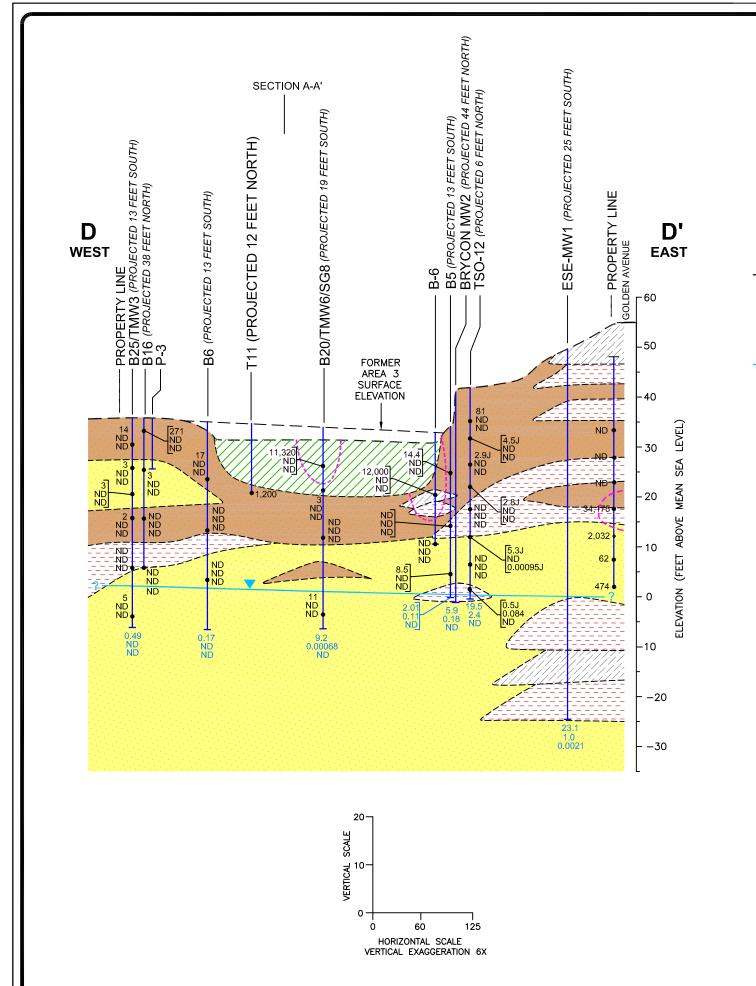

TITLE:

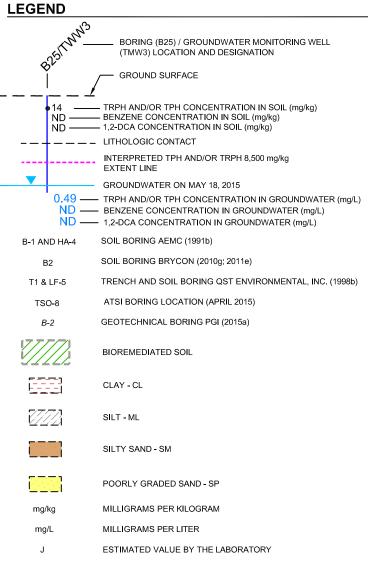
SCHEMATIC SECTION B-B'

LOCATION:

Oil Operators, Inc. Property 712 Baker Street, Long Beach, California 90806

		APPROVED	JL	FIGURE				
	TETRA TECH	DRAFTED	СР					
		PROJECT#	T33843.01	6B				
		DATE	9-4-15					


- ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- SCHEMATIC SECTION LOCATION SHOWN ON FIGURE 2. 2.
- DEPTH TO GROUNDWATER OBTAINED ON MAY 18, 2015 FROM 3. GROUNDWATER MONITORING WELLS BRYCON-MW1 TO BRYCON-MW5, ESE-MW1, ESE-MW2, 92-MW1, AND TMW1 TO TMW6.
- 4. THIS FIGURE SHOWS ONE INTERPRETATION OF THE DATA, OTHER INTERPRETATIONS ARE POSSIBLE.
- CURRENT GROUND SURFACE ELEVATION MAY NOT BE THE SAME AS WHEN THE FORMER BORINGS WERE DRILLED. 5
- TPH CONCENTRATIONS IN GROUNDWATER FROM GRAB 6 GROUNDWATER SAMPLE SPLIT COLLECTED IN APRIL 2015, AND GROUNDWATER MONITORING WELLS IN MAY 2015.
- TPH = TOTAL PETROLEUM HYDROCARBONS. 7.
- TRPH = TOTAL RECOVERABLE PETROLEUM HYDROCARBONS. 8
- ND = NOT DETECTED ABOVE LABORATORY PRACTICAL QUANTITATION 9. LIMIT
- 10. INTERPRETED TPH AND/OR TRPH EXTENT LINES ARE BASED ON CONCENTRATIONS EXCEEDING 8,500 mg/kg, AND/OR TPH CONCENTRATIONS EXCEEDING THE SITE-SPECIFIC CLEANUP GOALS (SSCGs).
- 11. THE LEAD CONCENTRATIONS ARE SHOWN ON FIGURE 5.

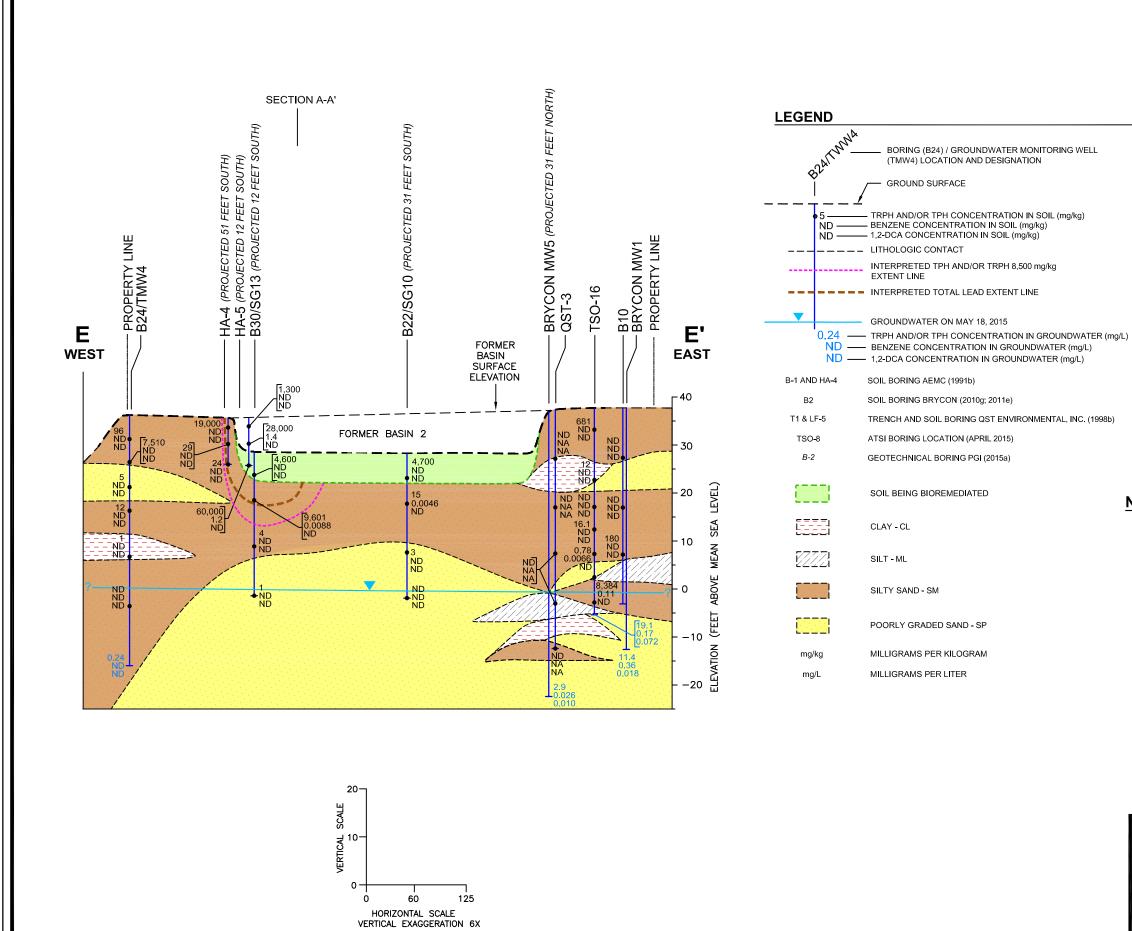

SCHEMATIC SECTION C-C'

LOCATION:

Oil Operators, Inc. Property 712 Baker Street, Long Beach, California 90806

, 3 ,								
		APPROVED	JL	FIGURE				
	TETRA TECH	DRAFTED	СР					
	PROJECT#	T33843.01	6C					
		DATE	9-4-15					

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. SCHEMATIC SECTION LOCATION SHOWN ON FIGURE 2.
- 3. DEPTH TO GROUNDWATER OBTAINED ON MAY 18, 2015 FROM GROUNDWATER MONITORING WELLS BRYCON-MW1 TO BRYCON-MW5, ESE-MW1, ESE-MW2, 92-MW1, AND TMW1 TO TMW6.
- 4. THIS FIGURE SHOWS ONE INTERPRETATION OF THE DATA, OTHER INTERPRETATIONS ARE POSSIBLE.
- 5. CURRENT GROUND SURFACE ELEVATION MAY NOT BE THE SAME AS WHEN THE FORMER BORINGS WERE DRILLED.
- TPH CONCENTRATIONS IN GROUNDWATER FROM GRAB GROUNDWATER SAMPLE SPLIT COLLECTED IN APRIL 2015, AND GROUNDWATER MONITORING WELLS IN MAY 2015.
- TPH = TOTAL PETROLEUM HYDROCARBONS.
- 8. TRPH = TOTAL RECOVERABLE PETROLEUM HYDROCARBONS.
- 9. ND = NOT DETECTED ABOVE LABORATORY PRACTICAL QUANTITATION LIMIT.
- 10. INTERPRETED TPH AND/OR TRPH EXTENT LINES ARE BASED ON CONCENTRATIONS EXCEEDING 8,500 mg/kg, AND/OR TPH CONCENTRATIONS EXCEEDING THE SITE-SPECIFIC CLEANUP GOALS (SSCGs).
- 11. THE LEAD CONCENTRATIONS ARE SHOWN ON FIGURE 5.


SCHEMATIC SECTION D-D'

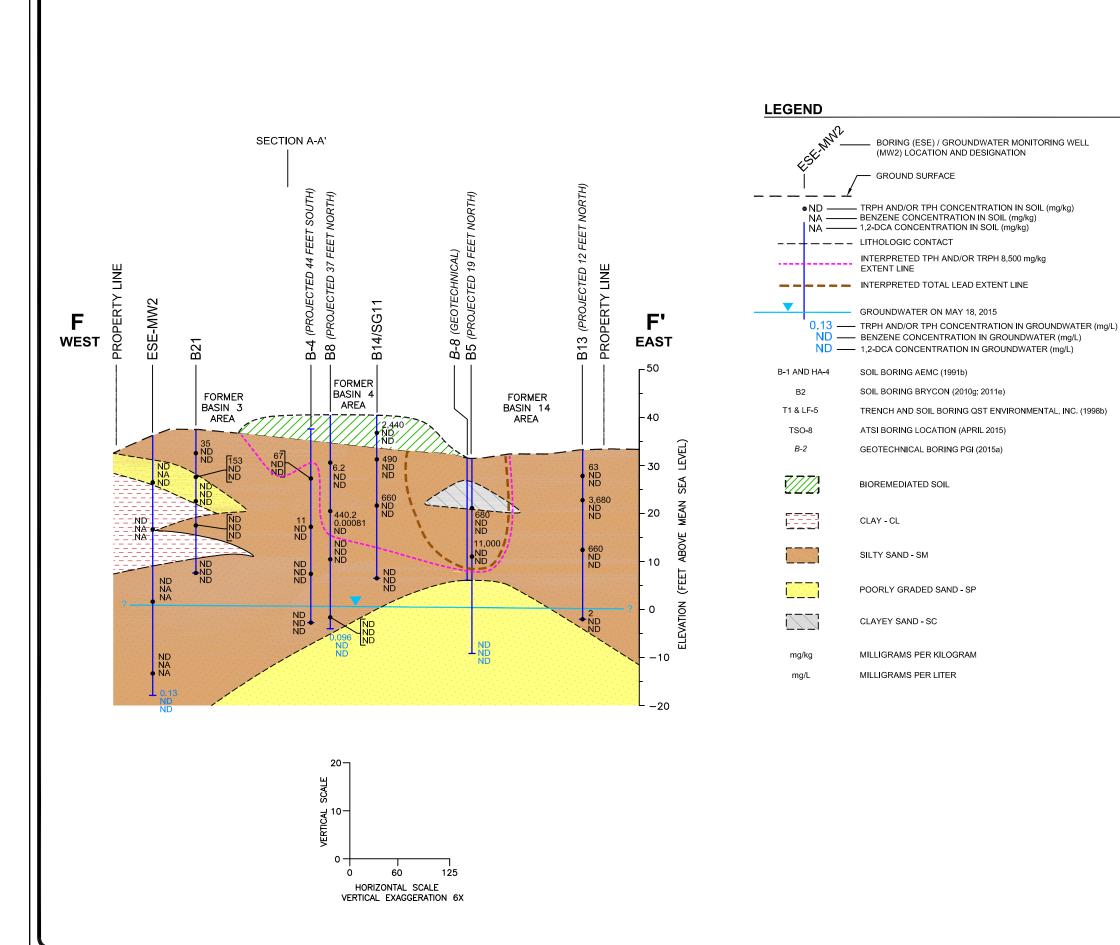
LOCATION:

TITLE:

^{N:} Oil Operators, Inc. Property 712 Baker Street, Long Beach, California 90806

	APPROVED	JL	FIGURE
TETRA TECH	DRAFTED	СР	
	PROJECT#	T33843.01	6D
	DATE	9-4-15	

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. SCHEMATIC SECTION LOCATION SHOWN ON FIGURE 2.
- 3. DEPTH TO GROUNDWATER OBTAINED ON MAY 18, 2015 FROM GROUNDWATER MONITORING WELLS BRYCON-MW1 TO BRYCON-MW5, ESE-MW1, ESE-MW2, 92-MW1, AND TMW1 TO TMW6.
- 4. THIS FIGURE SHOWS ONE INTERPRETATION OF THE DATA, OTHER INTERPRETATIONS ARE POSSIBLE.
- 5. CURRENT GROUND SURFACE ELEVATION MAY NOT BE THE SAME AS WHEN THE FORMER BORINGS WERE DRILLED.
- 6. TPH CONCENTRATIONS IN GROUNDWATER FROM GRAB GROUNDWATER SAMPLE SPLIT COLLECTED IN APRIL 2015, AND GROUNDWATER MONITORING WELLS IN MAY 2015.
- 7. TPH = TOTAL PETROLEUM HYDROCARBONS.
- 8. TRPH = TOTAL RECOVERABLE PETROLEUM HYDROCARBONS.
- 9. NA = NOT DETECTED ABOVE LABORATORY PRACTICAL QUANTITATION LIMIT.
- 10. ND = NOT DETECTED ABOVE LABORATORY PRACTICAL QUANTITATION LIMIT.
- 11. INTERPRETED TPH AND/OR TRPH EXTENT LINES ARE BASED ON CONCENTRATIONS EXCEEDING 8,500 mg/kg, AND/OR TPH CONCENTRATIONS EXCEEDING THE SITE-SPECIFIC CLEANUP GOALS (SSCGs).
- 12. ÎNTERPRETED TOTAL LEAD EXTENT LINES ARE BASED ON SSCG OF 80 mg/kg.
- 13. THE LEAD CONCENTRATIONS ARE SHOWN ON FIGURE 5.


TITLE:

SCHEMATIC SECTION E-E'

LOCATION:

Oil Operators, Inc. Property 712 Baker Street, Long Beach, California 90806

	-		
	APPROVED	JL	FIGURE
TETRA TECH	DRAFTED	СР	~-
	PROJECT#	T33843.01	6E
	DATE	9-4-15	

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. SCHEMATIC SECTION LOCATION SHOWN ON FIGURE 2.
- 3. DEPTH TO GROUNDWATER OBTAINED ON MAY 18, 2015 FROM GROUNDWATER MONITORING WELLS BRYCON-MW1 TO BRYCON-MW5, ESE-MW1, ESE-MW2, 92-MW1, AND TMW1 TO TMW6.
- 4. THIS FIGURE SHOWS ONE INTERPRETATION OF THE DATA, OTHER INTERPRETATIONS ARE POSSIBLE.
- 5. CURRENT GROUND SURFACE ELEVATION MAY NOT BE THE SAME AS WHEN THE FORMER BORINGS WERE DRILLED.
- 6. BIOREMEDIATED SOILS LOCATION AND THICKNESS OBTAINED FROM FIGURE 3.
- 7. TPH CONCENTRATIONS IN GROUNDWATER FROM GRAB GROUNDWATER SAMPLE SPLIT COLLECTED IN APRIL 2015, AND GROUNDWATER MONITORING WELLS IN MAY 2015.
- 8. FORMER BASIN NUMBERS 3, 4 AND 14 LOCATION AND DESIGNATION OBTAINED FROM ESE (1999).
- 9. TPH = TOTAL PETROLEUM HYDROCARBONS.
- 10. TRPH = TOTAL RECOVERABLE PETROLEUM HYDROCARBONS.
- 11. NA = SAMPLE NOT ANALYZED.
- 12. ND = NOT DETECTED ABOVE LABORATORY PRACTICAL QUANTITATION LIMIT.
- 13. INTERPRETED TPH AND/OR TRPH EXTENT LINES ARE BASED ON CONCENTRATIONS EXCEEDING 8,500 mg/kg, AND/OR TPH CONCENTRATIONS EXCEEDING THE SITE-SPECIFIC CLEANUP GOALS (SSCGs).
- 14. INTERPRETED TOTAL LEAD EXTENT LINES ARE BASED ON SSCG OF 80 mg/kg.
- 15. THE LEAD CONCENTRATIONS ARE SHOWN ON FIGURE 5.

TITLE:

SCHEMATIC SECTION F-F'

LOCATION:

^{N:} Oil Operators, Inc. Property 712 Baker Street, Long Beach, California 90806

		APPROVED	JL	FIGURE
	TETRA TECH	DRAFTED	СР	
		PROJECT#	T33843.01	6F
\square		DATE	9-4-15	

APPENDIX C

Johnson & Ettinger Model Results Soil Vapor

Version 2.0, 04/2003

DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: 1,2,4-Trimethylbenzene

Reset to Defaults	ENTER Chemical CAS No. (numbers only, no dashes) 95636 ENTER Depth below grade to bottom of enclosed space floor, L _F	ENTER Soil gas conc., C _g (μg/m ³) 5.44E+03 ENTER Soil gas sampling depth	Gas Concentration OR ENTER	ENTER Soil gas conc., C _g (ppmv) ENTER Vadose zone	Chemical 1,2,4-Trimethylb	enzene	Soil Gas Conc. (μg/m ³) 5.44E+03	Attenuation Factor (unitless) 8.3E-04
Defaults	Chemical CAS No. (numbers only, no dashes) 95636 ENTER Depth below grade to bottom of enclosed space floor,	Soil gas conc., C _g (μg/m [°]) 5.44E+03 ENTER Soil gas sampling	ENTER	Soil gas conc., C _g (ppmv)			(µg/m³)	(unitless)
MORE	CAS No. (numbers only, no dashes) 95636 ENTER Depth below grade to bottom of enclosed space floor,	gas conc., C _g (μg/m³) 5.44E+03 ENTER Soil gas sampling	ENTER	gas conc., C _g (ppmv) ENTER				
	CAS No. (numbers only, no dashes) 95636 ENTER Depth below grade to bottom of enclosed space floor,	conc., C _g (μg/m³) 5.44E+03 ENTER Soil gas sampling	ENTER	conc., C _g (ppmv)				
	(numbers only, no dashes) 95636 ENTER Depth below grade to bottom of enclosed space floor,	C _g (μg/m [°]) 5.44E+03 ENTER Soil gas sampling		C _g (ppmv) ENTER				= - -
	no dashes) 95636 ENTER Depth below grade to bottom of enclosed space floor,	(μg/m³) 5.44E+03 ENTER Soil gas sampling		(ppmv) ENTER				= - -
	95636 ENTER Depth below grade to bottom of enclosed space floor,	5.44E+03 ENTER Soil gas sampling		ENTER				-
	ENTER Depth below grade to bottom of enclosed space floor,	ENTER Soil gas sampling			1,2,4-Trimethylb			-
	ENTER Depth below grade to bottom of enclosed space floor,	ENTER Soil gas sampling			1,2, 4 -11111ethylD			-
	Depth below grade to bottom of enclosed space floor,	Soil gas sampling				ENTER		
	Depth below grade to bottom of enclosed space floor,	Soil gas sampling				ENTER		
	below grade to bottom of enclosed space floor,	sampling		Vadose zone				
	to bottom of enclosed space floor,	sampling	•			User-defined		
↓ ↓	space floor,		Average	SCS		vadose zone		
	space floor,		soil	soil type		soil vapor		
	•	below grade,	temperature,	(used to estimate	OR	permeability,		
		L _s	T _S	soil vapor		k _v		
	(15 or 200 cm)	_s (cm)	(°C)	permeability)		(cm [∠])		
		(CIII)	(0)	permeability)				
	15	152	17	SI				
	ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm³)	ENTER Vadose zone soil total porosity, n [×] (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°])		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	te)	
	SI	1.35	0.489	0.167		5		
[]								
MORE ↓	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Averaging	Averaging						
	time for	time for	Exposure	Exposure	Exposure	Air Exchange		
	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate		
Lookup Receptor	AT _C	AT _{NC}	ED	EF	ET	ACH		
Parameters	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻ '		
Residential	70	26	26	350	24	0.5		
	-	·			(NEW)	(NEW)		
END								

Results	Summary		
on Factor	Indoor Air Conc.	Cancer	Noncancer
nitless)	(µg/m³)	Risk	Hazard
3E-04	4.5E+00	NA	6.2E-01

Version 2.0, 04/2003

DTSC Modification

December 2014

Reset to

Defaults

ENTER

Chemical

CAS No.

(numbers only,

no dashes)

ENTER

Soil

gas

conc.,

 C_{g}

(µg/m°)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Soil Gas Concentration Data

OR

Soil Gas Scenario: Residential Chemical: Benzene ENTER Soil gas conc., Cg (ppmv) Result Soil Gas Conc. Attenuation Factor (µg/m³) (unitless) 1.67E+05 4.7E-04 Image: Conc., Cg (ppmv) Chemical Benzene MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity criteria for this chemical.

	71432	1.67E+05			Benzene		
					MESSAGE: See VLOOK and/or toxicity criteria for	UP table comments on che this chemical.	mical pr
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade,	Average soil temperature, T _S	Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v	
	(15 or 200 cm)	L _s (cm)	(°C)	permeability)		(cm ²)	
	15	457	17	SI			

MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil	$\begin{array}{c} \textbf{ENTER} \\ \textbf{Vadose zone} \\ \textbf{soil dry} \\ \textbf{bulk density,} \\ \rho_{\textbf{b}}^{\text{A}} \\ \textbf{(g/cm}^{\text{o}}) \end{array}$	ENTER Vadose zone soil total porosity, n ^v (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^v (cm°/cm°)		ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)
	SI	1.35	0.489	0.167		5
MORE ↓	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER

L	ookup Receptor Parameters	time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)	Exposure Time ET (hrs/day)	Air Exchange Rate ACH (hour) ⁻ '
NEW=>	Residential	70	26	26	350	24	0.5
						(NEW)	(NEW)
	END						

ults	Summary		
r	Indoor Air Conc.	Cancer	Noncancer
	(µg/m³)	Risk	Hazard
	7.8E+01	8.0E-04	2.5E+01

Version 2.0, 04/2003

DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Ethylbenzene

		Soil	Gas Concentration	n Data				Result
Reset to Defaults	ENTER Chemical	ENTER Soil gas	OR	ENTER Soil gas			Soil Gas Conc. (μg/m ³) 4.02E+04	Attenuation Factor (unitless) 3.7E-04
	CAS No. (numbers only, no dashes)	conc., C _g (μg/m³)		conc., C _g (ppmv)	Chemical			
	100414	4.02E+04			Ethylbenzene			
	ENTER Depth	ENTER	ENTER	ENTER		ENTER		
MORE ↓	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)		
	15	457	17	SI				
MORE	ENTER Vandose zone	ENTER Vadose zone	ENTER Vadose zone	ENTER Vadose zone		ENTER Average vapor		
↓	SCS soil type	soil dry bulk density, ρ _b ^A (g/cm [°])	soil total porosity, n [°] (unitless)	soil water-filled porosity, θ _w ^v (cm [°] /cm [°])		flow rate into bldg. (Leave blank to calculate Q _{soil} (L/m)	e)	
	SCS soil type	bulk density, ρ_{b}^{A}	porosity, n [°]	porosity, θ_w^v		(Leave blank to calculate Q _{soil}	e)	
	SCS soil type Lookup Soil SI ENTER	bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER	porosity, n ^v (unitless)	porosity, θ _w ^v (cm³/cm³)	ENTER	(Leave blank to calculate Q _{soil} (L/m)	e)	
₩ORE	SCS soil type Lookup Soil SI ENTER Averaging time for carcinogens, AT _C	bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for noncarcinogens, AT _{NC}	porosity, n ^v (unitless) 0.489 ENTER Exposure duration, ED	porosity, θ ^v (cm [°] /cm [°]) 0.167 ENTER Exposure frequency, EF	Exposure Time ET	(Leave blank to calculate Q _{soil} (L/m) 5	ie)	
↓ MORE ↓ Lookup Receptor	SCS soil type Lookup Soil SI ENTER Averaging time for carcinogens,	bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for noncarcinogens,	porosity, n ^v (unitless) 0.489 ENTER Exposure duration,	porosity, θ _w ^v (cm [°] /cm [°]) 0.167 ENTER Exposure frequency,	Exposure Time	(Leave blank to calculate Q _{soil} (L/m) 5 ENTER Air Exchange Rate ACH	e)	

ults	s Summary		
r	Indoor Air Conc.	Cancer	Noncancer
	(µg/m ³)	Risk	Hazard
	1.5E+01	1.3E-05	1.4E-02

Version 2.0, 04/2003

DTSC Modification

December 2014

Reset to

Defaults

MORE

 $\mathbf{\Psi}$

ENTER

Chemical

CAS No.

(numbers only,

no dashes)

98828

ENTER

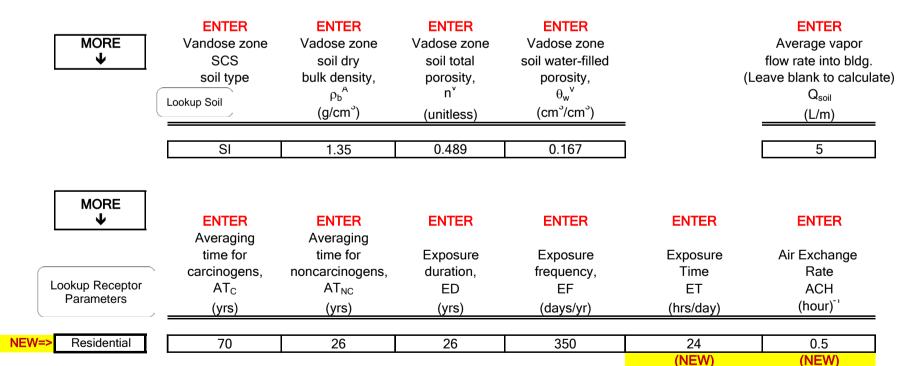
Depth

below grade

to bottom

of enclosed

space floor,


LF

(15 or 200 cm)

15

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

Scenario: Residential Chemical: Cumene DATA ENTRY SHEET Resu Soil Gas Concentration Data Soil Gas Conc. Attenuation Factor ENTER ENTER Soil $(\mu g/m^3)$ Soil (unitless) OR 3.3E-04 gas gas 1.13E+03 conc., conc., C_{g} C_{g} (µg/m°) Chemical (ppmv) 1.13E+03 Cumene MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity criteria for this chemical ENTER **ENTER** ENTER ENTER Soil gas Vadose zone User-defined sampling Average SCS vadose zone depth soil soil type soil vapor below grade, temperature, (used to estimate OR permeability, T_S k_v L_{s} soil vapor (°C) (cm[∠]) permeability) (cm) 457 17 SI

END

ults	Summary		
r	Indoor Air Conc.	Cancer	Noncancer
	(µg/m³)	Risk	Hazard
	3.8E-01	NA	9.1E-04

Version 2.0, 04/2003

DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Naphthalene

			Gas Concentratior					Result
Reset to Defaults	ENTER Chemical	ENTER Soil gas	OR	ENTER Soil gas		-	Soil Gas Conc. (μg/m ³) 4.10E+02	Attenuation Factor (unitless) 8.3E-04
	CAS No. (numbers only, no dashes)	conc., C _g (μg/m ³)		conc., C _g (ppmv)	Chemical	<u></u>		
	91203	4.10E+02			Naphthalene			
	ENTER Depth	ENTER	ENTER	ENTER		ENTER		
MORE ↓	below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade, L _s	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)		
	(15 or 200 cm) 15	(cm) 152	17	permeability) SI				
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm [°])	ENTER Vadose zone soil total porosity, n ^v (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°])		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	te)	
	SI	1.35	0.489	0.167		5		
MORE ↓	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER		
		time for	Exposure	Exposure	Exposure	Air Exchange		
Lookup Receptor Parameters	time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	Time ET (hrs/day)	Rate ACH (hour) ⁻ '		

ults	s Summary		
r	Indoor Air Conc.	Cancer	Noncancer
	(µg/m ³)	Risk	Hazard
	3.4E-01	4.1E-06	1.1E-01

Version 2.0, 04/2003

DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: n-Butylbenzene

		Soil	Gas Concentration	n Data				Result
Reset to Defaults	ENTER Chemical	ENTER Soil gas	OR	ENTER Soil gas			Soil Gas Conc. (μg/m ³) 7.24E+02	Attenuation Factor (unitless) 3.0E-04
	CAS No. (numbers only, no dashes)	conc., C _g (μg/m [°])		conc., C _g (ppmv)	Chemical		MESSAGE: Risk a	nd/or hazard quotient is
	104518	7.24E+02			n-Butylbenzene			
	ENTER Depth	ENTER	ENTER	ENTER		ENTER]	
MORE ↓	below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _s (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)		
	15	457	17	SI]	
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm [°])	ENTER Vadose zone soil total porosity, n [×] (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°])		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)		
	SI	1.35	0.489	0.167]	5]	
MORE ↓	ENTER Averaging time for	ENTER Averaging time for	ENTER Exposure	ENTER Exposure	ENTER Exposure	ENTER Air Exchange		
Lookup Receptor Parameters	carcinogens, AT _C (yrs)	noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	Time ET (hrs/day)	Rate ACH (hour) ⁻ '	=	
NEW=> Residential	70	26	26	350	24	0.5]	
END					(NEW)	(NEW)		

Results Summary									
n Factor	Indoor Air Conc.	Cancer	Noncancer						
tless)	(µg/m³)	Risk	Hazard						
E-04	2.2E-01	NA	1.2E-03						
d quotient is	based on route-to-rou	te extrapolat	ion.						

Version 2.0, 04/2003

DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: n-Propylbenzene

		Soil	Gas Concentratior	n Data				Resul
	ENTER	ENTER		ENTER	1		Soil Gas Conc.	Attenuation Factor
Reset to		Soil		Soil			(µg/m ³)	(unitless)
Defaults	Chemical	gas	OR	gas			4.20E+03	8.3E-04
	CAS No.	-	OIT	-		l	4.201703	
		conc.,		conc.,				
	(numbers only,	C _g		Cg				
	no dashes)	(µg/m³)		(ppmv)	Chemical			=
				r				_
	103651	4.20E+03			n-Propylbenzene	•		_
	ENTER	ENTER	ENTER	ENTER		ENTER		
	Depth							
MORE	below grade	Soil gas		Vadose zone		User-defined		
↓	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L _F	L _s	T _s	soil vapor		k _v		
	(15 or 200 cm)	(cm)	(°Č)	permeability)		(cm ²)		
		(CIII)	(0)	permeability)	=	(0111)		
	15	152	17	SI	ו			
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor		
\bullet	SCS	soil dry	soil total	soil water-filled		flow rate into bldg.		
	soil type	bulk density,	porosity,	porosity,		(Leave blank to calcula	ite)	
		ρ_b^A	n ^v	θ_w^{\vee}		` Q _{soil}	,	
	Lookup Soil	(g/cm [°])	(unitless)	(cm³/cm³)		(L/m)		
		(9, 0)	(unitess)	(0)	=	(Ľ/Ш)		
	SI	1.35	0.489	0.167]	5		
MORE								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
· ·	Averaging	Averaging						
	time for	time for	Exposure	Exposure	Exposure	Air Exchange		
	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate		
Lookup Receptor	AT _c	AT _{NC}	ED	EF	ET	ACH		
Parameters								
	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻ '		
Residential	70	26	26	350	24	0.5		
					(NEW)	(NEW)		
END								

Results	Summary		
n Factor	Indoor Air Conc.	Cancer	Noncancer
itless)	(µg/m³)	Risk	Hazard
8E-04	3.5E+00	NA	3.3E-03

Version 2.0, 04/2003

DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Toluene

		Soil	Gas Concentratio	n Data	_			Resul
Reset to Defaults	ENTER Chemical	ENTER Soil gas	OR	ENTER Soil gas			Soil Gas Conc. (μg/m ³) 1.67E+04	Attenuation Factor (unitless) 4.1E-04
	CAS No. (numbers only, no dashes)	conc., C _g (μg/m³)		conc., C _g (ppmv)	Chemical			-
	108883	1.67E+04			Toluene			
	ENTER Depth	ENTER	ENTER	ENTER		ENTER		
MORE ↓	below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade, L _s	Average soil temperature, Ts	Vadose zone SCS soil type (used to estimate soil vapor	OR	User-defined vadose zone soil vapor permeability, k _v		
	(15 or 200 cm) 15	(cm) 457	(°C) 17	permeability)		(cm²)		
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm [°])	ENTER Vadose zone soil total porosity, n [°] (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°])		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	ate)	
	SI	1.35	0.489	0.167		5]	
MORE ↓	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER		
Lookup Receptor Parameters	time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)	Exposure Time ET (hrs/day)	Air Exchange Rate ACH (hour) ⁻ '		
NEW=> Residential	70	26	26	350	24	0.5	•	
END					(NEW)	(NEW)		

ults	Summary		
r	Indoor Air Conc.	Cancer	Noncancer
	(µg/m ³)	Risk	Hazard
	6.9E+00	NA	2.2E-02

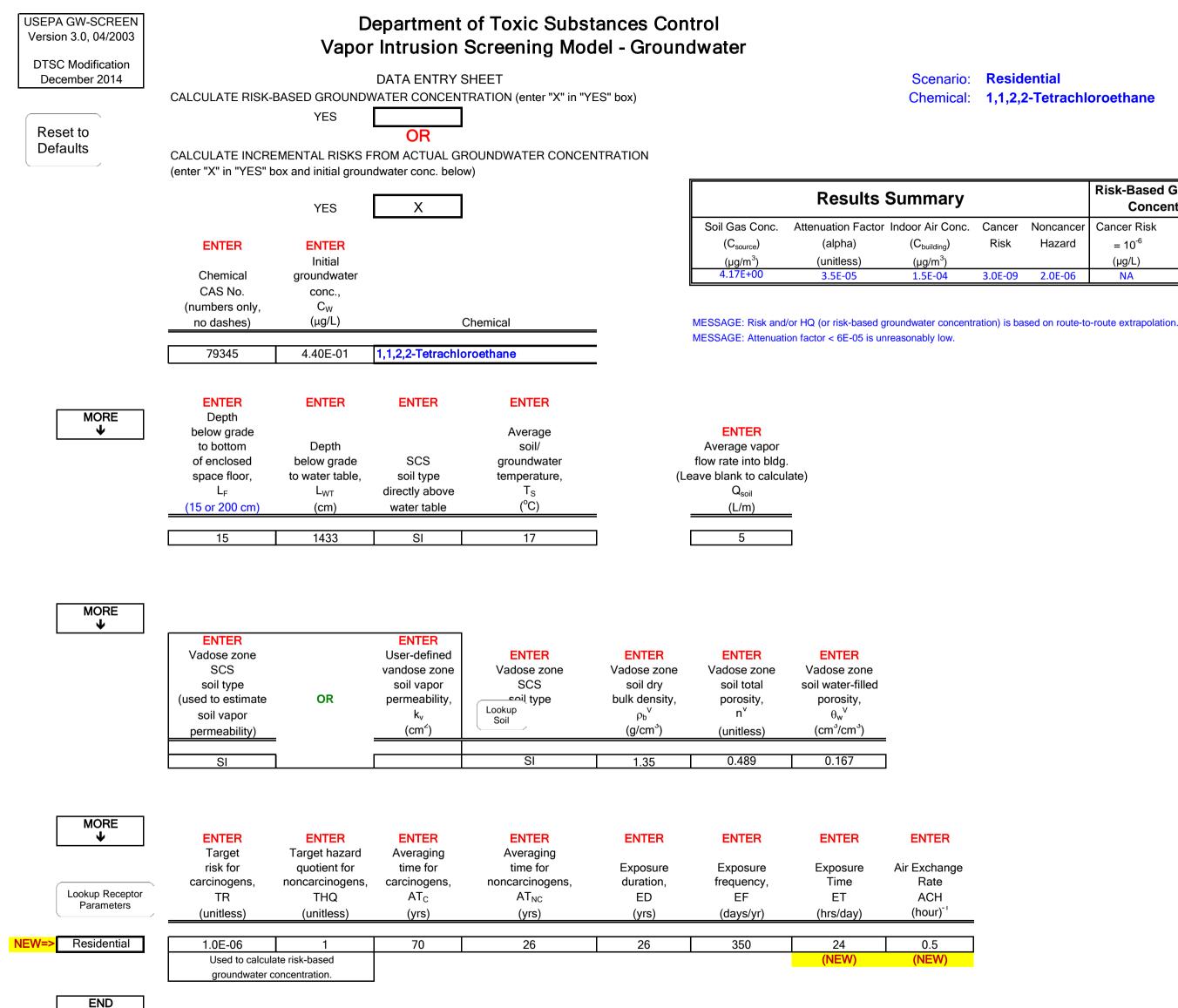
Version 2.0, 04/2003

DTSC Modification

December 2014

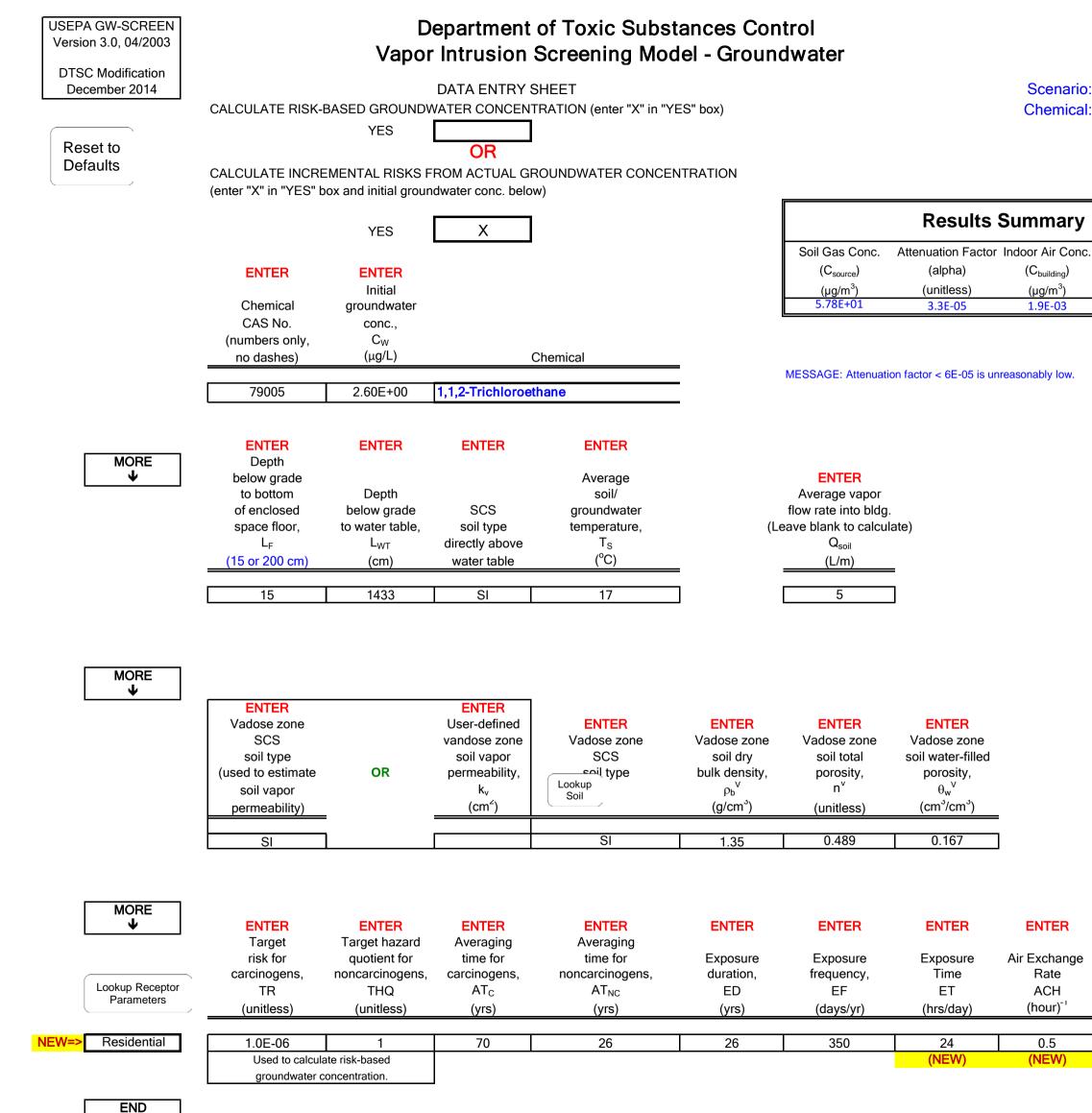
Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

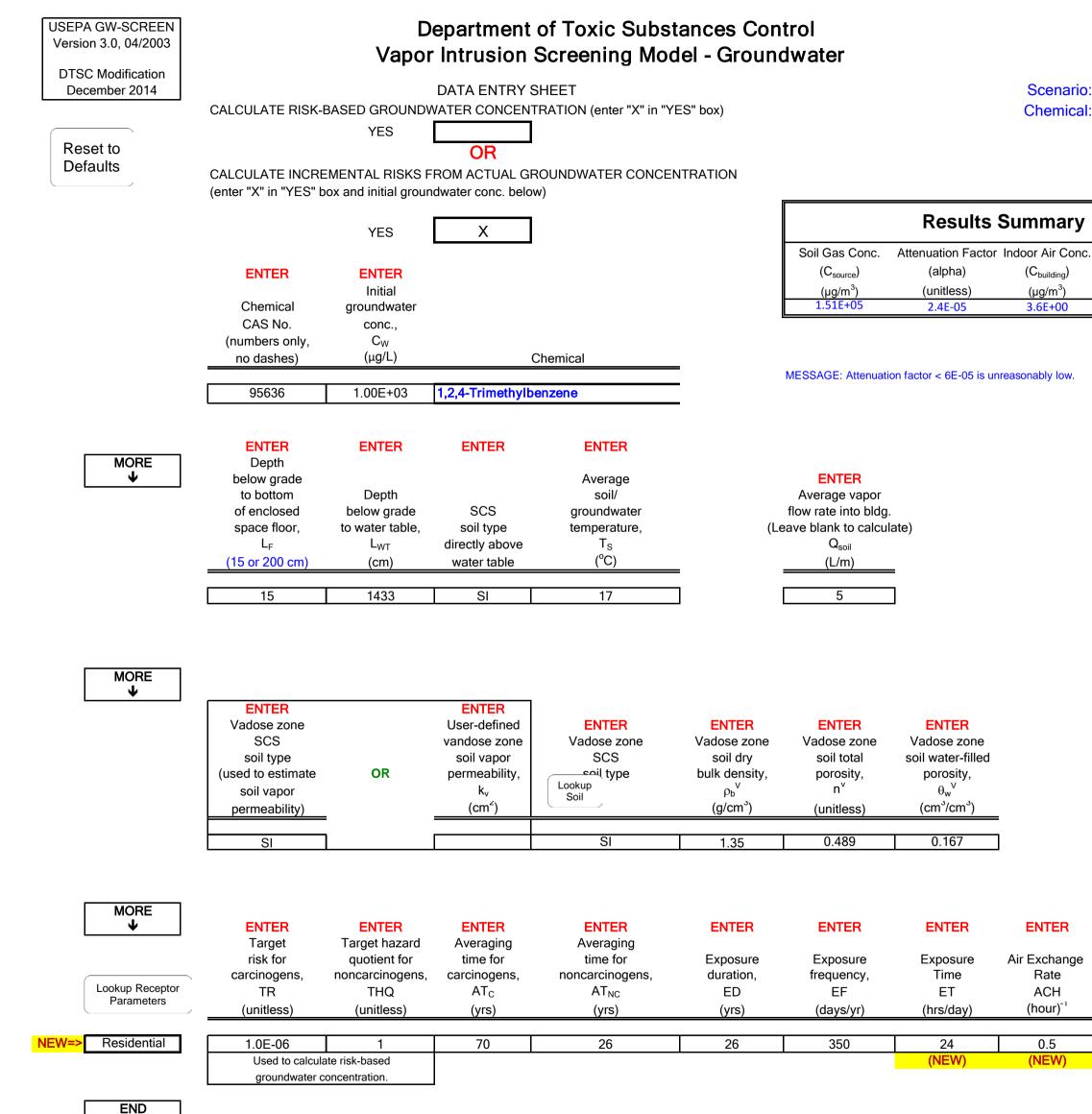

Scenario: Residential Chemical: o-Xylene

		Soil	Gas Concentratio	n Data				Result	t
Reset to Defaults	ENTER	ENTER Soil	OR	ENTER Soil			(µg/m ³)	Attenuation Factor (unitless)	
	Chemical	gas	OR	gas			5.11E+04	3.7E-04	-
	CAS No.	conc.,		conc.,					
	(numbers only,	C _g		C _g	Chamiaal				
	no dashes)	(µg/m³)		(ppmv)	Chemical			•	
	95476	5.11E+04			o-Xylene				
							-		
	ENTER Depth	ENTER	ENTER	ENTER		ENTER			
MORE	below grade	Soil gas		Vadose zone		User-defined			
↓	to bottom	sampling	Average	SCS		vadose zone			
	of enclosed	depth	soil	soil type		soil vapor			
	space floor,	, below grade,	temperature,	(used to estimate	OR	, permeability			
	L _F	Ls	Ts	soil vapor		k _v			
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm²)			
	· · · · · · · · · · · · · · · · · · ·								
	15	457	17	SI]		
MORE V	ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, ρ _b ^A (g/cm [°])	ENTER Vadose zone soil total porosity, n ^v (unitless)	ENTER Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°])		ENTER Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m)			
	Vandose zone SCS soil type	Vadose zone soil dry bulk density, ρ _b ^Α	Vadose zone soil total porosity, n ^v	Vadose zone soil water-filled porosity, θ_w^v		Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil}			
•	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, ρ _b ^A (g/cm³)	Vadose zone soil total porosity, n [°] (unitless)	Vadose zone soil water-filled porosity, θ_w^v (cm³/cm³)		Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m)			
	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, ρ _b ^A (g/cm³)	Vadose zone soil total porosity, n [°] (unitless)	Vadose zone soil water-filled porosity, θ_w^v (cm³/cm³)	ENTER	Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m)			
↓ MORE	Vandose zone SCS soil type Lookup Soil SI ENTER Averaging	Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging	Vadose zone soil total porosity, n ^v (unitless) 0.489 ENTER	Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°]) 0.167 ENTER		Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m) 5 ENTER			
↓ MORE	Vandose zone SCS soil type Lookup Soil SI ENTER Averaging time for	Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for	Vadose zone soil total porosity, n ^v (unitless) 0.489 ENTER Exposure	Vadose zone soil water-filled porosity, θ_w^v (cm³/cm³) 0.167 ENTER Exposure	Exposure	Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m) 5 ENTER Air Exchange			
↓ MORE ↓	Vandose zone SCS soil type Lookup Soil SI ENTER Averaging time for carcinogens,	Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for noncarcinogens,	Vadose zone soil total porosity, n ^v (unitless) 0.489 ENTER Exposure duration,	Vadose zone soil water-filled porosity, θ_w^v (cm³/cm³) 0.167 ENTER Exposure frequency,	Exposure Time	Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m) 5 ENTER Air Exchange Rate			
↓ MORE ↓ Lookup Receptor	Vandose zone SCS soil type Lookup Soil SI ENTER Averaging time for carcinogens, AT _C	Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for noncarcinogens, AT _{NC}	Vadose zone soil total porosity, n ^v (unitless) 0.489 0.489 ENTER Exposure duration, ED	Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°]) 0.167 ENTER Exposure frequency, EF	Exposure Time ET	Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m) 5 ENTER Air Exchange Rate ACH			
	Vandose zone SCS soil type Lookup Soil SI ENTER Averaging time for carcinogens,	Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for noncarcinogens,	Vadose zone soil total porosity, n ^v (unitless) 0.489 ENTER Exposure duration,	Vadose zone soil water-filled porosity, θ_w^v (cm³/cm³) 0.167 ENTER Exposure frequency,	Exposure Time	Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m) 5 ENTER Air Exchange Rate			
↓ MORE ↓ Lookup Receptor	Vandose zone SCS soil type Lookup Soil SI ENTER Averaging time for carcinogens, AT _C	Vadose zone soil dry bulk density, ρ _b ^A (g/cm ³) 1.35 ENTER Averaging time for noncarcinogens, AT _{NC}	Vadose zone soil total porosity, n ^v (unitless) 0.489 0.489 ENTER Exposure duration, ED	Vadose zone soil water-filled porosity, θ _w ^v (cm [°] /cm [°]) 0.167 ENTER Exposure frequency, EF	Exposure Time ET	Average vapor flow rate into bldg. (Leave blank to calcul Q _{soil} (L/m) 5 ENTER Air Exchange Rate ACH			

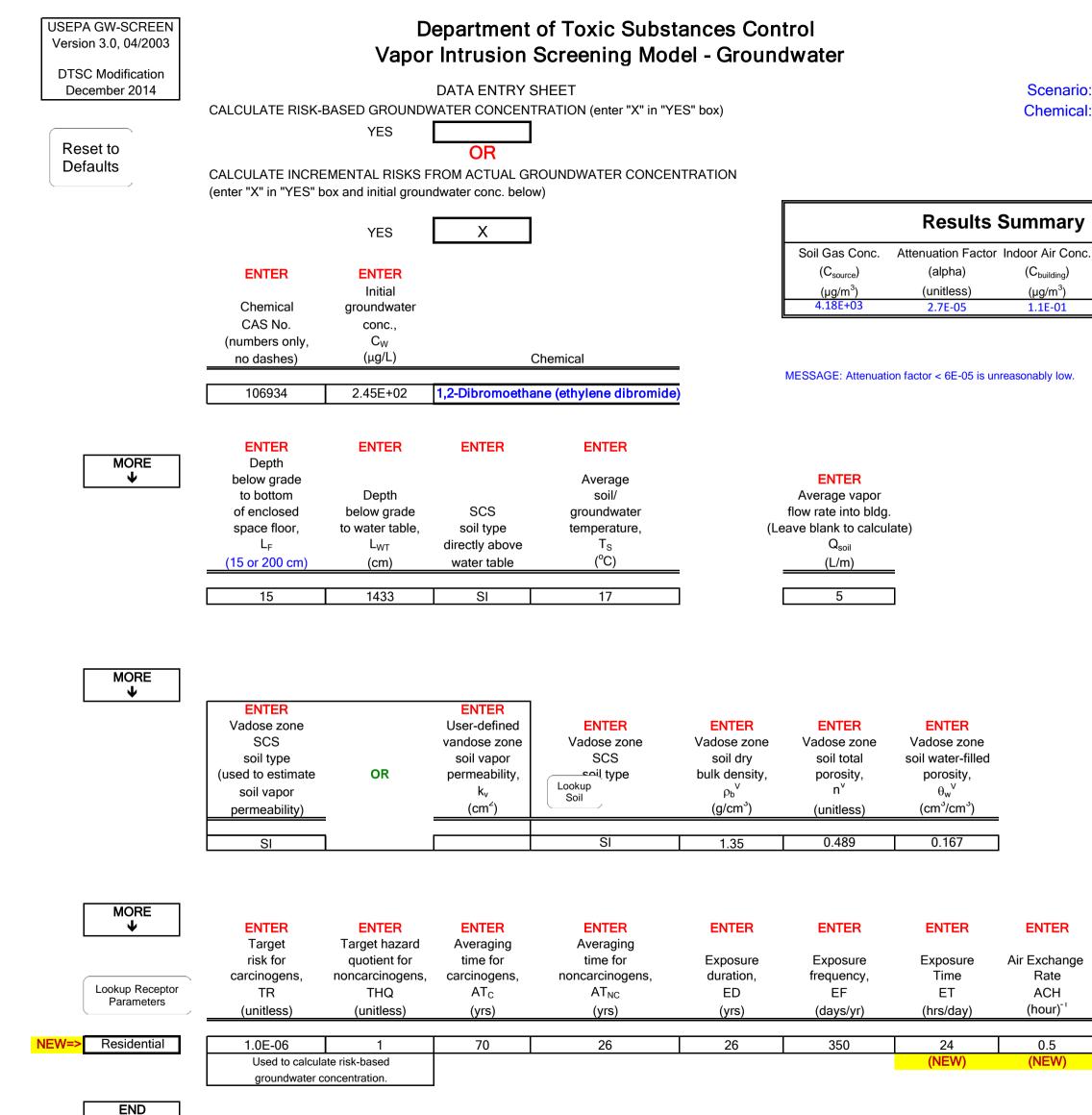
ults	Summary		
r	Indoor Air Conc.	Cancer	Noncancer
	(µg/m³)	Risk	Hazard
	1.9E+01	NA	1.8E-01


APPENDIX D

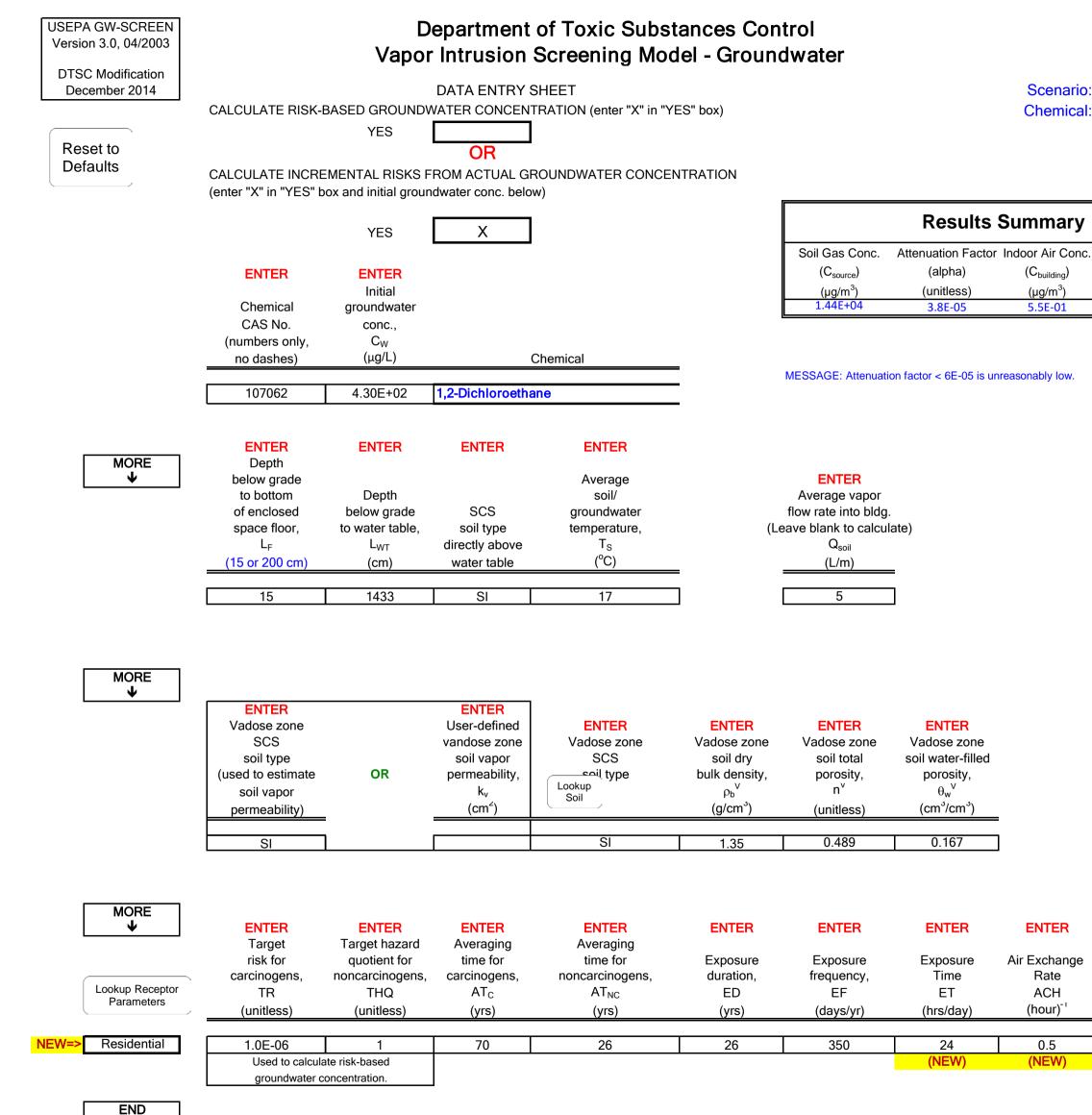
Johnson & Ettinger Model Results Groundwater


Scenario: Residential Chemical: 1,1,2,2-Tetrachloroethane

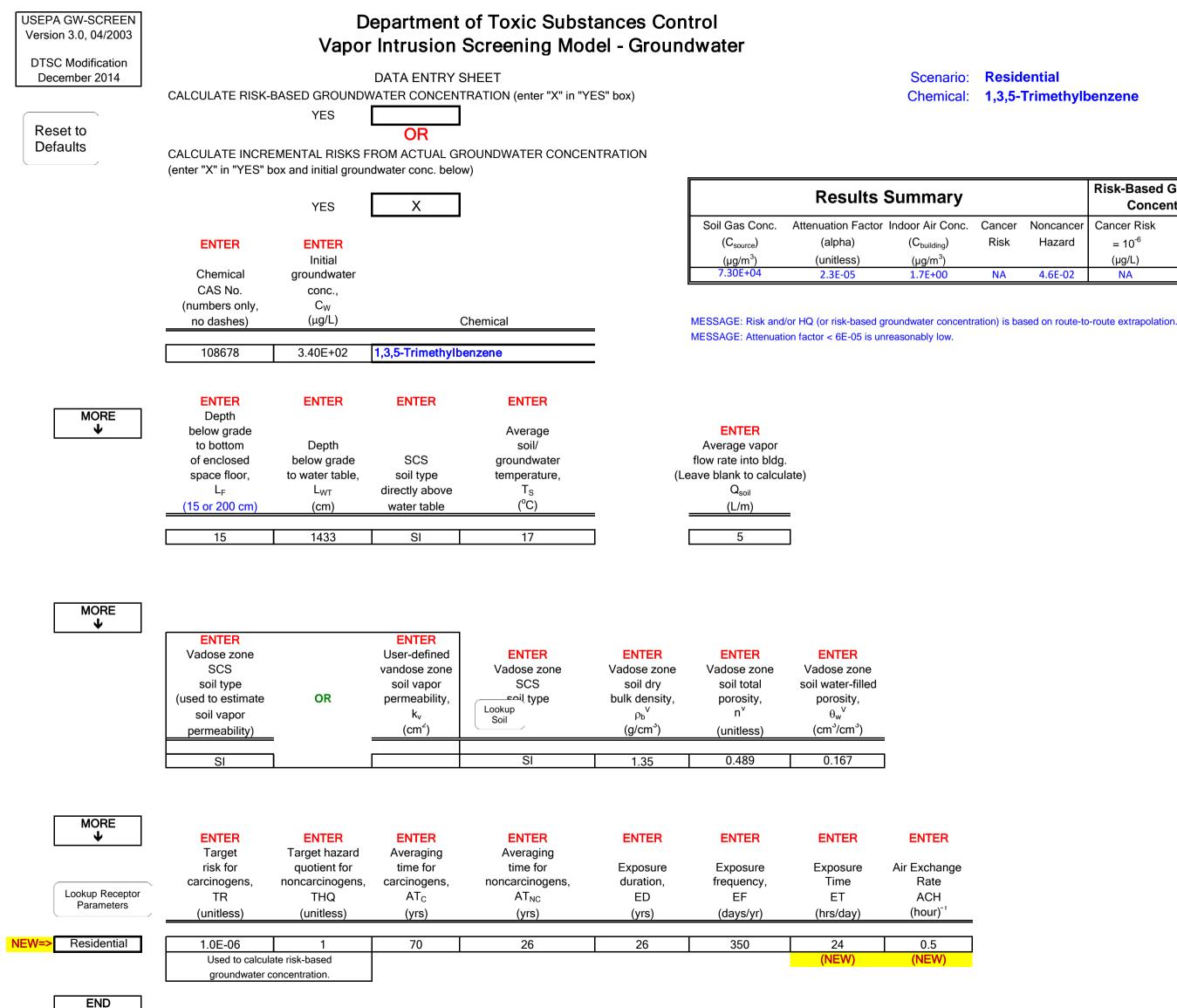
mmary			Risk-Based Groundwater Concentration		
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer	
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1	
(µg/m ³)			(µg/L)	(µg/L)	
1.5E-04	3.0E-09	2.0E-06	NA	NA	


Scenario: Residential Chemical: 1,1,2-Trichloroethane

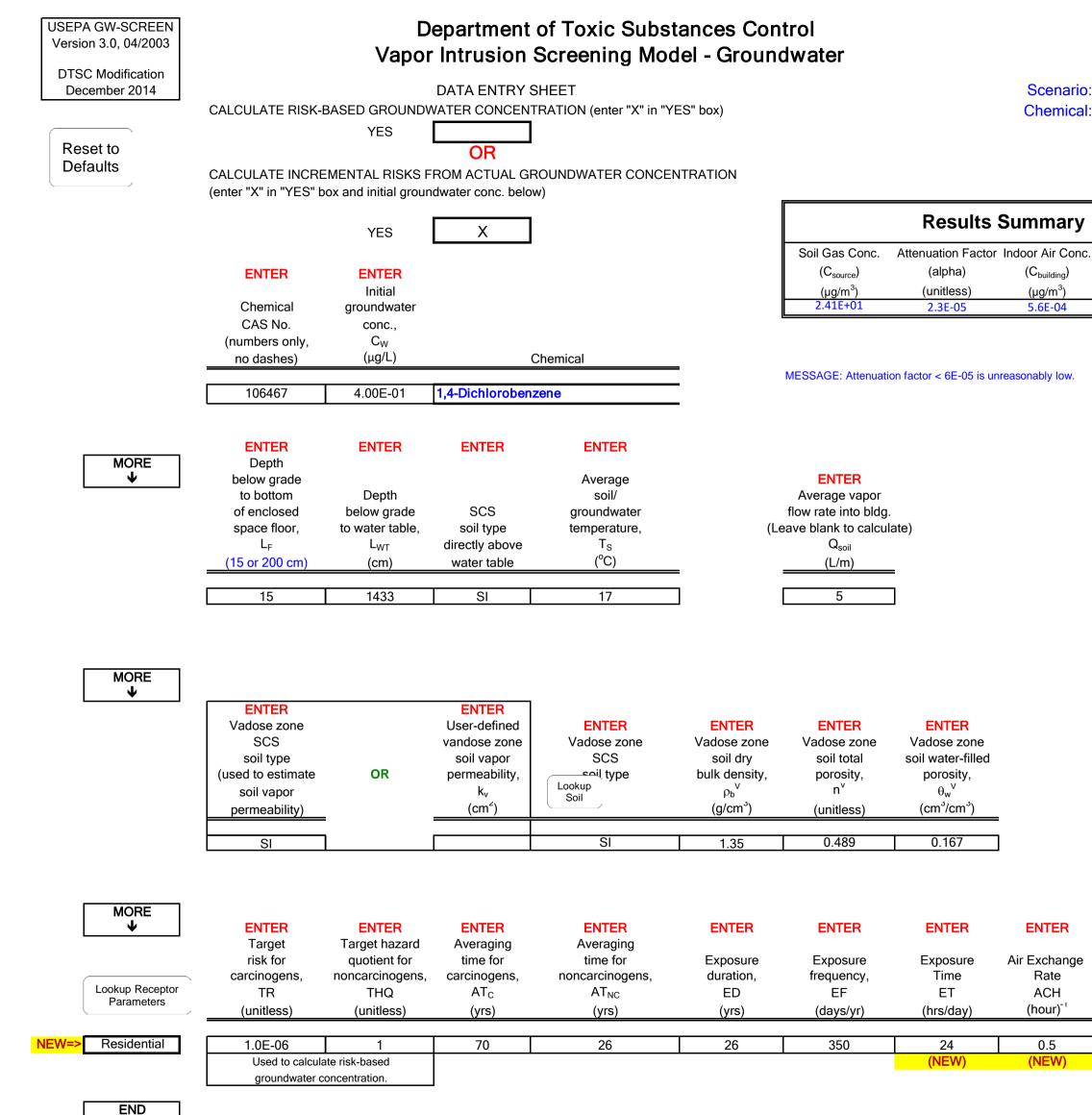
mmary			Risk-Based Groundwater Concentration		
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer	
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1	
(µg/m ³)			(µg/L)	(µg/L)	
1.9E-03	1.1E-08	9.3E-03	NA	NA	


Scenario: Residential Chemical: 1,2,4-Trimethylbenzene

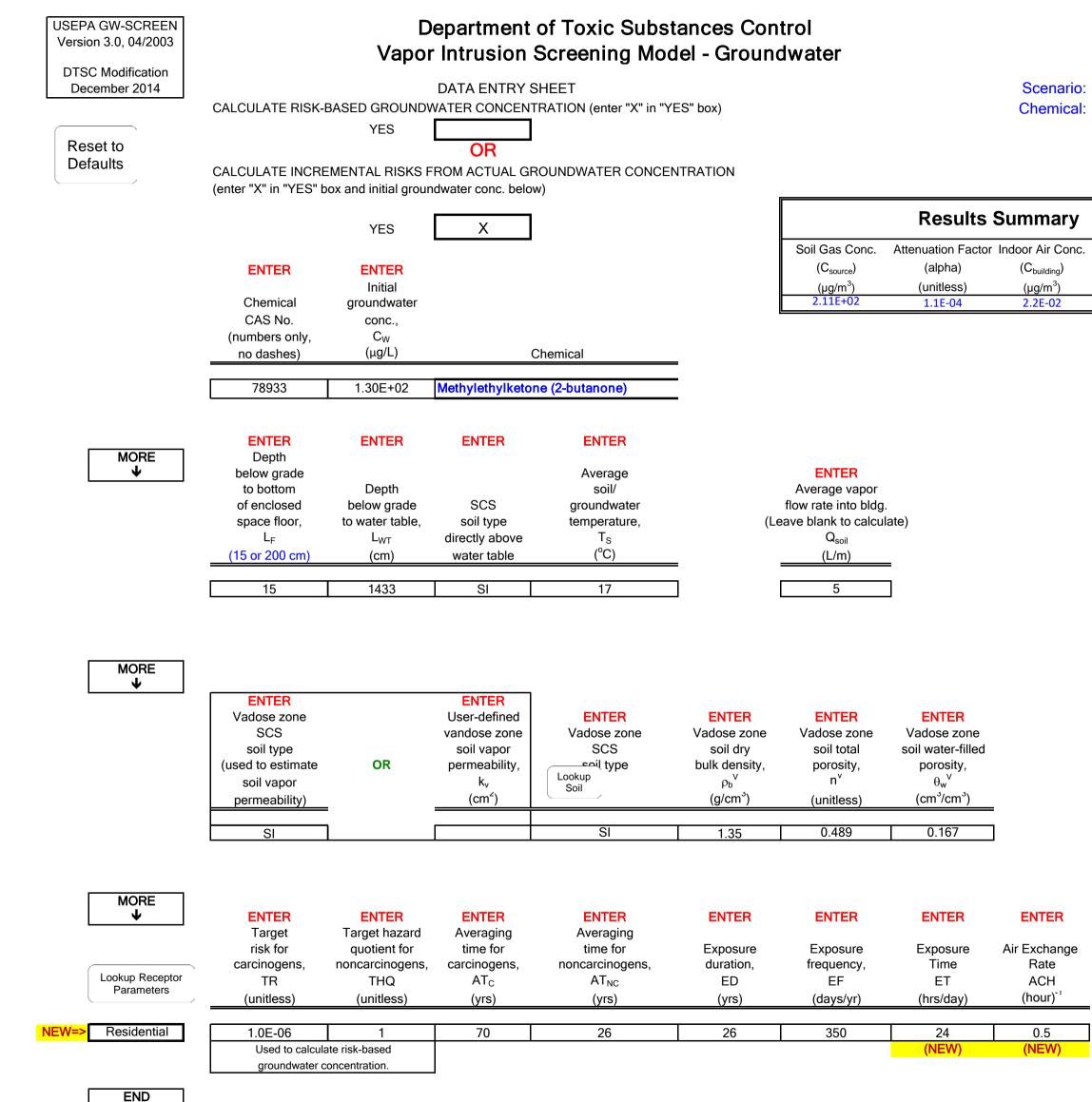
mmary			Risk-Based Groundwater Concentration		
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer	
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1	
(µg/m ³)			(µg/L)	(µg/L)	
3.6E+00	NA	4.9E-01	NA	NA	


Scenario: Residential Chemical: 1,2-Dibromoethane (ethylene dibromide)

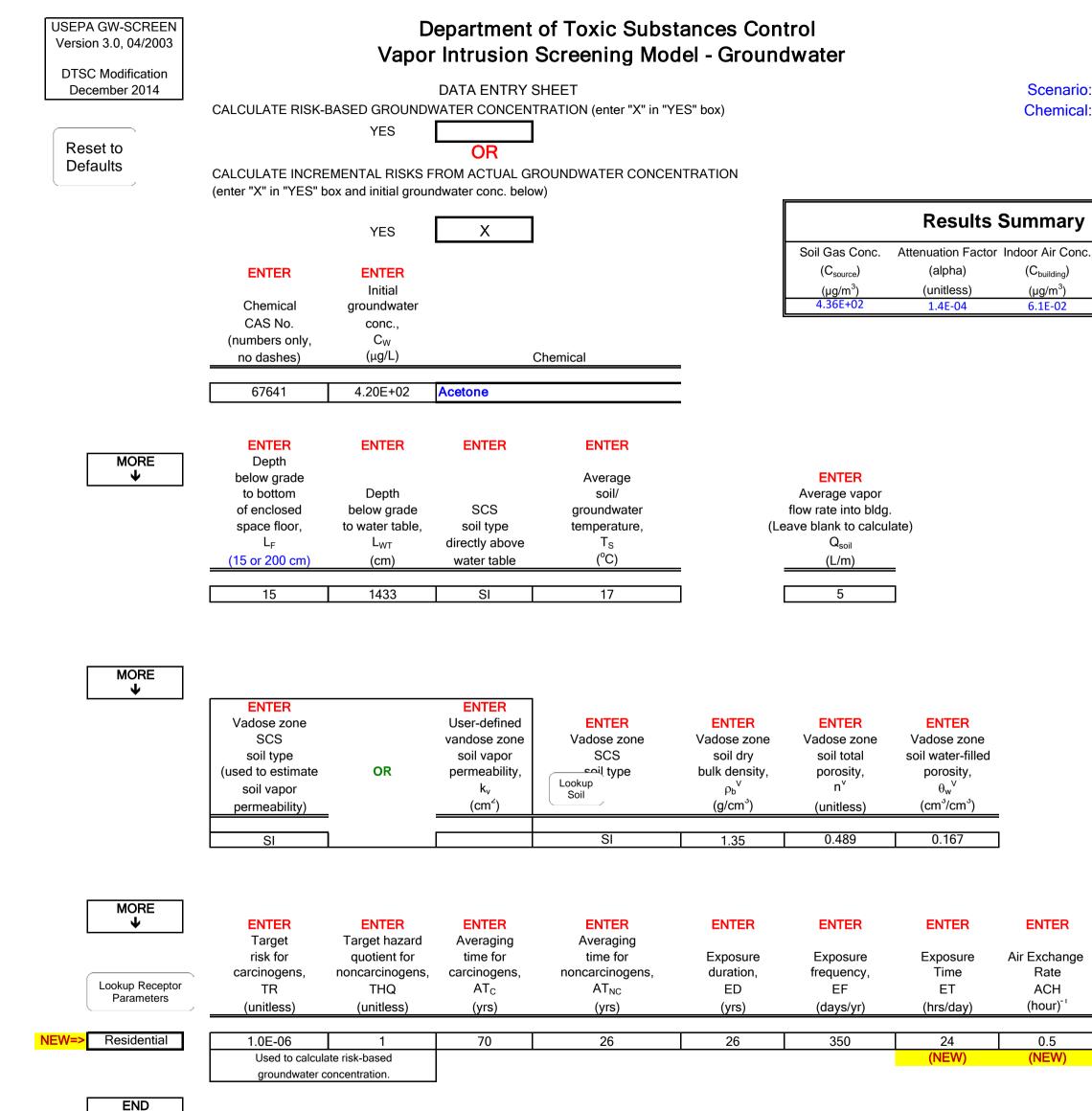
mmary			Risk-Based Groundwater Concentration		
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer	
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1	
(µg/m ³)			(µg/L)	(µg/L)	
1.1E-01	2.4E-05	1.4E-01	NA	NA	


Scenario: Residential Chemical: **1,2-Dichloroethane**

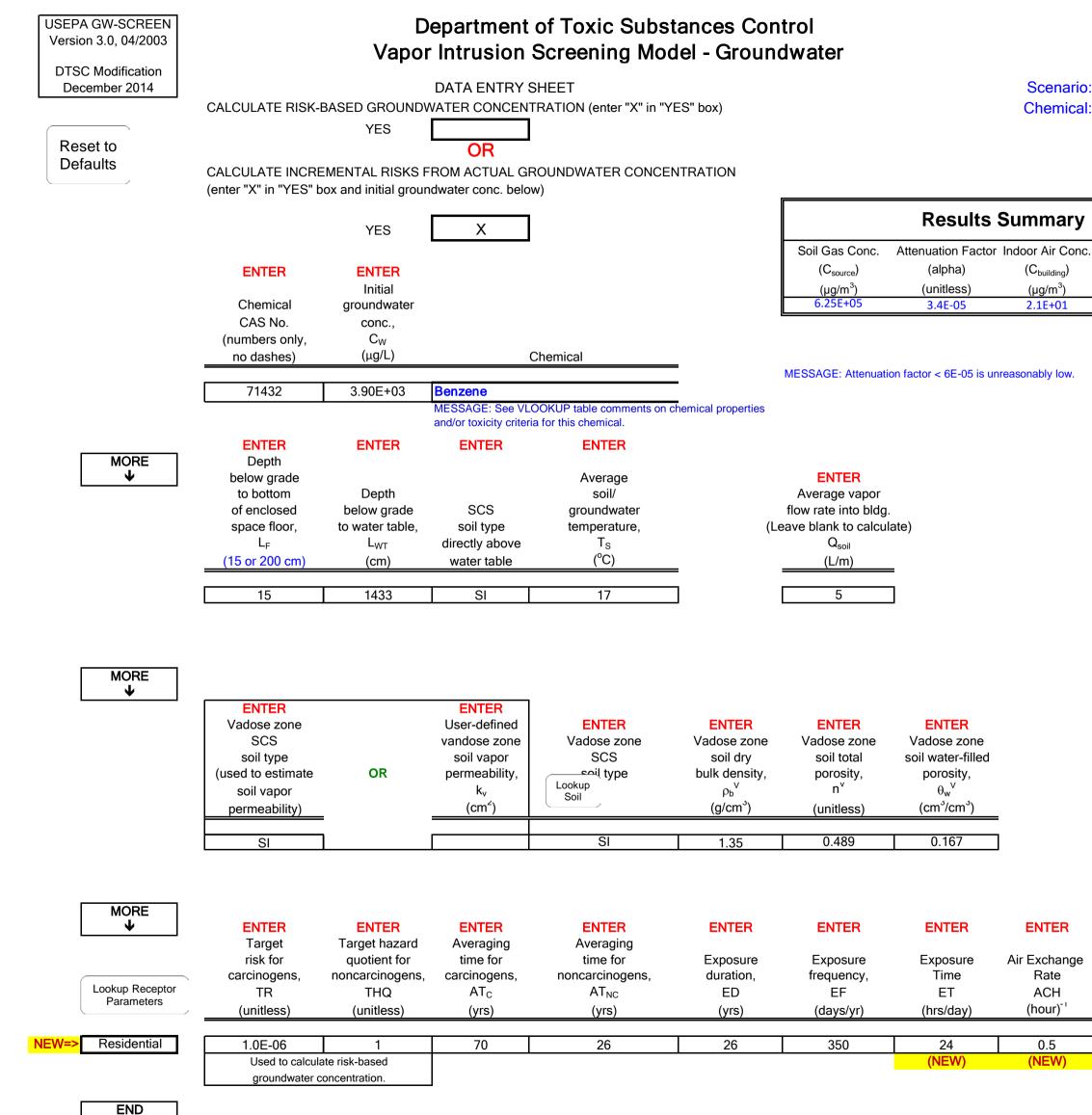
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
5.5E-01	5.1E-06	7.5E-02	NA	NA


Scenario: Residential Chemical: 1,3,5-Trimethylbenzene

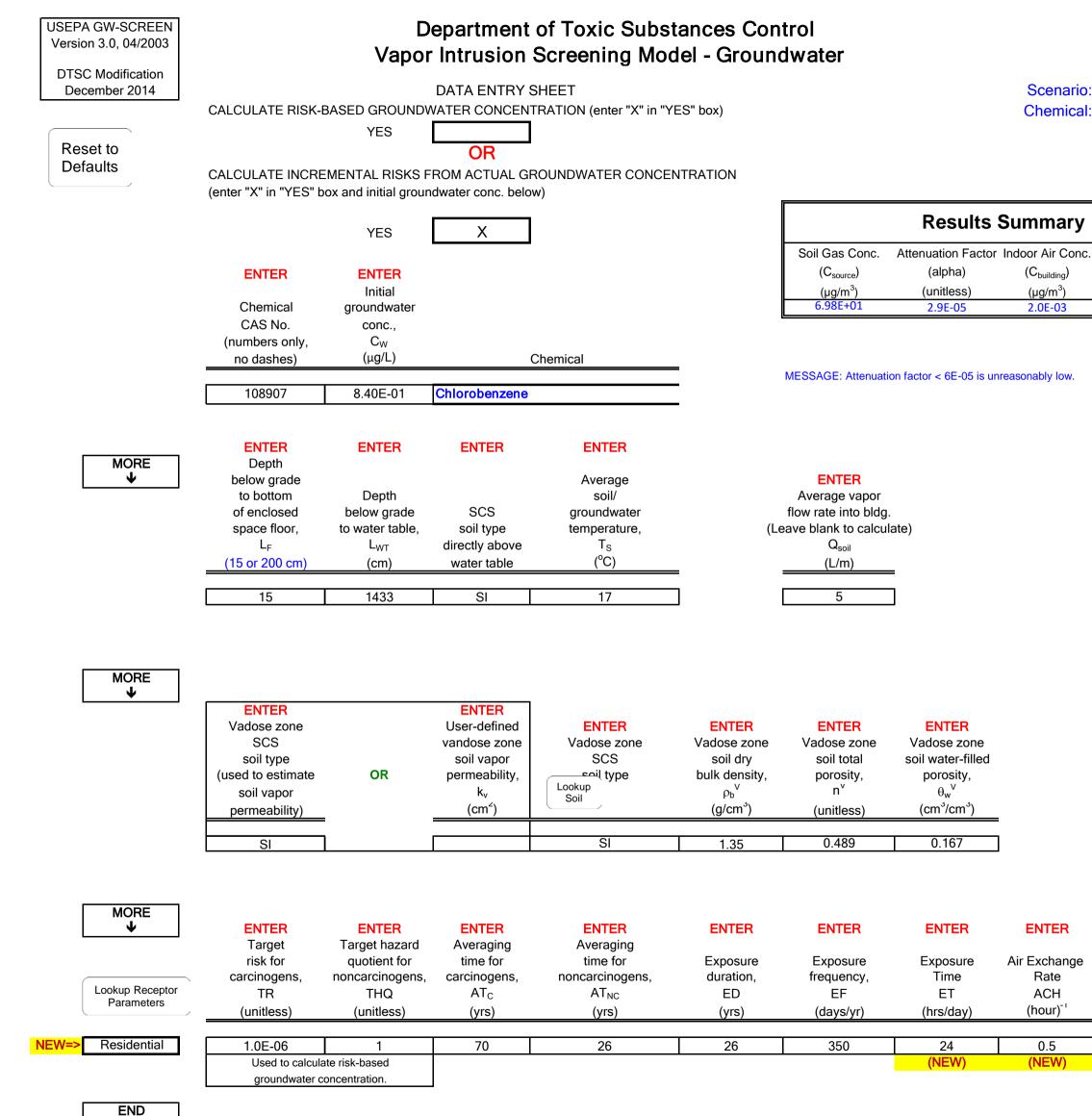
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
1.7E+00	NA	4.6E-02	NA	NA


Scenario: Residential Chemical: 1,4-Dichlorobenzene

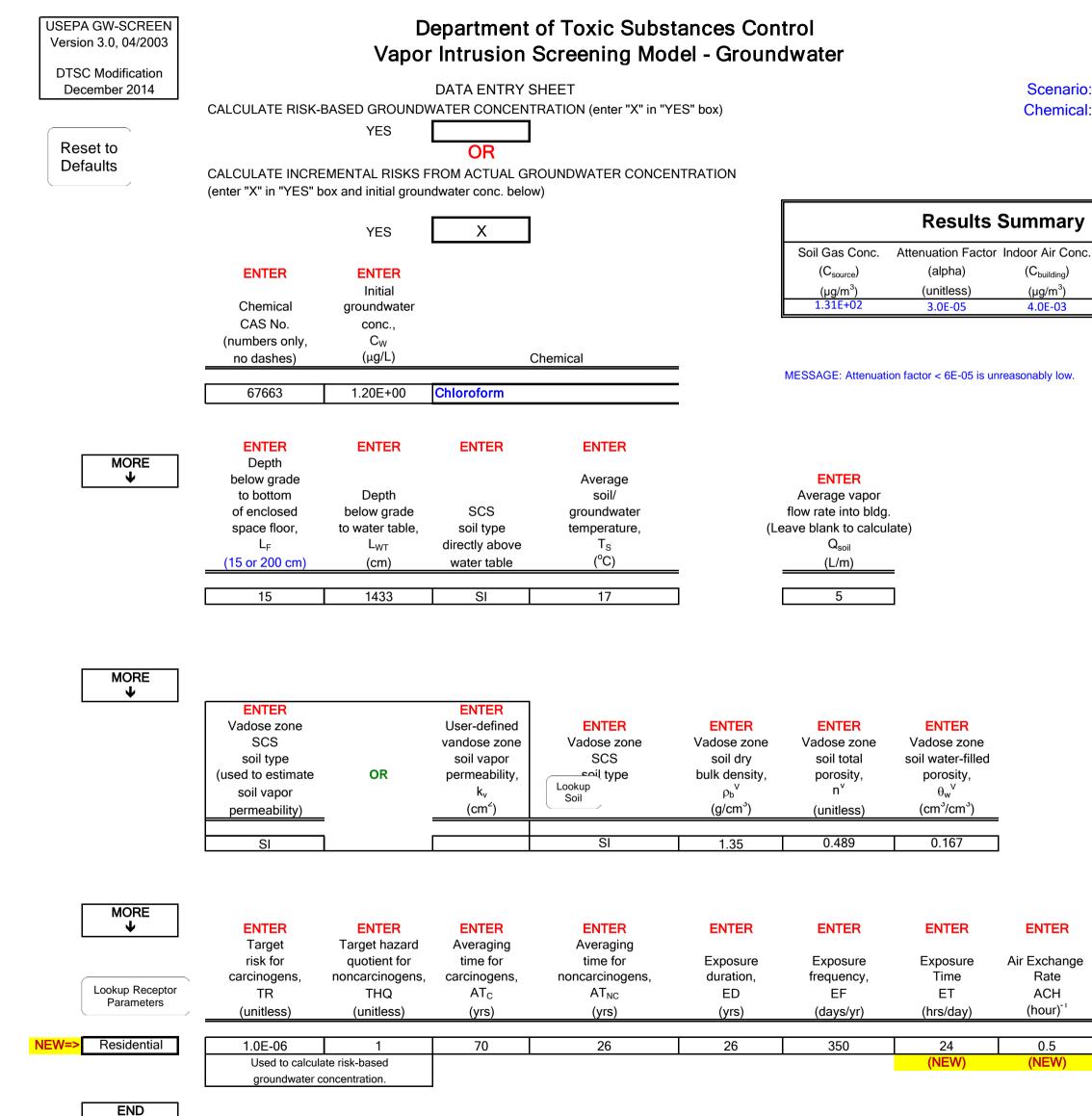
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
5.6E-04	2.2E-09	6.7E-07	NA	NA


Scenario: Residential Methylethylketone (2-butanone)

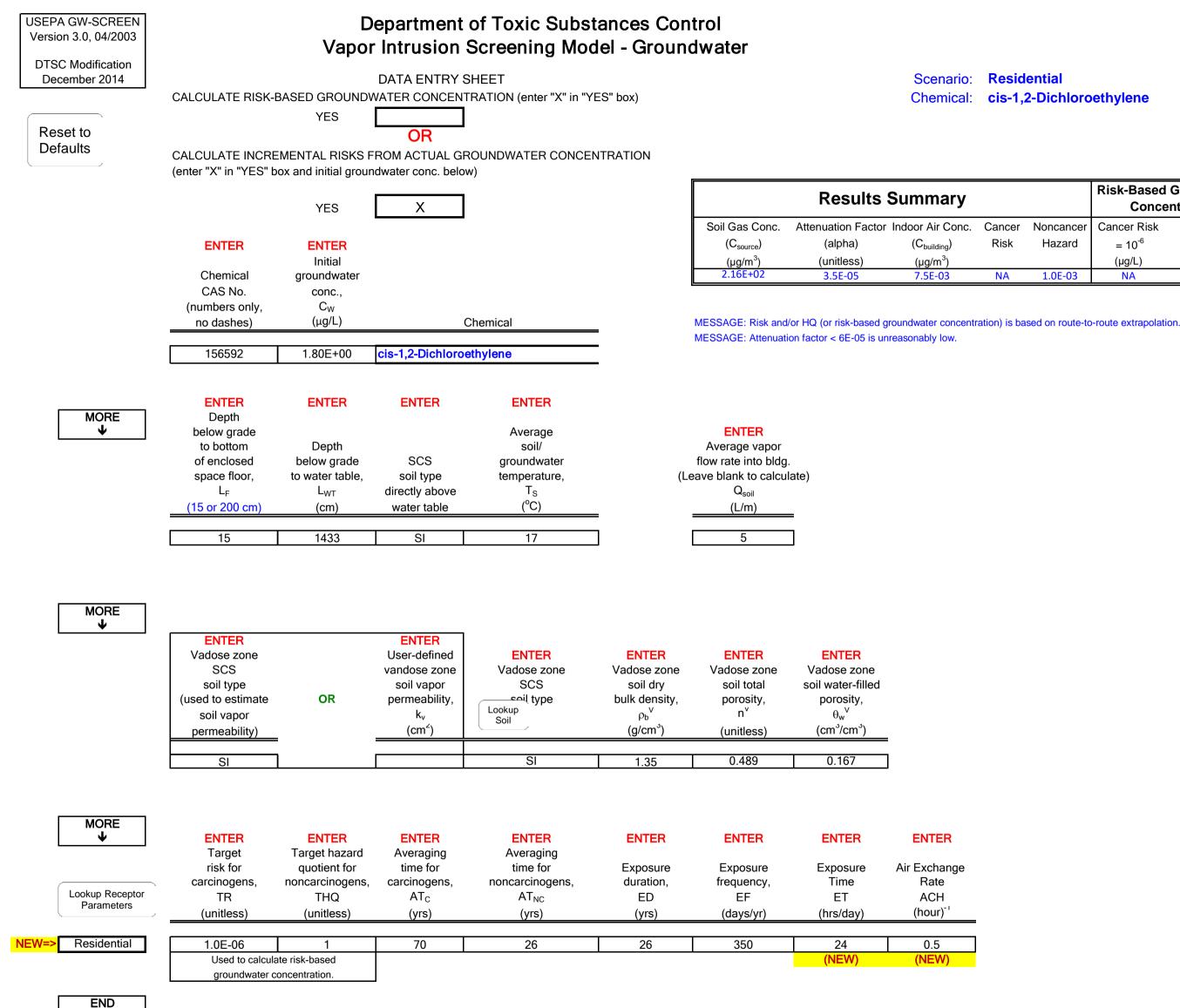
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
2.2E-02	NA	4.3E-06	NA	NA


Scenario: Residential Chemical: Acetone

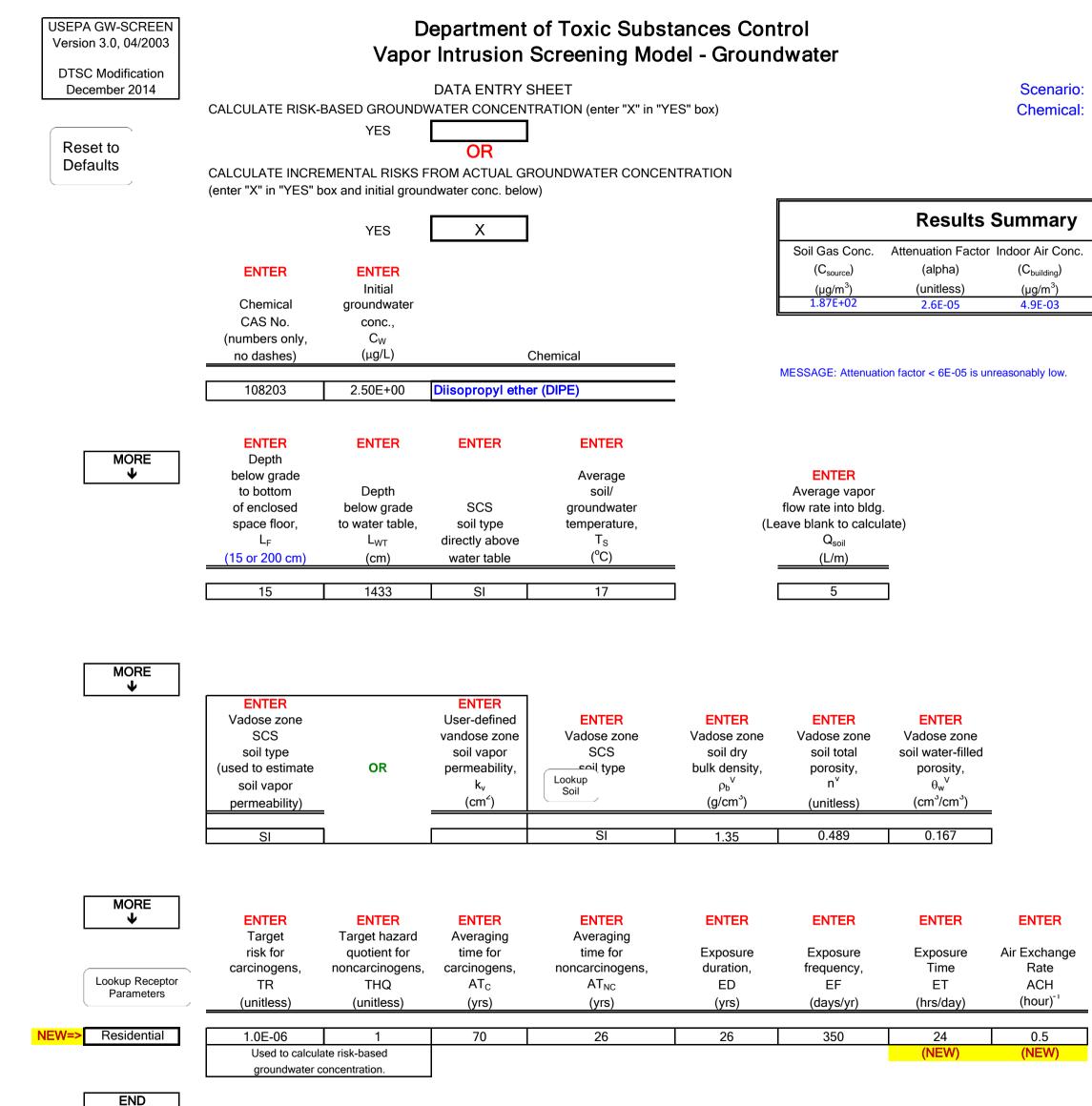
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
6.1E-02	NA	1.9E-06	NA	NA


Scenario: Residential Chemical: Benzene

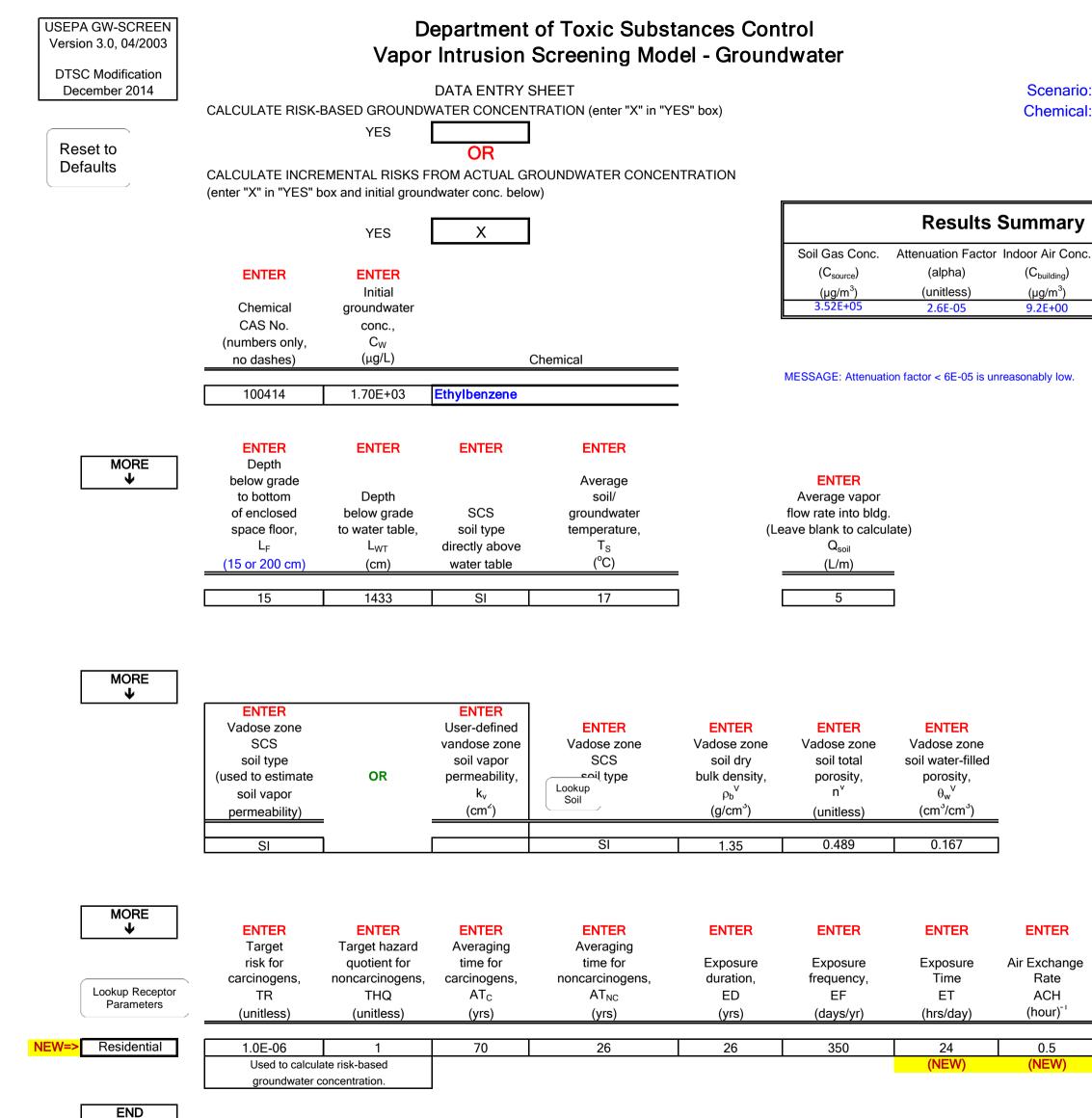
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
2.1E+01	2.2E-04	6.9E+00	NA	NA


Scenario: Residential Chemical: Chlorobenzene

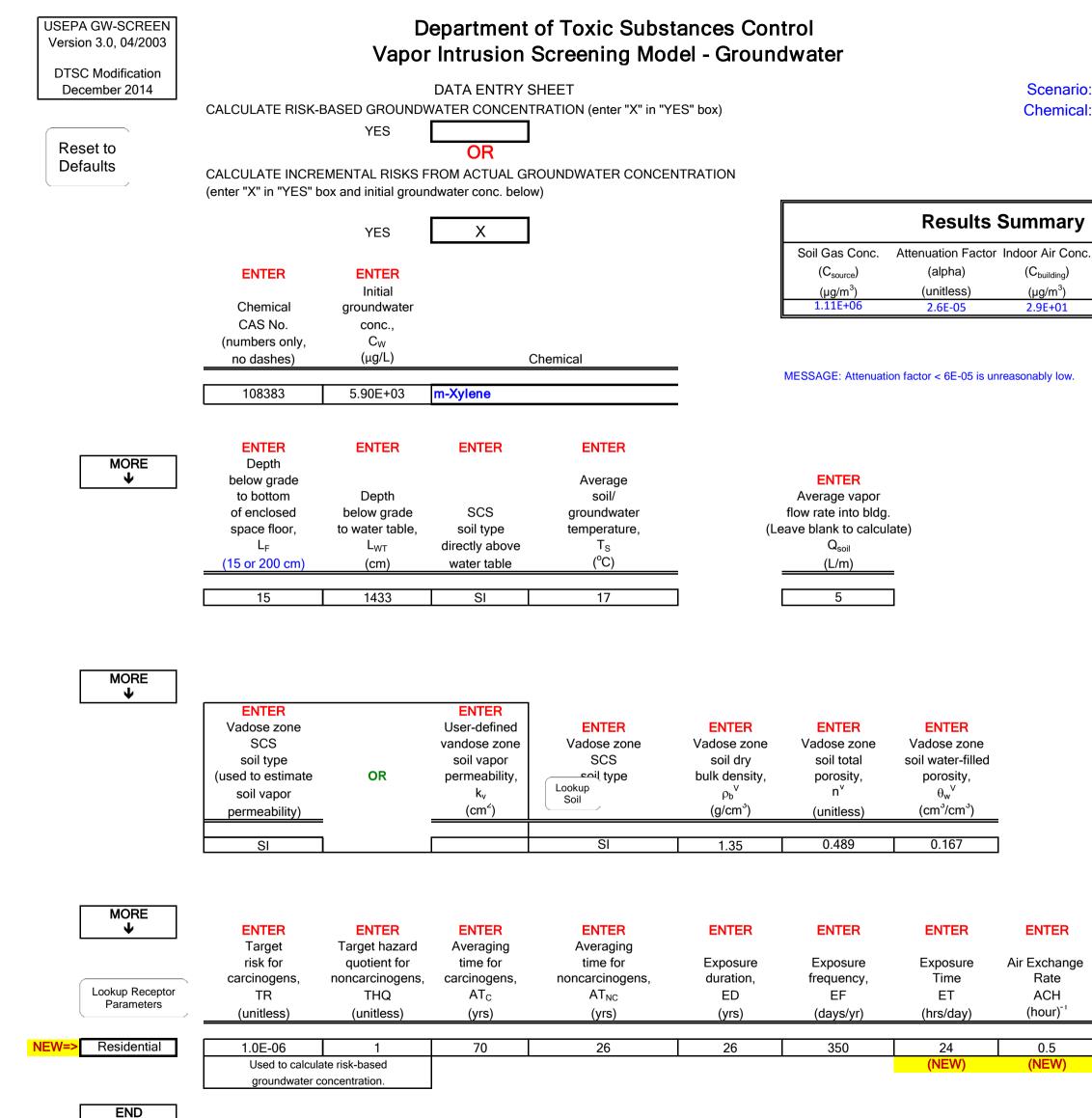
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
2.0E-03	NA	3.9E-05	NA	NA


Scenario: Residential Chemical: Chloroform

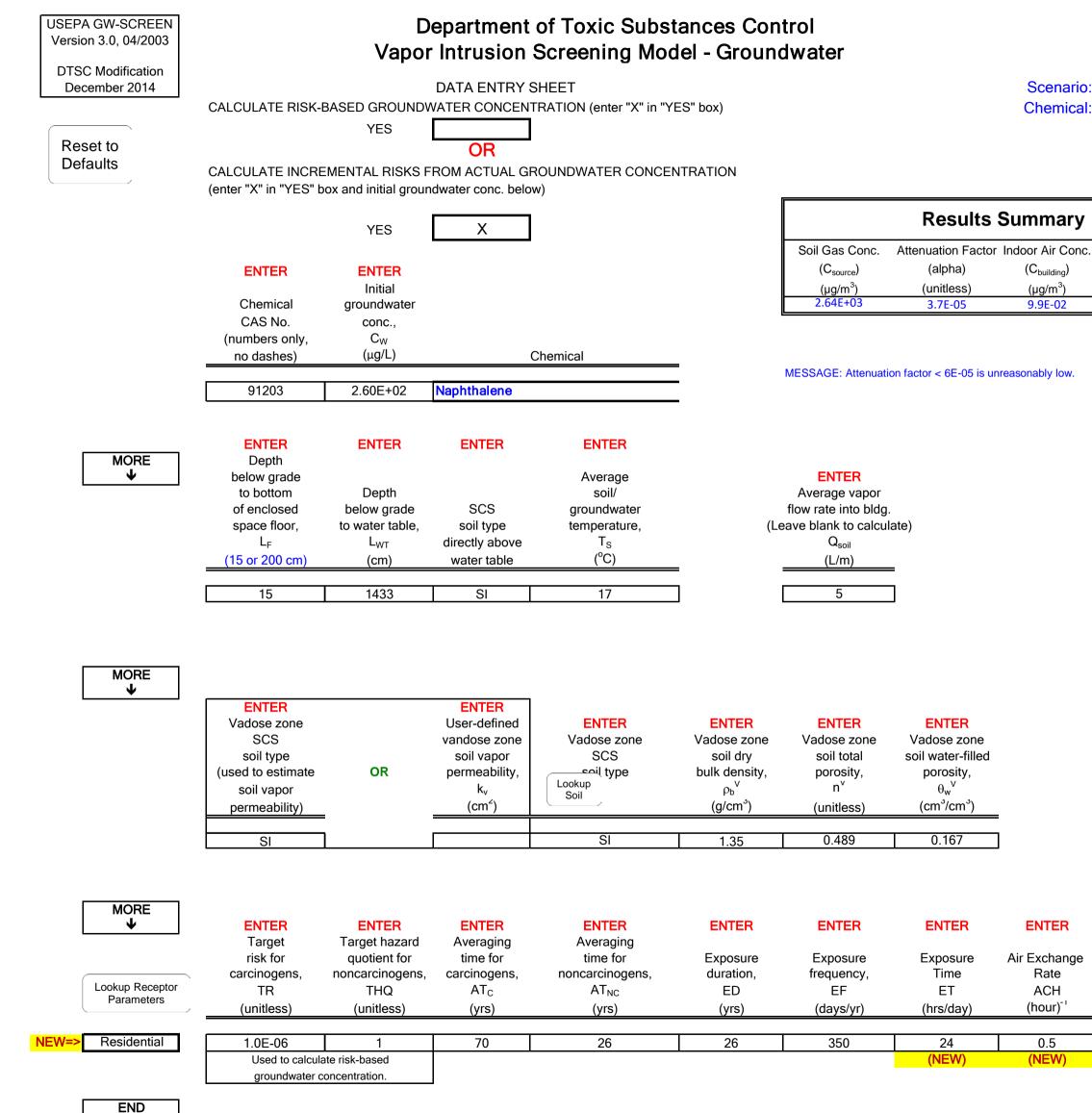
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
4.0E-03	3.3E-08	3.9E-05	NA	NA


Scenario: Residential Chemical: cis-1,2-Dichloroethylene

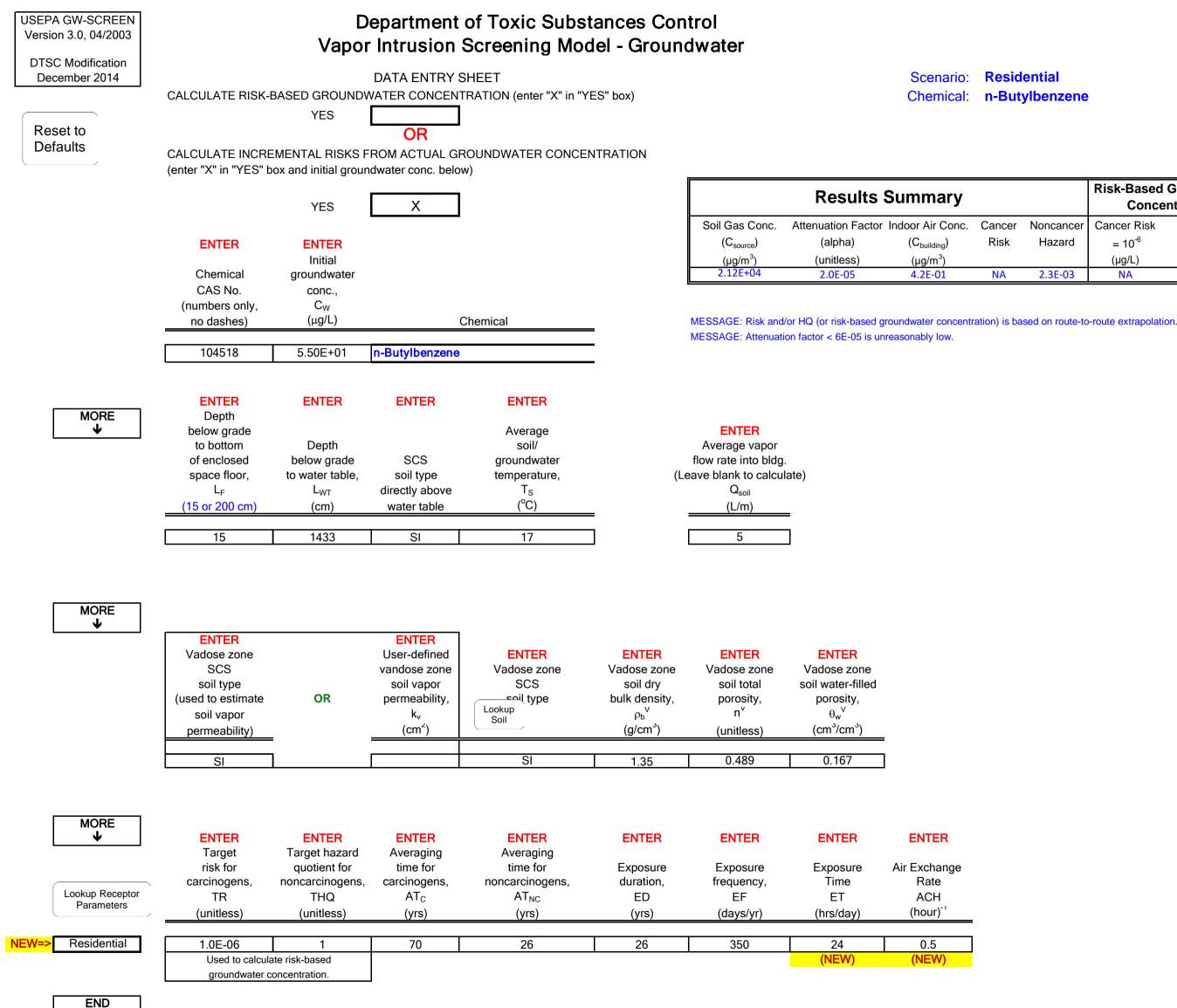
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
7.5E-03	NA	1.0E-03	NA	NA


Scenario: Residential **Diisopropyl ether (DIPE)**

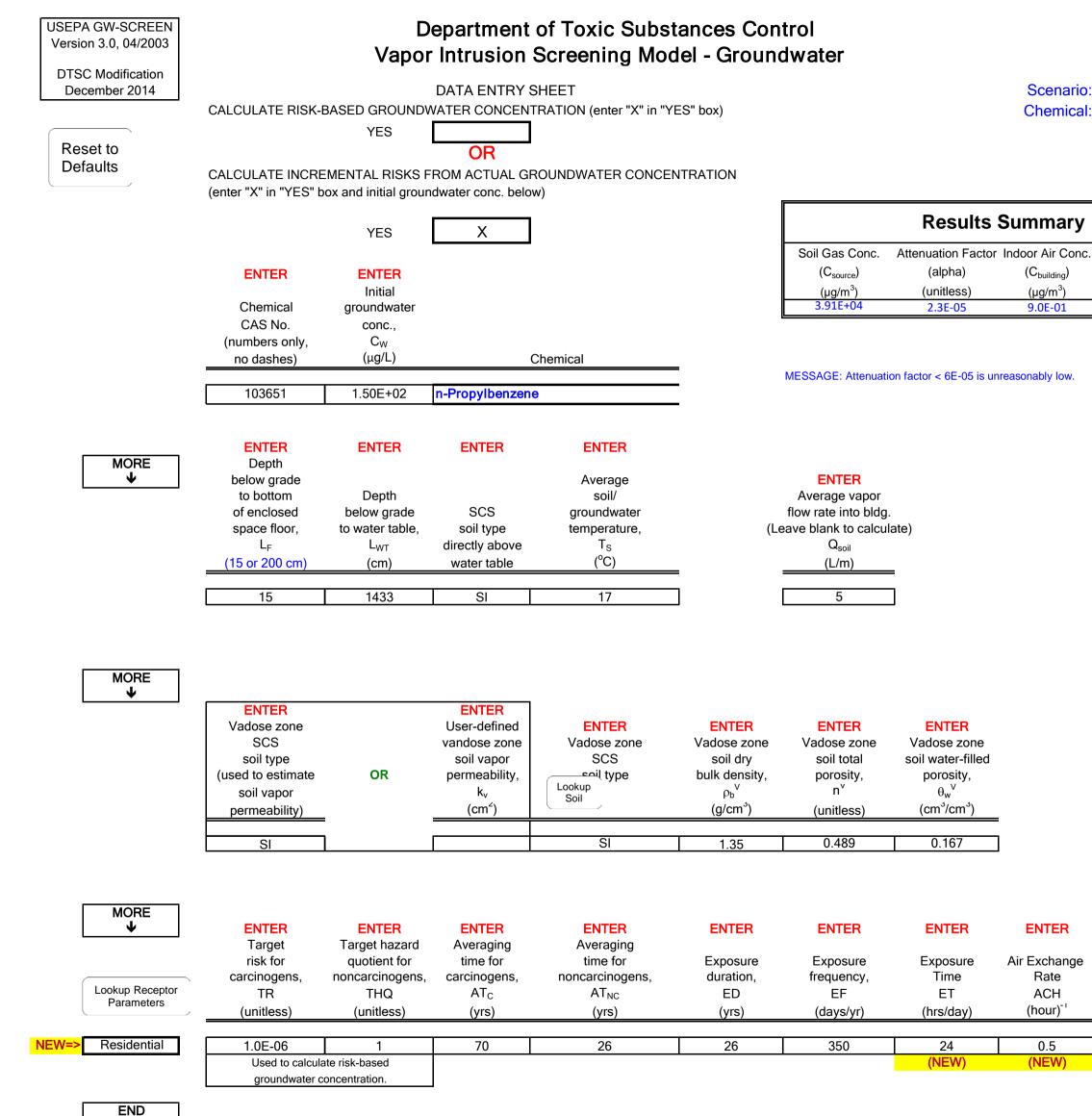
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
4.9E-03	NA	6.8E-06	NA	NA


Scenario: Residential Chemical: Ethylbenzene

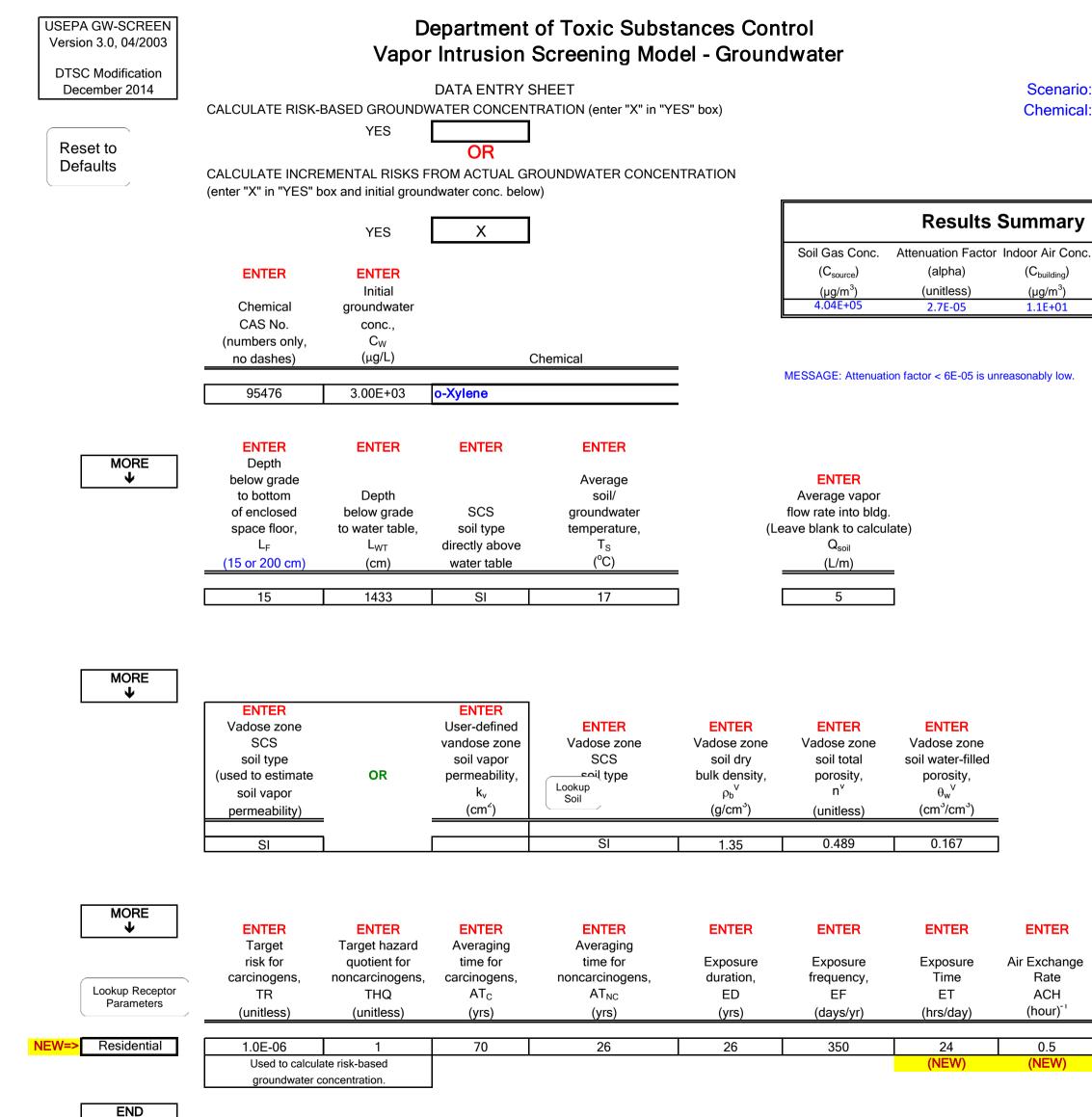
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
9.2E+00	8.2E-06	8.8E-03	NA	NA


Scenario: Residential Chemical: m-Xylene

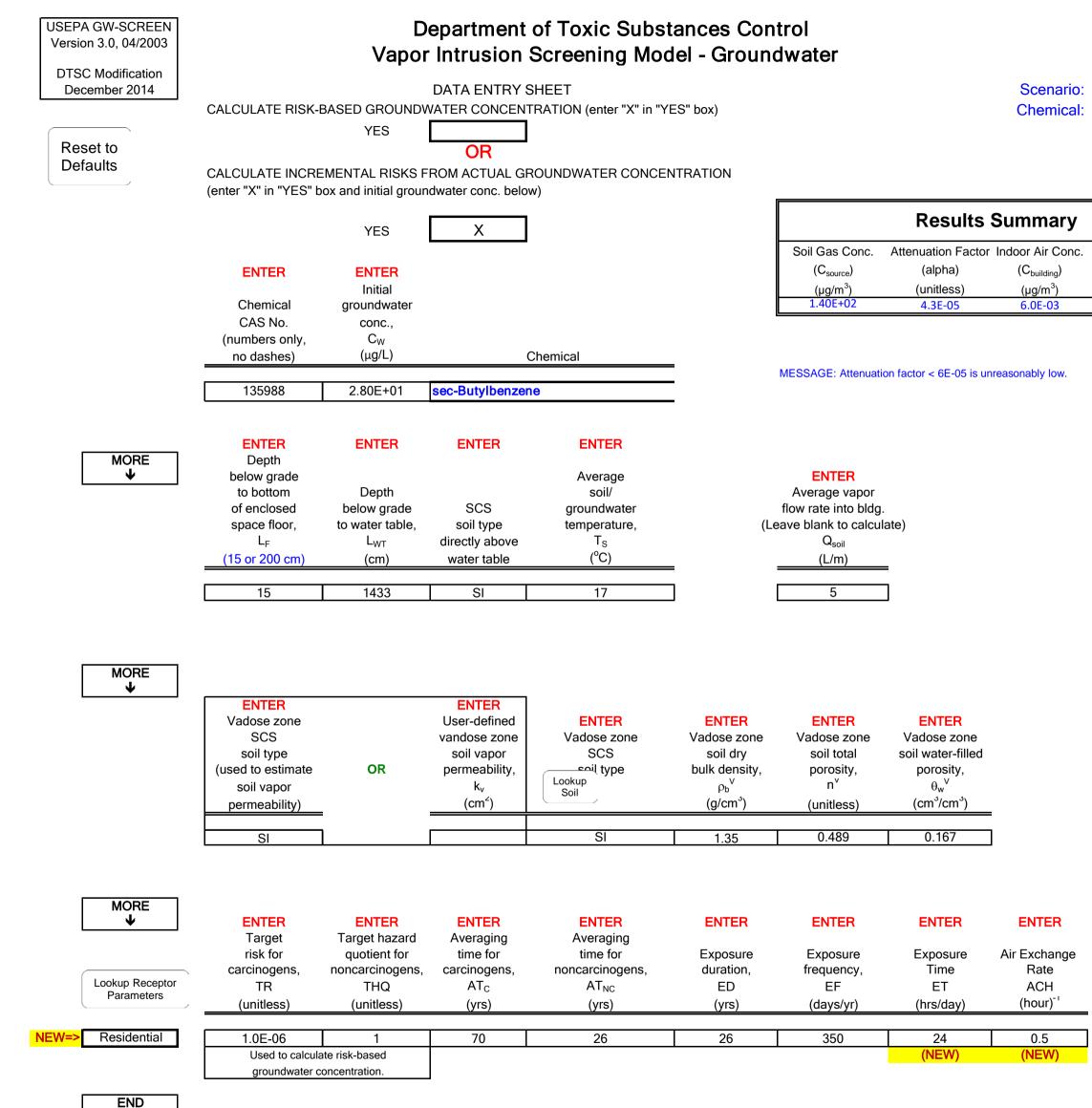
mmary				Groundwater ntration
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
2.9E+01	NA	2.8E-01	NA	NA


Scenario: Residential Chemical: Naphthalene

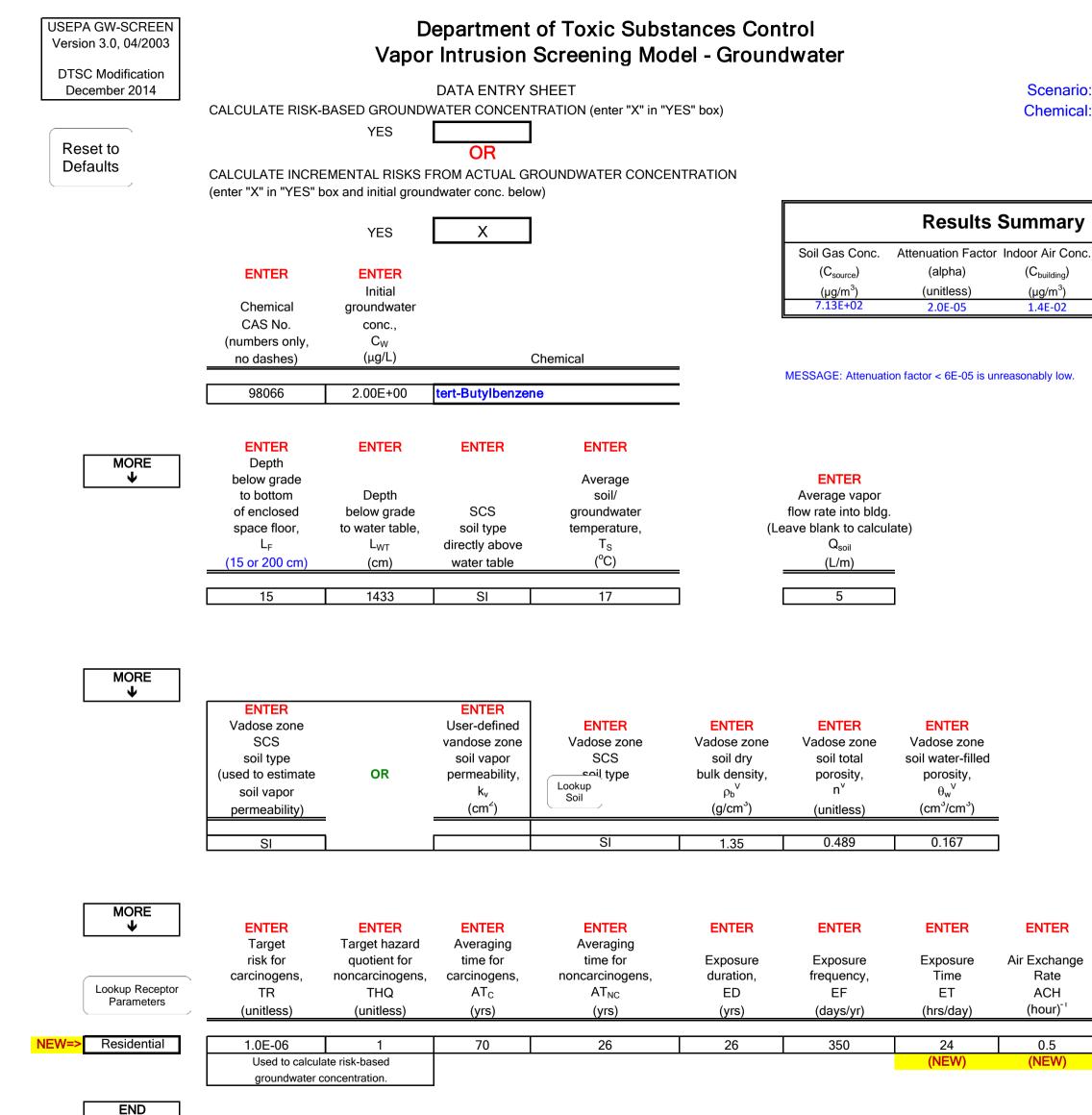
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
9.9E-02	1.2E-06	3.1E-02	NA	NA


Scenario: Residential Chemical: n-Butylbenzene

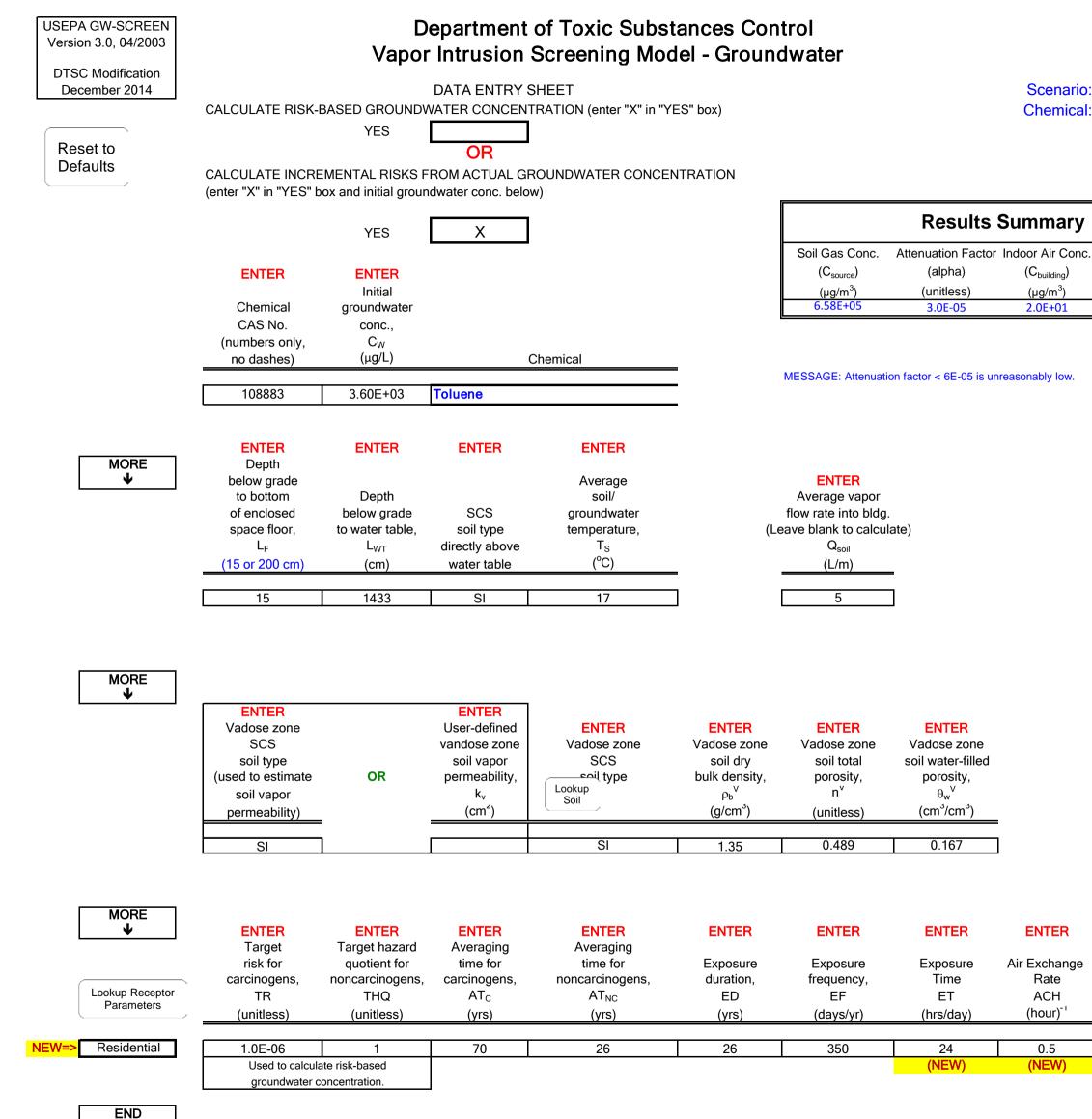
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
4.2E-01	NA	2.3E-03	NA	NA


Scenario: Residential Chemical: n-Propylbenzene

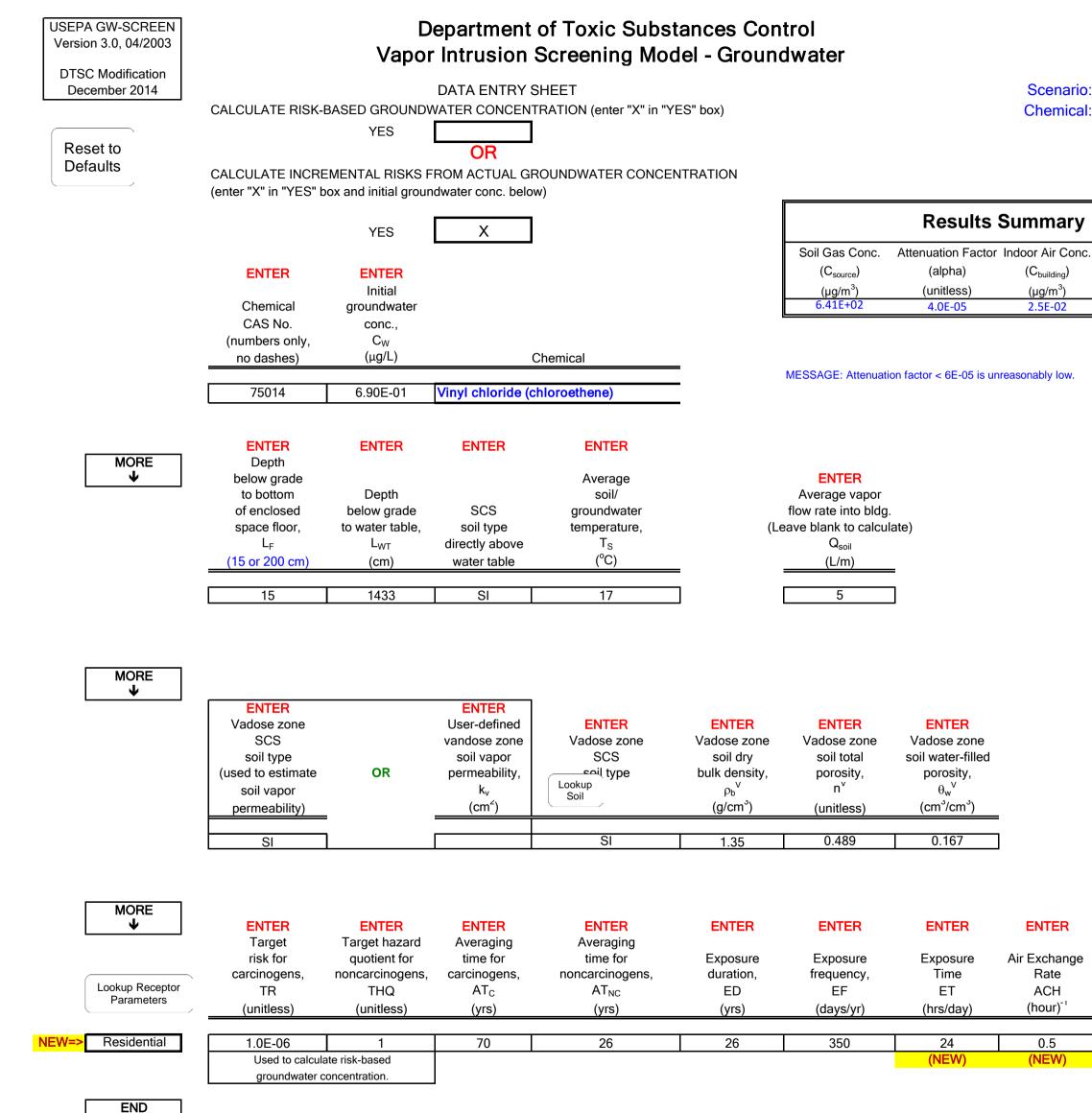
mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m³)			(µg/L)	(µg/L)
9.0E-01	NA	8.6E-04	NA	NA


Scenario: Residential Chemical: o-Xylene

mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
1.1E+01	NA	1.0E-01	NA	NA


Scenario: Residential sec-Butylbenzene

mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
6.0E-03	NA	1.4E-05	NA	NA


Scenario: Residential Chemical: tert-Butylbenzene

mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	$= 10^{-6}$	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
1.4E-02	NA	3.4E-05	NA	NA

Scenario: Residential Chemical: Toluene

mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m³)			(µg/L)	(µg/L)
2.0E+01	NA	6.3E-02	NA	NA

Scenario: Residential Chemical: Vinyl chloride (chloroethene)

mmary			Risk-Based Groundwater Concentration	
oor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{building})	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)			(µg/L)	(µg/L)
2.5E-02	7.1E-07	2.4E-04	NA	NA